
INDRAPRASTHA INSTITUTE OF INFORMATION

TECHNOLOGY, DELHI

MASTER’S THESIS

Upper and Lower bounds of various
Centrality Measures on Planar and Sparse

Graphs

Author:
Sudatta BHATTACHARYA

Supervisor:
Dr. Debajyoti BERA

A thesis submitted in fulfillment of the requirements
for the degree of Master of Technology

in the

Theoretical Computer Science
Department of Computer Science and Engineering

August 3, 2020

https://www.iiitd.ac.in/
https://www.iiitd.ac.in/
https://www.iiitd.edu.in/~dbera/
https://cse.iiitd.ac.in/

iii

Declaration of Authorship
I, Sudatta BHATTACHARYA, declare that this thesis titled, “Upper and Lower bounds
of various Centrality Measures on Planar and Sparse Graphs” and the work pre-
sented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“Happiness Ideas can be found, even in the darkest of times, if one only remembers to turn
on the light.”

Albus Dumbledore and Me

vii

INDRAPRASTHA INSTITUTE OF INFORMATION TECHNOLOGY, DELHI

Abstract
Department of Computer Science and Engineering

Master of Technology

Upper and Lower bounds of various Centrality Measures on Planar and Sparse
Graphs

by Sudatta BHATTACHARYA

In this thesis we address the problem of computing closeness centrality, Harmonic
centrality and a few related centrality measures that operate on the shortest paths
in a graph. We consider sparse graphs, especially planar graphs and this makes
our results widely applicable to real-world networks such as social, geographical,
citation, biological, communication, etc. on which centrality values are often eval-
uated in practice. We introduce a generalisation of Harmonic centrality and two
simplifications of betweenness centrality, a more well-known but more compli-
cated notion of centrality. We show that closeness, Harmonic and number-farness
centrality values of all nodes of a planar graph can be computed in o(n2). On the
other hand for sparse graphs we show that the optimal algorithms for computing
these values of all nodes cannot be truly subquadratic. These problems are, there-
fore, computationally no different from betweenness centrality.
We also show that one centrality measures that involves shortest paths passing
through a particular node can be computed in O(n2) in planar graphs and no faster,
making it a harder problem compared to the others but probably slightly easier
compared to betweenness centrality which, as of now, requires O(n2 log n) for pla-
nar graphs. One of the centralities that we introduce, between number-farness cen-
trality, has a tight bound of O(n2) for one node and all nodes in the case of sparse
graphs, putting it into a league of its own. Based on these results, we conjecture
that for planar graphs, computing betweenness centrality of only a single node
can possibly be done in subquadratic time but not of all nodes.

HTTPS://WWW.IIITD.AC.IN/
https://cse.iiitd.ac.in/

ix

Acknowledgements
There is a long list of people I would like to thank. I would like to start chronologi-
cally. First of all, I would like to thank almighty (Generator Operator and Destroyer)
for everything that I have. Words cannot describe how thankful I am to my parents.
They have always prioritized me and my education over everything. They have al-
ways supported and encouraged me at each and every point of my life till date. I
owe my success to them.

Before coming to IIITD, I had minimal knowledge about algorithm and complexity
and knew some basic competitive coding. I never thought of doing research to this
extent in theoretical computer science. The journey at IIITD began two years back
with the orientation program and the refresher module. We had two subjects, one of
which was taken by Dr. Syamantak Das. From that period only, my interest towards
theoretical computer science escalated. Because of that, in the first semester only I
took two courses in TCS. One of them was "Introduction to Graduate Algorithms"
which was taught by my advisor Dr. Debajyoti Bera. Before attending this course,
I did not even know that coming up with an algorithm is not enough, one also has
a prove the correctness of that algorithm. After attending the lectures for about two
weeks only, I was pretty sure of doing my thesis in TCS under him. The topic that
he gave me was very new and challenging to me but at the same time it seemed
very fascinating. I am grateful to him for introducing me to such an interesting con-
cept. I am also thankful to him for all those discussions and meetings which helped
me the most for completing this thesis. In addition to guiding me in the thesis, he
also taught me numerous other things throughout this period of 1.5 years, which
I know will be helpful in my future research career, starting from how to properly
write emails to writing technically correct papers. Apart from these, he also taught
me how to write formal proofs and when to stop thinking and start writing. Out
of many, the one thing that I admire about him the most is his dedication towards
students. He is always open to questions and encourages students to approach him
openly. I know these words are not enough to thank him, but I would like to say
that if I ever get a chance to become a professor in future, then I would really like to
be like him.

At the same time I was also attending "Modern Algorithm Design" taught by Dr.
Syamantak Das. He is the one who encouraged me to do a thesis in TCS and fur-
ther pursue my career in research. He also taught me how to approach a problem
more formally. He not only helped me understand many concepts in algorithm de-
sign, but also helped me choose my research career. I have also taken other courses
taught by him and did TAship in some of his courses from which I have learnt a lot.
I will forever be grateful to Syamantak sir for his guidance and would like to work
with him in the future too.

This was the first time that I stayed away from my home and my stay at II-
ITD (second home) would not have been so enjoyable and enlightening without the
group of friends whom I was lucky to have. They not only encouraged me but also
taught me how to deal with the real world. I would especially like to thank Sonali,
Saumya, Rachita, Sehaj, Maleeha, Rohit, etc. (the list is long) for being outspoken
but supportive and for being a part of my life.

x

I would also like to thank my lab mates, especially Rahul da for introducing me
to so many new concepts, for showing me some parts of Delhi and also guiding me
through numerous tough situations.

I would also like to thank IIITD for providing such a nice campus environment and
all the infrastructure, including the canteen,mess and housekeeping facilities which
made the stay very comfortable. Staying away from home is very tough, especially
when it comes to food. So, many many thanks to all the food delivery systems for
delivering Bengali food at the doorstep. I would also like to thank everyone in the
BMS and FMS. I would also like to thank the academic office of IIITD. Special thanks
to Ashutosh Brahma sir because every time someone faced a problem related to ex-
ams or some other academic tasks, we used to say, "go to Brahma sir, he will fix it".

Although I have not explored much of the national capital, Delhi, but the places
in Delhi that I have visited were full of life. Thank you to Delhi and the people of
Delhi for being so welcoming and charming. I loved Delhi and would like to visit
again.

It is very hard to find humble people who don’t even know you and still answers
your queries (no matter how stupid they are). I would like to convey my sincere
gratitude to Prof. Sergio Cabello, Dr. Virginia Vassilevska Williams, Dr. Amir Ab-
boud and last but not the least Dr. Kral Bringmann for answering my numerous
queries. Overall, I would like to thank the entire theory community for being so
accepting, approachable and always open to discussions.

Finally, I would like to convey my gratitude to my examiners, Prof. Saket Saurabh
and Prof. Sandeep Sen for their valuable suggestions.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Overview of results . 4
1.2 Road map . 5

2 Background 7
2.1 r-Division . 7
2.2 Assumptions for the Voronoi Diagram Construction 8
2.3 Voronoi Diagram . 9

2.3.1 Computing bisectors for every pair of sites 11
2.3.2 Additional Structure and Properties of Additively Weighted

Voronoi Diagram . 12
Properties of Voronoi diagram in the presence of multiple holes 13

2.3.3 Representation of the Voronoi Diagram — same representation
used in [18] . 16

2.3.4 Some more structural properties of AWV Diagram 16
2.4 Fast Multipoint Evaluation . 18

2.4.1 Converting polynomials in root form to coefficient form 18
2.5 Complexity Assumptions . 19
2.6 Related Work . 20

3 Data Structure 23
3.1 Augmented Cotree . 23

3.1.1 Augmented Cotree for CC . 23
3.1.2 Augmented Cotree for HC . 24
3.1.3 Augmented Cotree for NFC . 24

3.2 Computing βin and βout . 25
3.3 Augmented List Data Structure . 27

3.3.1 AL for CC . 28
3.3.2 AL for HC . 29
3.3.3 AL for NFC . 31

3.4 Augmented Balanced Binary search tree (ABBST) 34
3.4.1 ABBST for CC . 35
3.4.2 ABBST for HC . 38

4 Upper Bounds 43
4.1 Linear Upper Bound for BHC . 43
4.2 Subquadratic Upper Bounds for Planar Graphs 44

xii

4.2.1 CC of all nodes . 45
Stages 1 and 2 . 45
Stage 3 . 46
Stage 4 . 46
Running time analysis . 48

4.2.2 HC of all nodes . 49
Stage 1 and 2 . 49
Stage 3 . 50
Stage 4 . 50
Running time analysis . 54

4.2.3 NFC of all nodes . 54
Stages 1 and 2 . 55
Stage 3 . 56
Stage 4 . 56
Running time analysis . 59

4.2.4 BNFC of a single node . 59

5 Lower bounds 61
5.1 Lower Bound for Sparse graphs . 61
5.2 Lower Bound for BHC of all nodes . 65

6 Conclusion 69

A Properties of a hole 71

Bibliography 73

xiii

List of Figures

2.2 A piece with 3 holes. Red dots are the boundary nodes. 8
2.3 Two sites u and v. t, t′ ∈ Tu and Tv . 10
2.5 The contiguous portion of the new bisector that gets added is shown

in dotted line. 12
2.6 Two boundary nodes on the outer hole are shown in blue(boundary

node b) and pink. The yellow line is the C∗0 cycle of the bisector
β∗(b, .). Red lines are edges of T∗ and blue lines are the edges of T. . . 13

2.7 There are two holes in this piece. Yellow lines represent the boundary
of the Voronoi region of b(blue node). Red lines represent the cotree.
Blue lines are the edges of the shortest path tree rooted at b. Black
dots are the endpoints of the edges of cotree that are entering into
the Voronoi region of b through the cycles. Black star represents the
unique edge that is exiting the Voronoi cell of b through the cycle inside. 14

2.8 A piece with a voronoi region is shown. Boundary of Vor(b) is shown
in blue. Two paths (h∗ g∗ and h∗ f ∗) from T∗ are shown in red.
g∗ lie on a cycle, and face f is in Vor(b). Endpoints of penetrating
edges are shown in green and endpoints of exiting edges are shown
in black. Edge (a∗, b∗) is both a penetrating edge and an exiting edge. . 15

2.9 A piece with two holes, the infinite hole h0 and h1. h1 has 4 boundary
nodes. The boundary of Vor(b) is shown in dotted blue. 17

2.10 The cycles in blue cannot cross like this. 17
2.11 Green region is Vor(b), which is disconnected if the cycles in C∗ are

nested. 18

3.1 A bisector as a simple cycle and the two possible segments (when the
end points of the segments are given) is shown. The two possible
segments are highlighted in different colors. 29

4.1 Computing ωint by creating GP . 45
4.2 Computing ωext(s) by grouping internal nodes and their closest bound-

ary nodes . 46
4.4 Showing G and Gn with the node v . 60

5.1 red edges have weight m + 1 and green edges have weight 1 63
5.2 The graph obtained after the reduction from 3SUM to BHC. 67

xv

List of Tables

1.1 Centrality measures considered in this thesis. “num” denotes the
number of shortest-paths and “dist” denotes the length of shortest-
paths. Notations are described in Table 1.2. 2

1.2 Table of notations . 2
1.3 Upper and lower bounds of different centralities for planar graphs . . . 3
1.4 Upper and lower bounds of different centralities for sparse graphs . . . 3

xvii

List of Abbreviations

BC Betweenness Centrality
CC Closeness Centrality
HC Harmonic Centrality
BHC Between Harmonic Centrality
NFC Number Farness Centrality
BNFC Between Number Farness Centrality
AWV Additively Weighted Voronoi (Diagram)

xix

Dedicated to my dear friend Sehaj
and

to all those who are still waiting for their acceptance letter from
Hogwarts.

1

Chapter 1

Introduction

–
Betweenness centrality (BC) is undoubtedly the most widely studied notion of

graph centrality [28, 16]. BC of a node roughly measures the fraction of shortest
paths that pass through a node; we think this is the reason that makes it attractive in
various applications like congestion control [29], community detection [19], etc. An-
other reason behind its popularity among scientists, at least according to us, is a nifty
algorithm proposed by Brandes that remains the starting point of all BC algorithms
even today[5]. However, Brandes’ algorithm (and all subsequent adaptations) are
computationally expensive requiring O(n3); in fact, BC has been shown to be no
easier than the all-pairs-shortest-paths problem [3]. In practice, therefore, many ap-
plications tend to use alternative notions of centrality, like closeness centrality, reach
centrality, harmonic centrality, etc. all of which are also based on shortest-paths but
appear simpler than BC. In fact, we found several recent applications that were com-
puting closeness centrality and Harmonic centrality of large networks[35, 34].

But are these alternative centrality notions, particularly closeness centrality (CC),
really simple? Can they be computed significantly faster than BC? It is known that
BC cannot be solved in truly subquadratic time, but only for sparse graphs [3], and to
the best of our knowledge, there are no truly-subquadratic upper bound or quadratic
lower bounds known for closeness and Harmonic centralities for sparse and planar
graphs.

Given the widespread applications of sparse networks, in this thesis, we address
the above question for sparse graphs in general and planar graphs in particular. Our
first result is that CC has a truly subquadratic solution for planar graphs 1. Our
preliminary attempts show that BC may require Ω(n2 log n) even for planar graphs;
however, a formal lower bound, even under standard hardness assumptions, ap-
pears difficult. To understand their relative difficulties, let’s compare their formulæ
for BC and (unnormalized) CC given below in which we use “s t” to denote the
shortest path from s to t.

Betweenness
centrality

(
v
)
= ∑

s,t∈V

num. of s v t
num. of s t

Closeness
centrality

(
v
)
=

1
∑t∈V distance of v t

The motivation of this thesis comes from the different nature of these expres-
sions: use of number of shortest path 2 vs. the length of shortest paths, placement

1 We use “truly subquadratic” to indicate a running time of n2−Ω(1). We also use Õ to indicate
additional poly-log(n) factors.

2 For the centrality algorithms that uses the number of shortest paths, we have assumed that, addi-
tion and subtraction of very large numbers can be computed in O(1) time (Real RAM model). Other-
wise, even if the input graph has small weights, the number of shortest paths between a pair of nodes
can be exponential, and that would add to the time overall time complexity.

2 Chapter 1. Introduction

Table 1.1: Centrality measures considered in this thesis. “num” de-
notes the number of shortest-paths and “dist” denotes the length of

shortest-paths. Notations are described in Table 1.2.

Centrality Definition similar to . . . based on . . .
Closeness CC (v) = 1

∑t dist(v,t) SSSP dist
Harmonic HC (v) = ∑t

1
dist(v,t) SSSP dist

Between Harmonic BHC (v) = ∑s ∑t
1

dist(s,t,v) APSP dist
Number Farness NFC (v) = ∑s σ(v, t) SSSP num

Between Number Farness BNFC (v) = ∑s ∑t σ(s, t, v) APSP num

of aggregation (summation) and the role of v in the relevant shortest paths as an
end-point vs. an intermediate vertex. One notable difference is the use of shortest
paths starting/ending at v (these are similar to “single-source shortest paths”) vs.
among all possible starting and ending nodes (these are similar to “all-pairs short-
est paths”). We formulated several centrality measures, each focusing on one of
those aspects — these measures are tabulated in Table 1.1. Out of these measures,
Closeness, Harmonic and Between number farness (known as stress centrality in the
literature) centrality are well established [32], but we could not spot the others in
relevant literature. We did not consider 1

∑s ∑t dist(s,t,v) as a separate centrality since it
can be shown to be same as CC(v)/n. Although structurally similar, BHC on the
other hand, is not equivalent to any of the other notions and is, in fact, harder than
CC (see Table 1.3).

Table 1.2: Table of notations

Notations Meaning
dist(s, t) shortest path distance from s to t

dist(s, t, v) shortest path distance from s to t among paths passing through v
σ(s, t) number of shortest paths from s to t

σ(s, t, v) number of shortest paths from s to t passing through v
n number of nodes in the graph
P piece obtained using r-division

∂P boundary of piece P
P(s) piece that contains a node s
V(s) Voronoi region that contains a node s

We did not find any existing work on the upper or lower bound on the worst-
case complexities of CC, HC and BNFC (the others are defined by us). This led
us to study the complexity of these centralities for planar and sparse graphs with
a goal to understand the reasons behind the apparent hardness of computing BC
for those graphs — is it the use of number of shortest paths, is it the placement
of aggregation, is it the APSP style of considering all possible pairs of source and
target nodes? We considered both the problems of computing a centrality of a specific
node and computing the centrality of all nodes. The upper bounds and (conditional)
lower bounds that we arrived at are summarized in Table 1.3 for planar graphs and
Table 1.4 for sparse graphs.

The lower bounds that we obtain are conditional, i.e., based on the hardness of
the 3SUM problem and the satisfiability problem. 3SUM hardness is a commonly

Chapter 1. Introduction 3

Table 1.3: Upper and lower bounds of different centralities for planar
graphs

Centrality Upper Bound Lower Bound
Single Node All nodes All Nodes

CC O(n) [Note 1, Sec. 1.1] Õ(n
5
3) [Sec. 4.2.1] Open

HC O(n) [Note 1, Sec. 1.1] Õ(n
9
5) [Sec. 4.2.2] Open

BHC Õ(n) [Sec. 4.1] O(n2) [Note 2, Sec. 4.1] 3SUM-hard [Sec. 5.2]

NFC O(n) [Note 1, Sec. 1.1] Õ(n
9
5) [Sec. 4.2.3] Open

BNFC Õ(n
9
5) [Sec. 4.2.4] O(n2) [Note 2, Sec. 1.1] Open

Table 1.4: Upper and lower bounds of different centralities for sparse
graphs

Centrality Upper Bound Lower Bound
Single Node All nodes Single Node All Nodes

CC Õ(n)
[Note 1,
Sec. 1.1]

Õ(n2)
[Note 1,
Sec. 1.1]

Open not truly sub-
quadratic
[Sec. 5.1]

HC Õ(n)
[Note 1,
Sec. 1.1]

Õ(n2)
[Note 1,
Sec. 1.1]

Open not truly sub-
quadratic
[Sec. 5.1]

BHC Õ(n)
[Sec. 4.1]

Õ(n2)
[Note 2,
Sec. 4.1]

Open 3SUM-hard
[Sec. 5.2]

NFC Õ(n)
[Note 1,
Sec. 1.1]

Õ(n2)
[Note 1,
Sec. 1.1]

Open not truly sub-
quadratic
[Sec. 5.1]

BNFC Õ(n2)
[Note 2,
Sec. 1.1]

Õ(n2)
[Note 2,
Sec. 1.1]

not truly sub-
quadratic
[Sec. 5.1]

not truly sub-
quadratic
[Note 3]

accepted belief that finding a, b, c in an array of numbers that sum to a specific tar-
get cannot be solved in truly subquadratic time. It is a common choice for prov-
ing quadratic lower bounds and has been used extensively for geometric problems
and for some graph problems as well [3]. However, to the best of our knowledge
3SUM hardness has never been used for shortest-path based graph problems, let
alone problems wrt. centrality.

The other common approach for obtaining fine-grained complexity is by reducing
CNF-SAT to a problem and then using the strongly exponential time hypothesis (SETH)
that the CNF-SAT problem cannot be solved in truly sub-exponential time. SETH
was recently employed to show that truly subquadratic algorithms for exactly and
approximately computing BC, and exactly computing reach centrality, probably do
not exist.

For the upper bounds, we design algorithms based on graph-partitioning. Par-
titioning a graph into suitable regions, solving a problem on each region, and then
combining the results over all regions has been shown to be useful in practical sce-
narios for many centrality problems [12, 33]. However, it was recently shown that

4 Chapter 1. Introduction

even this technique does not give an asymptotically faster solution compared to run-
ning Brandes’ algorithm for computing BC on sparse graphs [3]. So we resort to
partitioning for planar graphs, and follow the footsteps of Cabello et al. [7] who
showed how to use r-division and Voronoi decomposition to compute the largest
shortest-path and sum of all shortest-paths in randomized subquadratic time. This
was later improved to deterministic Õ(n5/3) [18]. However the complexity of a prob-
lem depends a lot on the exact expression to be calculated (e.g., maxs,t dist(s, t) vs.
∑s,t dist(s, t) vs. ∑s,t

1
dist(s,t) ; hence, our proofs for CC, HC and NFC are different from

those mentioned above. Although, we use the AWV decomposition from the paper
and also use similar data structure (ABBST)

We can observe from the above tables that using number of shortest paths ap-
pears to be slightly more complicated compared to using only the shortest path dis-
tances, but the real difficulty creeps in when all (source, target) pairs are used to
compute centrality of a node ala. APSP. Having both of these features, we conjecture
that BC of even a single node in a planar graph probably cannot be computed in
truly subquadratic time.

1.1 Overview of results

We consider undirected weighted n-node graphs denoted by G = (V, E). First, we
discuss a few simple upper and lower bounds that can be readily obtained using
known techniques.

I Note 1. The CC, HC and NFC of single node can be calculated in O(n) time by
running a linear-time “single-source shortest path” algorithm (SSSP)[23] for planar
graphs and by running Dijkstra’s algorithm in Õ(n) time for sparse graphs. The CC,
HC and NFC of all nodes in sparse graphs can be computed in Õ(n2) time by simply
running Dijkstra’s algorithm n times. The centrality values can then be computed
by storing the dist or σ as necessary and adding up these values.

I Note 2. The BHC and BNFC of all nodes can be computed in Õ(n2) time for
sparse graphs by using modified Brandes’ algorithm[5]. The BHC and BNFC of
all nodes in planar graphs can also be calculated in O(n2) time using a modified
Brandes’ algorithm in which the linear time SSSP algorithm[23] is used instead of
Dijkstra. In Brandes’ algorithm, partial centrality values are “accumulated” at all
nodes during backtracking. These accumulation rules have to be also modified for
those centralities in the manner given below.

BHC(v): For a source vertex s and for all v ∈ pred(w), update BHC(v)←BHC(v) +
1

dist(s,w)
+BHC(w).

BNFC(v): For a source vertex s and for all v ∈ pred(w), update BNFC(v)←BNFC(v)+
BNFC(w)× (1 + σ(s, v)).

Note that BNFC of a single node in sparse graphs can also be computed using this
technique in Õ(n2) time.

I Note 3. The lower bound for BNFC of all nodes follows from the same lower
bound for BNFC for a single node.

We present an algorithm to compute BHC of single node in planar and sparse
graphs in Õ(n) time in Section 4.1 that uses a fast multipoint polynomial-evaluation
technique [37, 4].

1.2. Road map 5

In Section 4.2 we present algorithms for computing CC, HC and NFC of all nodes
of a planar graph in o(n2) time. We also present a truly-subquadratic algorithm for
calculating BNFC of a single node in planar graphs. These use Voronoi diagrams
over r-divisions along with clever pre-processing and polynomial evaluation.

Then we derive a (conditional) lower bound for computing BHC of all nodes in a
planar graph (and hence in a sparse graph) in Section 5.2 by constructing a reduction
from the 3SUM problem.

Finally, in Section 5.1, we present reductions from the CNF-SAT problem to com-
puting CC of all nodes, HC of all nodes, NFC of all nodes and BNFC of a single
node in sparse graphs. Thus, conditioned on the fact that SAT cannot be solved
using O(poly(n) · 2εn) algorithms, it is unlikely that the above problems have truly
subquadratic algorithms as well.

1.2 Road map

In chapter 2, we discuss the various tools and techniques needed for our upper and
lower bounds. Next, in Chapter 3, we design efficient data structures needed for the
subquadratic upper bound of planar graphs. Ultimately in Chapter 4, we give the
upper bounds of various centralities in planar and sparse graphs. Next, in Chapter
5, we have proved the lower bound of some centralities in planar and sparse graphs.
In Chapter ??, we have introduced Betweenness Centrality and finally, in Chapter 6,
we have concluded the overall thesis.

7

Chapter 2

Background

In this thesis, we consider both undirected planar graphs and their generalization,
undirected sparse graphs 1. The graphs are weighted with positive real edge weights.
Planar graphs are graphs that can be drawn on a plane in such a way so that it’s
edges intersect only at their endpoints. A planar graph with n nodes can have
at most 3n − 6 edges. Sparse graphs need not always be planar but have O(n)
edges.Also, we use the terms vertices and nodes interchangeably throughout the
thesis.

Now we discuss a few additional concepts used in our algorithms and lower
bounds.

2.1 r-Division

The planar separator theorem proves that in any planar graph on n vertices, deletion
of O(

√
n) number of vertices will make the graph disconnected. In other words, the

remaining graph will have two “pieces" with no edges between them. Applying
this theorem recursively, Frederickson[15] showed that an r-division of any planar
graph with O(n/r) regions or pieces can be constructed. A piece is an edge induced
subgraph of G and all the pieces are pairwise edge disjoint. Boundary of a piece
constitutes of vertices that have incident edges belonging to more than one piece.
All other vertices, whose edges belong to only one piece, are referred to as internal
vertices.

• Number of vertices in each piece is at most r.

• Number of edge-disjoint pieces is O(n
r).

• Boundary of each piece has O(
√

r) vertices.

There is no edge between any two internal nodes of different pieces; thus, the
paths between such internal nodes have to pass through at least one boundary node.
It should be noted that the subgraph corresponding to a piece may be disconnected
(see Figure 2.1a). r-division takes Õ(n) time using the initial recursive approach by
Frederickson[15]. However, in this thesis, we consider the r-division with constant
number of holes per piece. Holes are faces of a piece, that are not the faces of graph
G (Figure 2.2). This can be done using a linear time algorithm discussed in [30]. For
this, they have assumed the graph is biconnected and triangulated ([38]). It can be
proved that all the holes contain atleast one boundary vertex and every boundary
vertex must lie on some hole. In fact, it can be proved that all vertices on a hole are
boundary vertices if the graph is triangulated. The details are given in Appendix A.

1 Although we have shown the algorithms for undirected graphs, but the same algorithms will also
for directed graphs with very slight and obvious modifications. For the lower bounds, it gets naturally
extended to directed version

8 Chapter 2. Background

(a) The r-division of a planar graph.
Red dots represent boundary vertices.

Note that the red piece R1 is
disconnected.

(b) The Voronoi Diagram of a planar graph show-
ing sites in red. t is a vertex in the Voronoi cell of s1

because minsi∈sites{dist(si, t)} = dist(s1, t)

Figure 2.2: A piece with 3 holes. Red dots are the boundary nodes.

2.2 Assumptions for the Voronoi Diagram Construction

• The graph is triangulated (and hence biconnected–the graph cannot be discon-
nected by removing only 1 vertex). This can be achieved in linear time [38] ,
[26].

• We assume that the shortest path distance between every pair of nodes inside
a piece P is distinct. We also assume that there exists only one shortest path
between every pair of nodes inside P (except for the discrete set of critical
values, where there exist exactly two shortest paths to exactly one vertex from
the source, see section 2.3.1 and section 3.2). Both of these assumptions can be
achieved by using deterministic lexicographic perturbation ([13, 8, 22]) with
an additional factor of Õ(1) in the running time.

Perturbations are nothing but adding small values to the edge weights of a
piece P (values ε that are added to the edge weights are extremely small, this
will ensure that shortest paths are preserved, i.e., the shortest path between
any pair of nodes after perturbation was also one of the shortest paths before
perturbation). Since, the shortest path distances are preserved, therefore it will
not affect the centrality value (We need some additional techniques to handle
NFC, because it uses the number of shortest paths instead of the distances).
This is to ensure that a vertex is in one Voronoi cell only. This is also a prepro-
cessing step of AWV decomposition.

• Holes are simple cycles and are disjoint–a boundary node lies in exactly one
hole. This is done by creating multiple copies of some boundary nodes ([27],
section 5.1). But only a constant number of vertices are copied, and the to-
tal number of vertices per piece remains O(r) (and the number of boundary
vertices remains O(

√
r)).

2.3. Voronoi Diagram 9

2.3 Voronoi Diagram

Voronoi Diagram(VD) of a planar graph also represents a partitioning of the graph
based on the distances of each vertex from a given set of sites, which are additionally
specified special vertices. The partitions are known as Voronoi regions (or Voronoi
cells), and there is exactly one Voronoi region for every site. The Voronoi region
corresponding to a site comprises of those vertices for which that site, say s, is the
closest among all sites. That is, if v belongs to a region corresponding to s then
dist(v, s) is the smallest among all dist(v, si) for all sites si.

In the additively weighted Voronoi (AWV) decomposition problem, each site has a
weight, say w(s), and the task is to perform a Voronoi decomposition using a modi-
fied distance, say dist′, defined as dist′(s, v) = w(s) + dist(s, v). There exist efficient
algorithms for AWV, both randomized [7] and deterministic [18]. We will employ the
latter in our algorithms, that constructs AWVD of pieces obtained from r-division.

I Theorem 4. [[18], Theorem 1.1] Let P be a piece with r vertices and O(
√

r) sites
{b1, b2, . . .} with weights on each site. One can preprocess P in Õ(r ×

√
r2
) time, so that,

one can construct a representation of AWV diagram in Õ(
√

r) time wrt to the weights on
the sites.

We denote the Voronoi cell or Voronoi region of a site u by Vor(u)–it contains the
set of vertices that are inside the Voronoi cell of u. Let Tu be the shortest path tree
rooted at u, consisting of all the nodes in piece P.

I Lemma 5. [[18], Lemma 2.1] For each site u, the vertices in Vor(u) form a connected
subtree (rooted at u) of Tu.

This is because we have assumed that the shortest paths are unique and the shortest
distances between every pair of nodes are distinct. So, the shortest paths from u
to all the nodes in Tu are the only shortest paths from u, therefore if a node t is
not in Vor(u), then none of it’s descendants in Tu will be in Vor(u). See figure 2.3,
suppose t is not in Vor(u) and t′ is in Vor(u) and t′ is a descendant of t in Tu. So,
dist(u, t′) = dist(u, t) + dist(t, t′). Therefore t must be closer to some other site, say
v . So, dist(v, t) < dist(u, t), which will imply dist(v, t′) < dist(u, t′), which is a
contradiction. Also, note that the subtrees corresponding to each voronoi cell are
disjoint, since the edge weights are perturbed and the distances are distinct. In other
words, each vertex in P lies in exactly one voronoi cell.
Let the set of sites be S. The set of edges β are those edges (i, j), such that i and j
lie in different Voronoi regions. Therefore β is the set of boundary edges. Let the set
of duals of edges in β be denoted by β∗. Let P∗ be the dual graph of P. The edge
induced subgraph of P∗ with the edge set as β∗ is VD∗(S).

I Lemma 6. [[18], Lemma 2.2] The graph VD∗(S) consists of atmost |S| faces, so that
each of its faces corresponds to a site u ∈ S and is the union of all faces of P∗ that are dual to
the vertices of Vor(u).

This is an immediate consequence of Lemma 5. Since the vertices in primal graphs
are the faces in dual graphs and vice versa, and the vertices in Vor(u) for a connected
tree in the primal graph, therefore the union of the faces dual to these vertices are
connected.

Consider a piece P and two sites u and v. The boundary of the cell consist of
all edges whose one endpoint is in Vor(u) and the other endpoint is in Vor(v). The

10 Chapter 2. Background

Figure 2.3: Two sites u and v. t, t′ ∈ Tu and Tv

(a) β∗(u, v) with the primal edges that lie on
the boundary of the voronoi regions.

(b) Part of the bisectors that appears in the
voronoi diagram of 3 sites are shown using
solid lines. Black dots are the voronoi vertices.

dual of these edges forms the uv− bisector and is denoted by β∗(u, v) (Refer to figure
2.4a). Only a part of β∗(u, v) appears in the voronoi diagram whenever more sites
are there (Figure 2.4b).

I Lemma 7. [[18], Lemma 2.4] β∗(u, v) forms a simple cycle in P∗. In other words, every
u, v bisector is a simple cycle consisting of dual nodes and vertices from P.

Since, the voronoi cells of u and v form a simple uv−cut, therefore the dual of the
cut edges forms a simple cycle.

The dual vertex where more than one bisectors intersect is called a voronoi vertex.
These are the faces whose vertices lie in more than two Voronoi cells. For simplicity
we triangulate each face other than the holes, therefore the Voronoi vertices(except
those that are dual to the holes) have degree 3. All the other vertices with degree 2
on the bisectors are contracted to form voronoi − edges.

The important step is the preprocessing step, where the bisectors for each pair of
sites is computed. It can be shown that for a particular pair of sites there can only
be O(r) bisectors. These O(r) bisectors for every pair can be computed in Õ(r) time.

2.3. Voronoi Diagram 11

Therefore the total preprocessing time is O(
√

r ×
√

r)× Õ(r) = Õ(r2). The details
are explained in section 2.3.1.
For the construction of the actual additively weighted Voronoi diagram, the appro-
priate bisector of every pair of sites is fetched from the preprocessing step. They
are merged to get the actual diagram. It uses divide and conquer techniques to do
that. This is rather involved and beyond the scope of this thesis. Ultimately, this
step outputs segments of the pairwise bisectors that appear in the original Voronoi
diagram.

2.3.1 Computing bisectors for every pair of sites

For every pair of sites (u, v) and every possible weight assignments on these sites,
the bisectors are computed. Since the weights on the sites are not known during the
preprocessing stage, there can be infinitely many weight assignments. The impor-
tant point to note here is that, a bisector β∗(u, v) depends on the weight difference,
δ = w(v)− w(u). When δ = +∞, Vor(u) contains no vertices other than u. There-
fore as the value of δ changes from +∞ to −∞, the bisector shifts away from u. The
shift in bisectors is also continuous. When the dual edge of the edge (p, q) (assuming
that p is parent of q in T — the shortest path tree in P rooted at u) is part of some
bisector β∗(u, v, .), it means that p is in Vor(u) and q is in Vor(v).

Let δuv(p) = dist(u, p)− dist(v, p) for some internal node p in P. We call an edge
(p, q) ‘tense edge’ if p is in Vor(u) and q is in Vor(v), i.e. the dual edge of (p, q) is
part of the bisector. Note that (p, q) remains tense for dist(u, p)− dist(v, p) < δ <
dist(u, q)− dist(v, q) (i.e. δuv(p) < δ < δuv(q)). Technically, when δ = dist(u, p)−
dist(v, p), then p will be in both Vor(u) and Vor(v), because additive distance from
u to p is equal to the additive distance from v to p. We need the voronoi cells to
be disjoint, therefore we break the tie and assume that p is in Vor(v), when δ =
dist(u, p)− dist(v, p). Therefore we have the following lemma.

I Lemma 8. (p, q) remains tense for dist(u, p)− dist(v, p) < δ ≤ dist(u, q)− dist(v, q)
(i.e. δuv(p) < δ ≤ δuv(q)).

We first compute all the critical values of δ for which the bisector changes. As
described above, these are nothing but δuv(p) for all internal nodes p in P. Algorithm
is given in section 3.

I Lemma 9 ([18], Lemma 3.1). Consider some critical value δ. The dual edges that
newly join β∗(u, v) at δ form a contiguous portion of the new bisector (let’s call this linked-
list/contiguous portion βin(u, v, δ)), and the dual edges that leave β∗(u, v) when the critical
value shifts from δ′ to δ (δ′ > δ) form a contiguous portion of the old bisector (let’s call this
linked-list/contiguous portion βout(u, v, δ′)).

Note the contiguous portion of the old bisector may or may not form a cycle. In case
it forms a cycle, the entire old bisector is replaced by the new bisector(See Figure
2.5). Details of how to construct βin and βout are given in algorithm 1.

I Lemma 10. An edge if deleted from a bisector β∗(u, v) for some δ will not be added again
in the bisector for any critical value (weight difference) < δ.

This is because the dual edge of (p, q) remains a part of the bisector β∗(u, v) when
the δ is in between δuv(p) and δuv(q) (lemma 8), where (p, q) is the primal edge.
Since the bisector for every possible δ are constructed by iterating δ from +∞ to−∞,
therefore the edge if deleted, won’t be added again.

12 Chapter 2. Background

I Lemma 11 ([18], Section 3). Total number of edges and vertices that are added and
deleted to and from the bisector β∗(u, v) for every possible δ is O(r).

From lemma 10, we can say that total number of edges added and deleted can be
O(r) because there are O(r) edges per piece and an edge can be added to the bisector
only once.

Figure 2.5: The contiguous portion of the new bisector that gets
added is shown in dotted line.

2.3.2 Additional Structure and Properties of Additively Weighted Voronoi
Diagram

For every boundary node b, the boundary of the voronoi cell of b (i.e. Vor(b)) is
represented as segments of bisectors β∗(b, ., .). The boundary of a voronoi cell is a
collection of non-self crossing cycles C∗, where |C∗| ≤ t(t is the number of holes in
piece P).

I Lemma 12 ([18], Section 7). Each cycle either encloses a unique hole or passes through
the dual node representing a unique hole.

Let h be the hole of b and h∗ be the dual vertex of hole h. Let C∗0 be the cycle in C∗
that passes through h∗. If @ any such cycle then we can always introduce a dummy
cycle C∗0 which will enclose all the other cycles in C∗ and will be a self-loop through
h∗.

Let T∗ be the cotree of T(shortest path tree in piece P rooted at b). A face f is said
to be in Vor(b) if all it’s vertices are in Vor(b).

I Lemma 13 ([18], Lemma 7.1). For every root to leaf path in T∗, ∃ atmost one edge f ∗g∗

on the path, where f ∗ ← parent(g∗) in T∗, such that f ∗ is on C∗0 and either g∗ is on some
other cycle in C∗ (this is because there may exists an edge (a∗, b∗) in T∗, such that a∗ and
b∗ lie on different cycles) or face g is in Vor(b). We call such an edge a ‘penetrating edge’.
Also @ any f ∗g∗ edge on the path, such that f ∗ is on the cycle C∗0 and no vertex of face g is
in Vor(b), i.e. g is entirely outside Vor(b).

In other words, any root to leaf path in T∗ enters Vor(b) through the cycle C∗0
atmost once, and once it enters the cycle, it never leaves Vor(b) through C∗0 . As it
can be seen from the figure 2.62, the black dots are the g∗(parent(g∗) in T∗ in on C∗0)

2 This figure is from the paper [18] and it does not entirely match our setting. In our setting all the
vertices on the holes are boundary vertices.

2.3. Voronoi Diagram 13

Figure 2.6: Two boundary nodes on the outer hole are shown in
blue(boundary node b) and pink. The yellow line is the C∗0 cycle of
the bisector β∗(b, .). Red lines are edges of T∗ and blue lines are the

edges of T.

where the root to leaf path enters the cycle C∗0 into Vor(b)(blue vertex on the top
right). And there is no root to leaf path of T∗ that exists Vor(b) through C∗0 .
It is clear from the above lemma that any vertex in Vor(b) is either adjacent to the
cycle C∗0 [i.e. lies on a face f whose dual vertex f ∗ is on C∗0] or lies on a face y such
that y∗ belongs to the subtree of T∗ rooted at some g∗ and (., g∗) is the edge that
enters C∗0 (i.e. g∗ is a black dot in the figure 2.6).

I Corollary 14. For any node t∗ such that face t is in Vor(b), there exist a unique ancestor
of t∗ in T∗ (let’s say q∗) that is adjacent to the cycle C∗0 , i.e there exists an edge (p∗, q∗) in
T∗, such that p∗ is on C∗0 and q∗ is not on C∗0 (face q is inside Vor(b)) (See figure 2.6).

We shall design efficient data structures to store the necessary information on
these bisector segments(or cycles) by exploiting the properties of the cotree and the
edges of the cotree that enter or leave the cycles.

I Note 15. Cotree is used just to ensure that a vertex in Vor(b) is considered exactly
once while calculating the centralities. We could have used the shortest path tree
rooted at b(i.e., T), but the difficulty arises because the bisector can cut a branch
twice, and it would have been difficult to store the information of the entire branch.
To do this, we would have to traverse T from root to every node that were pruned
by the bisector.

Properties of Voronoi diagram in the presence of multiple holes

The first part of the lemma 13 and corollary 14 still hold for multiple holes case.
However, the second part is not true as a root to leaf path can enter and exit a cycle,
which is not C∗0 .

I Lemma 16 ([18], Section 7). Consider a cycle C∗ ∈ C∗. For every root to leaf path in
T∗, ∃ atmost one edge f ∗g∗ (penetrating edge) on the path such that f ∗ is on a cycle C∗ and
either g∗ is on some other cycle in C∗ (this is because there may exists an edge a∗, b∗ in T∗,
such that a∗ and b∗ lie on different cycles) or face g is in Vor(b) (f ∗ ← Parent(g∗) in T∗).

Every root to leaf path in T∗ will have atmost one penetrating edge from each cycle
in C∗. But note that, the path may contain multiple penetrating edges from different
cycles Figure 2.8.

14 Chapter 2. Background

Figure 2.7: There are two holes in this piece. Yellow lines represent
the boundary of the Voronoi region of b(blue node). Red lines rep-
resent the cotree. Blue lines are the edges of the shortest path tree
rooted at b. Black dots are the endpoints of the edges of cotree that
are entering into the Voronoi region of b through the cycles. Black
star represents the unique edge that is exiting the Voronoi cell of b

through the cycle inside.

I Corollary 17. Consider a cycle C∗ ∈ C∗. For any node t∗ such that face t is in Vor(b),
there exist a unique ancestor of t∗ in T∗ (let’s say q∗) that is adjacent to the cycle C∗, i.e
there exists an edge (p∗, q∗) in T∗, such that p∗ is on C∗ and q∗ is not on C∗ (face q is inside
Vor(b)) (See figure 2.7).

I Lemma 18 ([18], Lemma 7.2, Corollary 7.3). For every cycle C∗ ∈ C∗ \ {C∗0}, ∃
exactly one edge f ∗g∗ ∈ T∗ (f ∗ ← Parent(g∗) in T∗) such that g∗ lies on C∗ and either f ∗

lies on some other cycle in C∗ or face f is in Vor(b) C∗. We call such an edge the ‘exiting
edge’. Suppose h′ 6= h be a hole and C∗ encloses h′. Then the unique edge f ∗g∗ lies on the
path from h∗ to h′∗ in T∗.

As it can be seen in figure 2.73 that the endpoint of the unique edge is represented
by a black star.

I Lemma 19 ([18], Section 7.1). The unique edge (exiting edge) in lemma 18 can be
found in O(1) time per cycle using a data structure which can be constructed in Õ(r) time
per piece per boundary node.

The vertices in Vor(b) are those that are enclosed by C∗0 and not enclosed by any
other cycle in C∗.

I Lemma 20. Consider a cycle C∗ ∈ C∗ \ {C∗0}. Let (f ∗, g∗) be the exiting edge of the
cycle C∗. All the nodes p∗ on the cycle C∗ are in the subtree of f ∗ in T∗.

Proof. This is by the definition of an exiting edge. If there exists another node q∗

on cycle C∗ whose ancestor in T∗ that is not on C∗ is not f ∗ , there will exist another
exiting edge, which is a contradiction. J

I Corollary 21. Consider a cycle C∗ ∈ C∗ \ {C∗0}. All the penetrating edges from the cycle
C∗ are in the subtree (of T∗) of the exiting edge of C∗.

I Lemma 22. For any node f ∗ ∈ T∗, let Path be the root to f ∗ path in T∗:

• If Path has 0 nodes that lie on some cycle in C∗, then f ∗ lies outside Vor(b).

3 Figure is taken from the paper [18].

2.3. Voronoi Diagram 15

Figure 2.8: A piece with a voronoi region is shown. Boundary of
Vor(b) is shown in blue. Two paths (h∗ g∗ and h∗ f ∗) from
T∗ are shown in red. g∗ lie on a cycle, and face f is in Vor(b). End-
points of penetrating edges are shown in green and endpoints of exit-
ing edges are shown in black. Edge (a∗, b∗) is both a penetrating edge

and an exiting edge.

• If f ∗ lies on C∗0 , then Path has only 1 node which lies on some cycle in C∗.

• If there are x (atmost |H|) penetrating edges on Path then there can be either x − 1
exiting edges on Path or x exiting edges on Path.

– If there are x (atmost |H|) penetrating edges on Path and face f is in Vor(b)
then there will be x− 1 exiting edges on Path.

– If there are x (atmost |H|) penetrating edges on Path and f ∗ lies on a cycle
C∗ ∈ C∗ \ {C∗0}, then there will be x exiting edges on Path. Moreover, the last
exiting edge on Path will be the exiting edge of cycle C∗.

Proof. • If Path has 0 nodes which lie on some cycle, then Path contains no
penetrating edges or exiting edges, and since for every node p∗ (such that face
p has some nodes which are in Vor(b)), root to p∗ path must have atleast 1
node which lie on some cycle, therefore, face f does not belong to Vor(b).

• Since, there does not exist any exiting edge for C∗0 , therefore, if f ∗ lies on C∗0 ,
then Path will have 1 node which lie on some cycle.

• For any cycle other than C∗0 , there will be a unique exiting edge per cycle. Also,
from corollary 21, we know that the exiting edge is a common ancestor of the
penetrating edges of a cycle, therefore, there can be atmost one penetrating
edge per cycle on Path (if there are more than 1 penetrating edge of a cycle on
Path, then the path must also have more than one exiting edges of that cycle—
corollary 17). Every penetrating edge on Path must also have a corresponding
exiting edge. Therefore, if there are x − 1 penetrating edges for x − 1 cycles
(excluding C∗0), then there will be x− 1 exiting edges.

16 Chapter 2. Background

If face f is in Vor(b), then there will be a penetrating edge of cycle C∗0 . Therefore
the total number of penetrating edges will be x.

If f ∗ is on a cycle C∗, then the cycle C∗ does not have any penetrating edge
on Path (otherwise, there will be more than one exiting edge of that cycle).
Excluding the exiting edge of C∗, there will be x − 2 exiting edge and x −
1 penetrating edges (including the penetrating edge of C∗0). Therefore, total
number of exiting edge=total number of penetrating edge = x− 1.

J

2.3.3 Representation of the Voronoi Diagram — same representation used
in [18]

The Voronoi diagram is represented as segments of bisectors (Figure 2.4b). The
Voronoi cell of a site b may consist of a sequence of segments of bisectors β∗(b, .). All
the degree 2 nodes on the bisector segments are contracted. Therefore, the Voronoi
diagram is represented as a reduced graph using the DCEL data structure (refer to
[10]), which is used to represent planar graph embeddings.

By Lemma 23, the path (f ∗, . . . , g∗), which is a contiguous portion of some bi-
sector β∗(u, v, .) is represented as a single edge (f ∗, g∗). Along with the endpoints,
some extra pointers are also stored, so that given the voronoi vertices (endpoints)
(f ∗, g∗), one can identify in constant time, the adjacent sites u, v, and the bisector
β∗(u, v, .) from which the segment was taken.

I Lemma 23 ([18], Lemma 5.1). If f ∗ and g∗ are two consecutive voronoi vertices on the
common boundary between Vor(u) and Vor(v), then the path between f ∗ and g∗ along this
boundary forms a connected segment of the bisector β∗(u, v, .).

2.3.4 Some more structural properties of AWV Diagram

Since our setting is a bit different, therefore we are going to introduce some more
properties of the AWV diagram in this subsection.

I Lemma 24. The cycles in C∗ other than C∗0 do not pass through any hole, rather they
enclose a unique hole.

Proof. Since in our setting, each hole only contains boundary vertices, therefore
if any cycle C∗ in C∗ \ {C∗0} does not enclose a unique hole and passes through it
(suppose it passes through h′), then there will be some boundary vertex b′ on h′ that
is not enclosed by C∗. This boundary vertex cannot lie inside Vor(b) and the cycles
do not cross, therefore there must exist some other cycle that can enclose b′, but then
it must either pass through h′ or enclose it, which is a contradiction because two
cycles cannot enclose or pass through the same hole. J

As in figure 2.9, it can be seen that if the inner cycle does not enclose the hole h1, then
atleast one boundary vertex will be outside that cycle and that boundary vertex will
then either be in Vor(b) or is enclosed by some other cycle which is not possible (as
a cycle corresponds to a unique hole).

I Lemma 25. All the dual nodes on the cycles in C∗ have degree ≤ 3 (except h∗ which is
on the cycle C∗0).

Proof. Let {h1, h2, . . . , ht} be the holes and h be the hole of the boundary vertex b.
From lemma 24 we can say that none of the h∗i lie on any of the cycles in C∗ \ {C∗0}.

2.3. Voronoi Diagram 17

Figure 2.9: A piece with two holes, the infinite hole h0 and h1. h1 has
4 boundary nodes. The boundary of Vor(b) is shown in dotted blue.

And since the faces of P other than the holes are triangulated, therefore the nodes on
these cycles will have degree ≤ 3. J

I Lemma 26. The cycles in C∗ do not cross one another.

Proof. There can be two ways in which the cycles can cross(Figures 2.10):

• Two cycles meet at a point:
In this case, we can see that the point where the two cycles meet has degree 4,
which is not possible according to lemma 25.

• Two cycles meet at more than one points:
In this case, the common points where the cycles meet are not part of the bisec-
tor of Vor(b), therefore removing that part will create a new cycle that encloses
two holes, which is not possible according to lemma 12.

J

Figure 2.10: The cycles in blue cannot cross like this.

As given in the paper [18] too, the cycles in C∗ \ {C∗0} are not nested because
Vor(b) is connected(Figure 2.11).

Since the AWV construction was mainly designed to handle problems that re-
quire shortest path distances, it is not immediately clear how to use this to our ad-
vantage for designing a subquadratic algorithm for NFC. The main challenge is that,
AWV construction assumes that the edge weights are perturbed, therefore there exist

18 Chapter 2. Background

Figure 2.11: Green region is Vor(b), which is disconnected if the cy-
cles in C∗ are nested.

a unique shortest path between every pair of vertices in G. Since NFC requires the
number of shortest paths between pairs of vertices, AWV diagram cannot be used as
it is.
We have mainly defined the properties of a Voronoi cell on the basis of cotree. But
it can be observed that similar properties also hold if we consider the shortest path
tree T.

I Lemma 27. Any root to leaf path of the shortest path tree T (shortest path tree in P rooted
at b) crosses any cycle C∗ ∈ C∗ atmost once.

Proof. We prove this by contradiction. Let us assume that there exist a root to leaf
path of T that crosses C∗ twice. Since b is inside Vor(b), therefore the path will first
leave the voronoi cell and again re-enter (See figure 2.12a), which is not possible
since Vor(b) is a connected subtree of T (lemma 5). J

I Corollary 28. For any node t which is not in Vor(b), there exist a unique ancestor of t
in T (let’s say q) that is adjacent to the boundary, i.e there exists an edge pq in T, such that
p is inside Vor(b) and q is outside Vor(b) (See figure 2.12b). In other words, there does not
exist any other node q′ outside Vor(b) which is adjacent to the boundary and is an ancestor
of t.

2.4 Fast Multipoint Evaluation

Given a polynomial P(x) of degree d in coefficient form and n arbitrary points, P(x)
can be easily evaluated in O(nd) time by evaluating the value of each x for each term
of P(x). However we make use of a faster algorithm that can evaluate a degree-d
polynomial in coefficient form on n arbitrary points in O(max(n, d) log2 d) time [37,
4].

2.4.1 Converting polynomials in root form to coefficient form

Consider a list of n numbers A = {a1, . . . , an}. Consider a polynomial Poly(x) =

∑i
1

ai+x . This polynomial can also be written as P(x)
Q(x) , where P(x) = ∑ai∈A ∏aj∈A\{ai}(aj +

2.5. Complexity Assumptions 19

(a) Two paths of T are shown that are crossing
both the cycles twice, which is not possible as

proved in Lemma 27

(b) Two outside nodes t and t′ are shown. q
is the ancestor of t and q′ is the ancestor of t′

which are adjacent to the boundary (shown in
green).

x) and Q(x) = ∏ai∈A(ai + x). We call the first form as Form α1 (i.e. Poly(x)) and the
second form as Form α2.

Algorithm 0: P1(x) and P2(x) in their coefficient forms
input : {a1, a2, . . . an} representing

degree-(n− 1) polynomial P1(x) = ∑
i∈{1,n}

∏
j∈{1,n}

j 6=i

(aj + x) and

degree-n polynomial P2(x) = ∏
i∈{1,n}

(ai + x)

output: Coefficients of P1(x) and P2(x)
1 If n = 1, return P1(x) = 1 and P2(x) = (a1 + x)
2 Define four polynomials:

P1le f t(x) = ∑
i∈{1, n

2 }
∏

j∈{1, n
2 }

j 6=i

(aj + x), P1right(x) = ∑
i∈{ n

2 +1,n}
∏

j∈{ n
2 +1,n}
j 6=i

(aj + x)

P2le f t(x) = ∏
i∈{1, n

2 }
(ai + x), P2right(x) = ∏

i∈{ n
2 +1,n}

(ai + x)

3 Recursively obtain coefficient forms of P1le f t(x) and P2le f t(x) by calling this
algorithm on {a1, . . . an/2}.

4 Recursively obtain coefficient forms of P1right(x) and P2right(x) by calling
this algorithm on {an/2+1, . . . an}.

5 Compute P1(x) = P1le f t(x)× P2right(x) + P1right(x)× P2le f t(x) in which
FFT is used for polynomial multiplication

6 Compute P2(x) = P2le f t(x)× P2right(x) using FFT
7 Return P1(x) and P2(x)

The recurrence relation for the above recursive algorithm is T(n) = 2T(n
2) +

O(n log n) yielding a solution of O(n log2(n)).

2.5 Complexity Assumptions

Let F be a CNF-SAT formula on n variables; we can use the Sparsification lemma
to assume wlog that F contains m = O(n) clauses [25]. The trivial algorithm for

20 Chapter 2. Background

CNF-SAT involves trying out all assignments and requires O(poly(n) · 2n) time. The
Strong Exponential Time Hypothesis (SETH) states that CNF-SAT cannot be solved in
time O((2− δ)n) [25].

The 3SUM problem takes as input a set of n integers {a1, a2, . . . , an} and asks if
there exists ai, aj, ak, i 6= j 6= k, such that ai + aj = ak. According to the 3SUM conjec-
ture, it was believed that the lower bound of any deterministic algorithm for 3SUM
is θ(n2). But in 2014 it was refuted by Allan Grønlund and Seth Pettie[21] who gave
a deterministic algorithm that runs in slightly subquadratic time O(n2

(log n/log log n)
2
3
).

They also gave the complexity on a decision tree model that requires O(n1.5
√

log n)
time. The logarithmic factors were improved over time [9, 17, 20]. But there is no
deterministic truly subquadratic algorithm that can run on a real RAM model for
3SUM till date. In this thesis we consider the version, where ai 6= 0. The conjecture
still holds for this version.

2.6 Related Work

As mentioned in Chapter 1, papers [7, 18] compute the diameter of a planar graph in
truly-subquadratic time using Voronoi decomposition. Diameter of a graph G with n
nodes and O(n) edges is given by the following equation: Diam(G) = maxs,t dist(s, t)
for all nodes s, t in G. The overall high-level steps of the algorithm in both the papers
are the same. They start with a planar graph G and computes the r − division of G
with O(1) holes. After that, the algorithm consists of 3 main steps: (i) Finding the
maximum distance when s is a boundary node. This can be done by simply run-
ning SSSP algorithm from each boundary node. (ii) Finding the maximum distance
when s and t belong to the same piece. The details of this step are explained in our
upper bounds. It basically creates a graph GP with the vertices of P only and with
O(r) edges, then finally, it runs APSP algorithm in GP, which gives the maximum
distance within that piece. (iii) Finding the maximum distance when s and t are
internal nodes of different pieces. This step requires the AWV decomposition, so
that the maximum distance in each Voronoi cell can be found in O(

√
r) time. Since

every shortest path will pass through some boundary node of P, therefore, the max-
imum distance of a node in each Voronoi cell Vor(b) added with the distance from
s to each boundary node b will give us the maximum distance when s and t lie in
different pieces. Note the three steps (except the AWV decomposition) along with
the r− division are common steps for any planar APSP based algorithms like [15, 24,
31]. Our upper bounds in section 4.2 also follow these steps along with the use of
AWV decomposition.

We have used the "same" AVW decomposition as given in the paper [18] (with
additional properties —the proofs of which are given in section 2.3). All the re-
sults (Lemmas and Theorems) from the paper (like Theorem 4,Lemma 5, Lemma
6, etc.) have the relevant section or theorem numbers from the paper (along with
the citation). In this thesis, we have used a slightly different variant of AWVD—all
the vertices on the holes are boundary vertices—due to this, we were able to prove
some new properties of AWVD which were used in the upper bounds (like Lemma
8,22,24,etc.). Although the AWVD of the paper also uses a triangulated graph (they
needed the triangulation for a different reason—which has been used in our paper
too), but they haven’t mentioned the other properties explicitly (mainly the proper-
ties that involve holes to include only boundary vertices). In fact they have assumed
that their holes can have internal nodes too (figure from the paper that we used–
Figure 2.6,Figure 2.7).

2.6. Related Work 21

The data structure (Persistent binary search tree - PBST) that they use in the pa-
per for finding the diameter, can also be used for CC (they have mentioned it in
their introduction section, but have not proved it). This data structure is not enough
for the other centralities (especially NFC and BNFC because they uses number of
shortest paths instead of shortest path distances). For the centralities, we have de-
signed AL and ABBST (along with the augmented cotree—which was also intro-
duced in the paper). ABBST is similar to PBST in a way that both are persistent
binary search trees on the nodes of the bisectors, but they have different structures.
For HC, ABBST/AL alone is not sufficient, therefore, we have also designed HT for
each piece. For NFC, we have a new type of AL (although similar to the AL men-
tioned before, but also has information from outside the piece)— the whole augmen-
tation is different. For NFC especially, we also have proved some new properties of
AWVD (the properties in other paper were not sufficient enough) like Lemma 27,58
and Corollary 28 (some new Lemmas are also proved in Section 4.2.3).

And finally, for computing the diameter, they have accumulated the information
on the bisectors (stored as PBST) in a very efficient way using the data structure. We
have also used the same notion of fetching the information stored on the bisectors
(in our case AL/ABBBST), the techniques used are different from that of the paper,
because we have used different data structures (especially for HC and NFC).

23

Chapter 3

Data Structure

Let T be the shortest path tree of P(only consist of vertices that are in piece P) rooted
at b (b is a boundary node in P). Let T∗ denote the set of dual edges of P that are not
in T. It can be shown that T∗ forms a tree — such a tree is known as a cotree (also
known as interdigitating tree in the literature).

I Note 29. How can we build the cotree? The data structure that is used for repre-
senting a planar graph embedding (DCEL), also shows the dual graph (if not, then
also the dual graph can be found in linear time). So, we can find out the edges that
are not in T in linear time, which is essentially the cotree.

I Note 30. We also keep track of the pointers to every node f ∗ ∈ T∗, such that any
node can be found in O(1) time in T∗. We also assume that a node f ∗ can be referred
and accessed from any data structure in O(1) time.

3.1 Augmented Cotree

First, we build the augmented cotree T∗, i.e., add additional information to the nodes
of T∗.

• For every dual vertex f ∗ ∈ T∗ (f not a hole), store the list of vertices on the face
f , call this value count_list(f ∗). If two faces are adjacent, then the common
vertices are associated with only one face. This will ensure that we do not
double count any vertex.

• We traverse T∗ and store another value nodes_list(f ∗) for each node f ∗. nodes_list(f ∗)
stores the union of count_list(g∗) for all g∗ in the subtree of f ∗ in T∗, including
count_list(f ∗) itself.

3.1.1 Augmented Cotree for CC

Given the cotree T∗ and the unperturbed distances(Dist()) from every vertex from
b, we augment the cotree in the following manner for computing CC.

• For every dual vertex f ∗ ∈ T∗ (f not a hole), store the number of vertices
associated with the face f , call this value count(f ∗) = |count_list(f ∗)|. We can
see that count(f ∗) ≤ 3.

• We also calculate and store dist_dual(f ∗) = ∑v∈count_list(f ∗) Dist(b, v) for each
node f ∗ ∈ T∗.

• We traverse T∗ and store another value count_sum(f ∗) for each node f ∗. count_sum(f ∗)
stores the sum of count(g∗) for all g∗ in the subtree of f ∗ in T∗, added with
count(f ∗) itself.

24 Chapter 3. Data Structure

• While traversing the cotree we also store another value dist_dual_sum(f ∗) for
each node f ∗. dist_dual_sum(f ∗) stores the sum of dist_dual(g∗) for all g∗ in
the subtree of f ∗ in T∗, added with dist_dual(f ∗) itself.

I Theorem 31. Augmented cotree for CC can be constructed in Õ(n
√

r) time for a all the
boundary nodes of all pieces in G.

Proof. This only involves traversing the cotree and shortest path trees in a pieces for
a single boundary node. Building the shortest path tree require Õ(r) time per bound-
ary node, and the corresponding cotree can be constructed in O(r) time. Therefore
all the augmented cotrees can be constructed in Õ(n

r ×
√

r× r) = Õ(n
√

r) time. J

3.1.2 Augmented Cotree for HC

Since, calculating HC, require the fractional terms, 1
dist(.,.) , the augmentation is not as

simple as in CC. We need to store the following for every dual node in T∗:

• We also calculate and store a list dist_list1(f ∗) =
⋃

v∈count_list(f ∗) Dist(b, v) for
each node f ∗ ∈ T∗b .

• While traversing the cotree we also store another list dist_list2(f ∗) for each
node f ∗. dist_list2(f ∗) stores the union of dist_list1(g∗) for all g∗ in the subtree
of f ∗ in T∗, including dist_list1(f ∗) itself. Note that this can be done in O(r)
time per piece by traversing the cotree from leaves to roots and updating the
lists as follows:

– If current node f ∗ is a leaf node, then dist_list2(f ∗) = dist_list1(f ∗).

– If current node f ∗ is not a leaf node with children being the list of chil-
dren of f ∗ in T∗, then do dist_list2(f ∗).append(dist_list2(g∗)) for all g∗ ∈
children.

We also store 2 polynomials: P12(f ∗)(x) and P22(f ∗)(x) along with an id.
Polynomials are constructed with the values in dist_list2(p∗) using algorithm
0.

I Theorem 32. Augmented cotree for HC can be constructed in Õ(nr
3
2) time for a all the

boundary nodes of all pieces in G.

Proof. Along with traversing the cotree, we also construct polynomials at each node
of the cotree. Since the size of the list dist_list2() can be O(r), therefore it will take
Õ(r) time to construct the polynomials at each node. Therefore the augmented cotree
for HC can be constructed in Õ(n

r ×
√

r× r× r) = Õ(nr
3
2) time. J

3.1.3 Augmented Cotree for NFC

This is almost the same as in CC, only instead of storing the dist() we store the
number of shortest paths σ.

• We calculate and store num_paths1(f ∗) = ∑v∈count_list(f ∗) σ(b, v) for each node
f ∗ ∈ T∗.

• We traverse T∗ and store another value num_paths2(f ∗) for each node f ∗.
num_paths2(f ∗) stores the sum of num_paths1(g∗) for all g∗ in the subtree of
f ∗ in T∗, added with num_paths1(f ∗) itself.

3.2. Computing βin and βout 25

I Theorem 33. Augmented cotree for NFC can be constructed in Õ(n
√

r) time for a all
the boundary nodes of all pieces in G.

The proof is exactly same as theorem 31.

3.2 Computing βin and βout

Let us take two boundary nodes u, v in P. At first the critical values of δ are com-
puted and stored in c_val(u, v). They are nothing but the δuv(t) = dist(u, t) −
dist(v, t) for each node t ∈ P.
We also store the unperturbed δ’s in δ.original. This is needed for NFC and BNFC.
As described in section 2.3.1, lemma 9, we will construct the lists: βin(u, v, δ) and βout(u, v, δ)
for all possible critical values δ. Let δ′ be the immediate predecessor of δ in c_val,
then βin(u, v, δ) will represent the contiguous portion(dual edges) of the bisector
β∗(u, v, δ) that was newly added at δ and βout(u, v, δ) will represent the contiguous
portion of the old bisector β∗(u, v, δ′) that got deleted at δ.

We will now figure out the δ for which each dual edge (p∗, q∗) enters the bisector
(insert p∗, q∗ into βin(u, v, δ)) and the δ′ for which (p∗, q∗) leaves the bisector (insert
p∗, q∗ into βout(u, v, δ′)). This is given in lemma 8.

26 Chapter 3. Data Structure

Algorithm 1: Computing βin and βout and c_val
input : Piece P, boundary nodes u, v in P
output: βin(u, v, .) and βout(u, v, .)

/* We first compute all the critical values of δ = w(v)− w(u) for
which the bisectors shift. We store the critical values in
the list c_val(u, v). */

1 c_val(u, v).append(+∞);
2 for each vertex t ∈ P do
3 δ← dist(u, t)− dist(v, t);
4 δ.original ← Dist(u, t)− Dist(v, t);
5 c_val(u, v).append(δ);
6 end
7 c_val(u, v)←sort c_val in decreasing order;

/* We now create two doubly linked lists: βin(u, v, δ) and
βout(u, v, δ) for each element δ ∈ c_val. */

/* Let δ′ be the immediate predecessor of δ in c_val, then
βin(u, v, δ) will represent the contiguous portion(dual edges) of
the bisector β∗(u, v, δ) that was newly added at δ and βout(u, v, δ)
will represent the contiguous portion of the old bisector
β∗(u, v, δ′) that got deleted at δ. */

8 for every edge (p, q) ∈ P do
9 if δuv(p) < δuv(q) then

/* (p∗, q∗) will be part of the bisector β∗(u, v, δ) for
δuv(p) < δ ≤ δuv(q). Therefore, (p∗, q∗) will join the
bisector for the smallest δ > δuv(p) and will leave the
bisector for the smallest δ > δuv(q) */

10 δin ←Find the smallest element in c_val which is > δuv(p).
11 δout ←Find the smallest element in c_val which is > δuv(q).
12 βin(u, v, δin).add(p∗ ↔ q∗);
13 βout(u, v, δout).add(p∗ ↔ q∗);

14 if δuv(p) > δuv(q) then
/* (p∗, q∗) will be part of the bisector β∗(u, v, δ) for

δuv(q) < δ ≤ δuv(p). Therefore, (p∗, q∗) will join the
bisector for the smallest δ > δuv(q) and will leave the
bisector for the smallest δ > δuv(p). */

15 δin ←Find the smallest element in c_val which is > δuv(q).
16 δout ←Find the smallest element in c_val which is > δuv(p).
17 βin(u, v, δin).add(p∗ ↔ q∗);
18 βout(u, v, δout).add(p∗ ↔ q∗);

/* If δuv(p) = δuv(q), then (p∗, q∗) cannot be part of any
bisector, because for any δ, either both p, q will be in
Vor(u) or both will be in Vor(v). */

19 end
/* We fix a direction and specify the ‘start’(or ‘head’) and

‘end’(or ‘tail’) of the doubly linked lists by traversing each
list, i.e., if for a pair of nodes p∗, q∗, p∗ appears before q∗

in some list, then the order will be same in all the lists
that have both p∗ and q∗. */

3.3. Augmented List Data Structure 27

I Theorem 34. βin(u, v, δ) and βout(u, v, δ), for all pairs of boundary nodes u, v in piece
P and for all pieces can be constructed in ñr time.

Proof. For a pair of boundary nodes u, v in piece P, c_val(u, v) can be constructed
in O(r) time, as it only calculates dist(u, t)− dist(v, t) for each internal node t in P.
Sorting c_val(u, v) wil require Õ(r) time. For each edge, we check when will it’s dual
enter and leave the uv-bisector . This check can be done in O(1) time per edge. Also,
we need to traverse every βin(u, v, δ) and βout(u, v, δ) for all possible δ for fixing the
start and end of each list. This will incurr an additional O(r) cost for each pair of
bisector, as only O(r) vertices can be added and deleted (lemma 11). Therefore, the
total running time of algorithm 1 is Õ(r) for each pair of bisector.
Computing this for all the pieces will take Õ(n

r ×
√

r2 × r) = Õ(nr) time. J

For efficiently computing the centralities, we build the required data structure
using the already augmented cotree,βin and βout . We propose two simple data struc-
tures: Augmented List(AL) and Augmented Balanced Binary Search Tree(ABBST).

3.3 Augmented List Data Structure

We maintain AL for every bisector β∗(u, v, δ). The number of elements in AL is equal
to the number of dual vertices on β∗(u, v, δ). The list will contain a key and list of
augmented values. Keys will be the dual vertices on the bisectors.

We first construct the empty AL(u, v, δ) with the keys inserted (unaugmented
AL). This can be done by inserting βin and deleting βout at the appropriate values of
δ (lemma 9).

Algorithm 2: Initializing AL(u, v, .)
input : c_val(u, v), βin(u, v, .), βout(u, v, .)
output: unaugmented AL(u, v, .)
/* Let h be the hole of boundary node u and h∗ be the dual node

of h */
1 AL(u, v,+∞)← h∗;
2 l ← length(c_val);
3 i← 0;

4 while i < l − 1) do
5 δ← c_val[i + 1];
6 δ′ ← c_val[i];
7 AL(u, v, δ)← NULL;
8 AL(u, v, δ).delete_segment_AL(βout(u, v, δ′));
9 AL(u, v, δ).insert_segment_AL(βin(u, v, δ));

10 i+ = 1;
11 end

Initializing AL(u, v, .) will take O(r) time for each pair of boundary nodes u, v in
piece P, because delete_segment_AL() and insert_segment_AL() require O(1) time
(endpoints can be identified and accessed in O(1) time—note 30, therefore, it is
just insertion and deletion in a linked list). Therefore, for all pieces and all pairs
of boundary nodes, it will require O(nr) time.

28 Chapter 3. Data Structure

3.3.1 AL for CC

We augment four values to each dual node p∗ in AL(u, v, .):

• num_nodes(p∗): This is the sum of count(f ∗) for all f ∗ in the subtree of p∗ in
T∗, added with the number of nodes on the face p, that are closer to u than to
v (additively).

• num_nodes1(p∗): This is the sum of num_nodes(q∗) for all q∗ which are succes-
sors of p∗ in AL(u, v, .), excluding num_nodes(p∗).

• sum_dist(p∗): This is the sum of dist_dual(f ∗) for all f ∗ in the subtree of p∗ in
T∗, added with the Dist(u, t) of nodes t on the face p, that are closer to u than
to v (additively).

• sum_dist1(p∗): This is the sum of sum_dist(q∗) for all q∗ which are successors
of p∗ in AL(u, v, .), excluding sum_dist(p∗).

Algorithm 3: Augmenting in AL(u, v, .)
input : Augmented cotree T∗, initialized AL(u, v, .) and c_val(u, v)
output: Augmented AL(u, v, .)

1 for every δ ∈ c_val(u, v) do
2 Let AL(u, v, δ) be the initialized AL;
3 for every dual node f ∗ in AL(u, v, δ)) do
4 num_nodes(f ∗)← 0.
5 sum_dist(f ∗)← 0.
6 for every vertex t ∈ count_list(f ∗) do
7 if dist(u, t)− dist(v, t) < δ then
8 num_nodes(f ∗)+ = 1;
9 sum_dist(f ∗)+ = Dist(u, t);

10 end
11 for every child g∗ of f ∗ in T∗ do
12 if g∗ is not adjacent to f ∗ in AL(u, v, δ) and all the vertices on the face

g is closer to u than to v then
13 num_nodes(f ∗)+ = count_sum(g∗)
14 sum_dist(f ∗)+ = dist_dual_sum(g∗)
15 end
16 end
17 l∗ ← last node in AL(u, v, δ); /* end of AL(u, v, δ). */
18 num_nodes1(l∗)← 0;
19 sum_dist1(l∗)← 0;
20 f ∗ ← pred(l∗) in AL(u, v, δ);

/* Traverse AL(u, v, δ) from last node(tail) to first(head),
pred(l∗) calls the immediate predecessor l∗ in AL(u, v, δ). */

21 while f ∗ is not NULL do
22 num_nodes1(f ∗) = num_nodes1(l∗) + num_nodes(l∗);
23 sum_dist1(f ∗) = sum_dist1(l∗) + sum_dist(l∗);
24 l∗ ← f ∗;
25 f ∗ ← pred(l∗);
26 end
27 end

3.3. Augmented List Data Structure 29

The above algorithm takes O(r) time for each bisector. There can be O(r ×
√

r)
bisectors for every boundary node of a piece. Therefore, for all possible bisectors of
all boundary nodes in all pieces, it will take O(n

r ×
√

r× (r×
√

r)× r) = O(nr2).

I Lemma 35. Given a segment (p∗i , . . . , p∗j) of bisector β∗(b, ., .) (maintaining the same
cyclic order as in AL), the sum of num_nodes(p∗k) for all p∗k ∈ {p∗i , . . . , p∗j }, p∗k /∈ {p∗i , p∗j }
and sum of sum_dist(p∗k) for all p∗k ∈ {p∗i , . . . , p∗j }, p∗k /∈ {p∗i , p∗j } can be computed in
O(1) time.

Proof. Since each bisector is a simple cycle (from lemma 7), therefore given two
points on the bisector we can get two possible segments (See figure 3.1). We will use
one of the following steps to get the desired value:

• If p∗ appears before q∗ in AL(b, ., .) (Figure 3.1b):
We need to look for the nodes that are after p∗ and before q∗ in AL(b, ., .). We
will return num_nodes1(p∗)− [num_nodes1(q∗)+num_nodes(q∗)] and sum_dist1(p∗)−
[sum_dist1(q∗) + sum_dist(q∗)].

• If p∗ appears after q∗ in AL(b, ., .) (Figure 3.1c):
Here we need to look for the nodes that are before p∗ and after q∗ in AL(b, ., .).
Let s be the first node in AL(b, ., .)(i.e. the head if AL(b, ., .)). We will return
[num_nodes1(s)+num_nodes(s)]−{[num_nodes1(q∗)+num_nodes(q∗)]−num_nodes1(p∗)}
and [sum_dist1(s)+ sum_dist(s)]−{[sum_dist1(q∗)+ sum_dist(q∗)]− sum_dist1(p∗)}.

J

(a) A pairwise bisector is shown as a simple cycle. s∗, p∗, q∗

are the dual vertices on the bisector and s∗ is the starting ver-
tex of the bisector in AL.

(b) Here p∗ appears before q∗ in AL (c) Here p∗ appears after q∗ in AL

Figure 3.1: A bisector as a simple cycle and the two possible segments
(when the end points of the segments are given) is shown. The two

possible segments are highlighted in different colors.

Therefore we have the following theorem.

I Theorem 36. We can build a data structure in O(nr2) for all pieces in G, such that it
has the property stated in the lemma 35.

3.3.2 AL for HC

We augment the following to each dual node p∗ in AL(u, v, .):

30 Chapter 3. Data Structure

• dist_list3(p∗) (along with polynomials P13(p∗)(x) and P23(p∗)(x)): This is
the union of dist_list1(f ∗) for all f ∗ in the subtree of p∗ in T∗, including the
Dist(u, t) of nodes t on the face p, that are closer to u than to v (additively).
Corresponding polynomials are constructed with the values in dist_list3(p∗)
using algorithm 0.

• dist_list4(p∗) (along with polynomials P14(p∗)(x) and P24(p∗)(x)): This is the
union of dist_list3(q∗) for all q∗ which are successors of p∗ in AL(u, v, .), ex-
cluding dist_list3(p∗). Again corresponding polynomials are constructed with
the values in dist_list4(p∗) using algorithm 0.

Algorithm 4: Augmenting in AL(u, v, .)
input : Augmented cotree T∗, initialized AL(u, v, .) and c_val(u, v)
output: Augmented AL(u, v, .) for HC

1 for every δ ∈ c_val(u, v) do
2 Let AL(u, v, δ) be the initialized AL;
3 for every dual node f ∗ in AL(u, v, δ)) do
4 dist_list3(f ∗)← NULL.
5 for every vertex t ∈ count_list(f ∗) do
6 if dist(u, t)− dist(v, t) < δ then
7 dist_list3(f ∗).append(Dist(u, t));
8 end
9 for every child g∗ of f ∗ in T∗ do

10 if g∗ is not adjacent to f ∗ in AL(u, v, δ) and all the vertices on the face
g is closer to u than to v then

11 dist_list3(f ∗).append(dist_list2(g∗));
12 end
13 P13(f ∗), P23(f ∗)← Construct the Polynomials using 2.4.1 and the

values as dist_list3(f ∗);
14 end
15 l∗ ← last node in AL(u, v, δ); /* end of AL(u, v, δ) */
16 dist_list4(l∗)← NULL;
17 f ∗ ← pred(l∗) in AL(u, v, δ)

/* Traverse AL(u, v, δ) from last node(end) to first(start),
pred(l∗) calls the immediate predecessor l∗ in AL(u, v, δ). */

18 while f ∗ is not NULL do
19 dist_list4(f ∗) = dist_list4(l∗).append(dist_list3(l∗));
20 l∗ ← f ∗;
21 f ∗ ← pred(l∗);
22 end
23 for every dual node f ∗ in AL(u, v, δ) do
24 P14(f ∗), P24(f ∗)← Construct the Polynomials using 2.4.1 and the

values as dist_list4(f ∗);
25 end
26 end

The above algorithm takes O(r × r log r) time for each bisector. There can be
O(r ×

√
r) bisectors for every boundary node of a piece. Therefore, for all possible

bisectors of all boundary nodes in all pieces, it will take O(n
r ×
√

r × (r ×
√

r) ×
r2 log r) = Õ(nr3).

3.3. Augmented List Data Structure 31

I Lemma 37. Given a segment γ = {p∗, . . . , q∗} of bisector β∗(b, ., .) (maintaining the
same cyclic order as in AL), value of ∑ f ∗∈γ\{p∗,q∗}

P13(f ∗)(x)
P3(f ∗)(x) for any x, can be calculated in

O(1) time (given that we already know the values of polynomials P14(f ∗)(x), P24(f ∗)(x),
, P13(f ∗)(x), P23(f ∗)(x) for all nodes f ∗ ∈ γ).

Proof. Since each bisector is a simple cycle (from lemma 7), therefore given two
points on the bisector we can get two possible segments (Figure 3.1a). We will use
one of the following steps to get the desired value:

• If p∗ appears before q∗ in AL(b, ., .) (Figure 3.1b):
We need to look for the nodes that are after p∗ and before q∗ in AL(b, ., .). We
will return P14(p∗)(x)

P24(p∗)(x) − [P14(q∗)(x)
P24(q∗)(x) +

P13(q∗)(x)
P23(q∗)(x)].

• If p∗ appears after q∗ in AL(b, ., .) (Figure 3.1c):
Here we need to look for the nodes that are before p∗ and after q∗ in AL(b, ., .).
Let s be the first node in AL(b, ., .)(i.e. the head if AL(b, ., .)). We will return

[P14(s)(x)
P24(s)(x) +

P13(s)(x)]
P23(s)(x) −

(
[P14(p∗)(x)

P24(p∗)(x) +
P13(p∗)(x)
P23(p∗)(x)]−

P14(q∗)(x)
P24(q∗)(x)

)
.

J

Using the above lemma, we know the exact polynomials to fetch (in O(1) time)
when a segment of bisector is given. We will use the following algorithm(5) for this:

Algorithm 5: Fetching list of polynomials needed for Lemma 37
input : AL(u, v, δ), segment of bisector γ = {p∗, . . . , q∗}
output: List of polynomials and their corresponding signs

1 Polynomials[]← Null; /* Each entry of Polynomial[] contain two
polynomials and a sign (+ or -). */

2 if p∗ appears before q∗ in AL(b, ., .) then
/* All the polynomials are from AL(u, v, δ). */

3 Polynomials[].insert((P14(p∗)(x)), (P24(p∗)(x)),+);
4 Polynomials[].insert((P14(q∗)(x)), (P24(q∗)(x)),−);
5 Polynomials[].insert((P13(q∗)(x)), (P23(q∗)(x)),−);
6 if p∗ appears after q∗ in AL(u, v, δ) then

/* All the polynomials are from AL(u, v, δ). */
7 s← first node in AL(u, v, δ);
8 Polynomials[].insert((P14(s∗)(x)), (P24(s∗)(x)),+);
9 Polynomials[].insert((P13(s∗)(x)), (P23(s∗)(x)),+);

10 Polynomials[].insert((P14(q∗)(x)), (P24(q∗)(x)),−);
11 Polynomials[].insert((P13(q∗)(x)), (P23(q∗)(x)),−);
12 Polynomials[].insert((P14(p∗)(x)), (P24(p∗)(x)),+);
13 return Polynomials[];

Therefore we have the following theorem.

I Theorem 38. We can build a data structure in O(nr3) for all pieces in G, such that it
has the property stated in the lemma 37.

3.3.3 AL for NFC

We augment the following to each dual node p∗ in AL(u, v, .):

32 Chapter 3. Data Structure

• num_paths3(p∗): This is the sum of num_paths1(f ∗) for all f ∗ in the subtree
of p∗ in T∗, added with the σ(u, t) of nodes t on the face p, that are closer to u
than to v (additively).

• num_paths_edge(p∗): Suppose (p∗, q∗) is in AL(u, v, .) and q∗ is successor of p∗.
Let (p, q) be the dual edge of (p∗, q∗). num_paths_edge(p∗) contains the sum of
σ(u, t) of nodes t in the subtree of q (including q), which are equi-distant from
both u and v, additively (i.e. after adding weights to u, v).

• num_paths4(p∗): This is the sum of num_paths3(q∗) + num_paths_edge(q∗)
for all q∗ which are successors of p∗ in AL(u, v, .), excluding sum_dist(p∗).
num_paths_edge(p∗) is also added.

3.3. Augmented List Data Structure 33

Algorithm 6: Augmenting in AL(u, v, .)
input : Augmented cotree T∗, initialized AL(u, v, .),c_val(u, v) and the

shortest path tree in P rooted at u(T)
output: Augmented AL(u, v, .) for NFC

1 for every δ ∈ c_val(u, v) do
2 Let AL(u, v, δ) be the initialized AL;
3 for every dual node f ∗ in AL(u, v, δ)) do
4 num_paths3(f ∗)← 0;
5 for every vertex t ∈ count_list(f ∗) do
6 if dist(u, t)− dist(v, t) < δ then
7 num_paths3(f ∗)+ = σ(u, t);
8 end
9 for every child g∗ of f ∗ in T∗ do

10 if g∗ is not adjacent to f ∗ in AL(u, v, δ) and all the vertices on the face
g is closer to u than to v then

11 num_paths3(f ∗)+ = num_paths2(g∗);
12 end
13 end

/* Traversing the shortest path tree and looking for the nodes
that are not in vor(u). */

14 for every edge e = (f ∗, g∗) on AL(u, v, δ) do
15 Let pq(p← parent(q) in T) be the primal edge of e;
16 num_paths_edge(e)← 0;
17 for every vertex t in the subtree of q including q in T do
18 if Dist(u, t)− Dist(v, t) = δ.original then
19 num_paths_edge(f ∗)+ = σ(u, t);
20 end
21 end
22 l∗ ← last node in AL(u, v, δ); /* end of AL(u, v, δ) */
23 num_paths4(l∗)← 0;
24 f ∗ ← pred(l∗) in AL(u, v, δ);

/* Traverse AL(u, v, δ) from last node(end) to first(start),
pred(l∗) calls the immediate predecessor l∗ in AL(u, v, δ). */

25 while f ∗ is not NULL do
26 num_paths4(f ∗) =

num_paths4(l∗) + num_paths3(l∗) + num_paths_edge(f ∗);
27 l∗ ← f ∗;
28 f ∗ ← pred(l∗);
29 end
30 end

The above algorithm takes O(r) time for each bisector. It also takes total O(r)
time for traversing the shortest path tree T for every bisector. There can be O(r×

√
r)

bisectors for every boundary node of a piece. Therefore, for all possible bisectors of
all boundary nodes in all pieces, it will take O(n

r ×
√

r× (r×
√

r)× r) = O(nr2)

I Lemma 39. Given a segment (p∗, . . . , q∗) of bisector β∗(b, ., .) (maintaining the same
cyclic order as in AL), the sum of num_paths3(p∗k) for all p∗k ∈ {p∗, . . . , q∗} and p∗k /∈
{p∗, q∗} added with the sum of num_paths_edge(p∗k) for all p∗k ∈ {p∗i , . . . , p∗j } and p∗k 6=
q∗ can be computed in O(1) time.

34 Chapter 3. Data Structure

Proof. The proof is similar to the proof of lemma 35.
Since each bisector is a simple cycle (from lemma 7), therefore given two points on
the bisector we can get two possible segments (Figure 3.1a). We will use one of the
following steps to get the desired value:

• If p∗ appears before q∗ in AL(b, ., .) (Figure 3.1b):
We need to look for the nodes(and the edges) that are after p∗ and before q∗ in
AL(b, ., .). We will return num_paths4(p∗)− [num_paths4(q∗)+num_paths3(q∗)].

• If p∗ appears after q∗ in AL(b, ., .) (Figure 3.1c):
Here we need to look for the nodes(and edges) that are before p∗ and after q∗ in
AL(b, ., .). Let s be the first node in AL(b, ., .)(i.e. the head of AL(b, ., .)). We will
return [num_paths4(s)+num_paths3(s)]−{[num_paths4(q∗)+num_paths3(q∗)]−
num_paths4(p∗)}.

J

Therefore we have the following theorem.

I Theorem 40. We can build a data structure in O(nr2) for all pieces in G, such that it
has the property stated in the lemma 39.

3.4 Augmented Balanced Binary search tree (ABBST)

Here also, we maintain ABBST(u, v, δ) for each bisector β∗(u, v, δ) (for some pair of
boundary nodes u, v and for each weight difference δ). For this we assume that along
with the augmented cotree T∗ (cotree of the shortest path tree T in P rooted at u), we
are also given two linked lists: βin(u, v, δ) and βout(u, v, δ), as mentioned in section
3.2 (Algorithm 1). ABBST(u, v, δ) is a binary search tree (AVL tree) where the nodes
are same as in β∗(u, v, δ). The order of the nodes in AL(u, v, δ) are the relative keys of
the nodes in ABBST(u, v, δ). In other words, the inorder traversal of ABBST(u, v, δ)
starting from root, will give us the list AL(u, v, δ) starting from ‘start’ to ‘end’.
We build the trees(ABBST(u, v, .)) gradually, while iterating over δ, and augmenting
the necessary values to the trees using the algorithm 7.
Another important point to note is that, ABBST is a ‘partially persistent’ AVL tree.
Partially persistent data structures are those, where the previous versions can be ac-
cessed, but only the current version can be modified. Fully persistent data structures
are those where all the versions can be accessed and modified. For our purpose, this
means that all versions of ABBST(u, v, δ) for all possible δ can be accessed, but only
the one version (current) can be modified. Note that a data structure can be easily
made partially persistent by simply keeping a copy of each version of the data struc-
ture. This will require us to copy the entire current version first, which will incur
a cost of O(n) (n is the size of the data structure) extra for each version. AVL tree
can be converted into a partially persistent AVL tree using the copying method, but
this would result in an increased total cost of building the data structure. There are
other methods to achieve the same, like Fat node method, where the slowdown per
operation is O(logm) (m is the number of versions–in our case m = O(r))i.e. total
time per insertion, deletion and searching is O(log n log m) (in our case this will be
O(log2 r)). There is another method called node copying method where there is O(1)

3.4. Augmented Balanced Binary search tree (ABBST) 35

slowdown per query and O(1) amortized slowdown per update operation. There-
fore, total amortized time per insertion, deletion and query is O(log n) (O(log r) in
our case). Refer to [11, 36].

Algorithm 7: Building ABBST(u, v, .)
input : boundary nodes u, v ∈ δP,c_val(u, v), βin(u, v, .), βout(u, v, .)
output: ABBST(u, v, .)

1 ABBST(u, v,+∞)← h∗;
2 δ′ ← +∞;
3 for δ ∈ c_val(u, v)-/* Traverse c_val(u, v) in descending order. */
4 do
5 ABBST(u, v, δ)← ABBST(u, v, δ′); /* Persistent data structure

implementation. */

/* T∗ is the augmented cotree */
6 ABBST(u, v, δ).del_segment_ABBST(T∗, β∗(u, v, δ′));/* Algorithm 8 */

7 ABBST(u, v, δ).insert_segment_ABBST(T∗, β∗(u, v, δ′));/* (This is
different for CC,HC and NFC) */

8 δ′ ← δ;
9 end

Algorithm 8: del_segment_ABBST() - Deleting a segment(many nodes)
from ABBST(u, v, δ)

input : Augmented cotree T∗, βout(u, v, δ′)
output: ABBST(u, v, δ) with some deleted nodes

1 for every dual node f ∗ in βout(u, v, δ′) except the start and the end node) do
2 Delete f ∗ from ABBST(u, v, δ);
3 Re-balance the tree using Rotations;
4 end

After deleting βout(u, v, δ′), either the tree will be empty or not: In case it is empty,
that means βu,v,δ′ was a cycle and we build the entire ABBST(u, v, δ) from βin(u, v, δ).

3.4.1 ABBST for CC

The ABBST for CC will be augmented as follows:

• num_nodes(p∗)—(same as in AL): This is the sum of count(f ∗) for all f ∗ in the
subtree of p∗ in T∗, added with the number of nodes on the face p, that are
closer to u than to v (additively).

• num_nodes1(p∗): This is the sum of num_nodes(q∗) for all q∗ which are in the
right subtree of p∗ in ABBST(u, v, .), excluding num_nodes(p∗).

• sum_dist(p∗)—(same as in AL): This is the sum of dist_dual(f ∗) for all f ∗ in
the subtree of p∗ in T∗, added with the Dist(u, t) of nodes t on the face p, that
are closer to u than to v (additively).

• sum_dist1(p∗): This is the sum of sum_dist(q∗) for all q∗ which are in the right
subtree of p∗ in ABBST(u, v, .), excluding sum_dist(p∗).

36 Chapter 3. Data Structure

Algorithm 9: insert_segment_ABBST() - Inserting a segment(many nodes)
to ABBST(u, v, δ)

input : Augmented cotree T∗, βin(u, v, δ)
output: ABBST(u, v, δ) with some inserted nodes

1 s← βin(u, v, δ).start;
2 e← βin(u, v, δ).end;
3 for every dual node f ∗ in βin(u, v, δ) do
4 if f ∗ is not the start or end node, i.e. not s or e then
5 Add f ∗ to ABBST(u, v, δ) with key(s) < key(f ∗) < key(e);
6 num_nodes(f ∗)← 0.
7 sum_dist(f ∗)← 0.
8 for every vertex t ∈ count_list(f ∗) do
9 if dist(u, t)− dist(v, t) < δ then

10 num_nodes(f ∗)+ = 1;
11 sum_dist(f ∗)+ = Dist(u, t);
12 end
13 for every child g∗ of f ∗ in T∗ do
14 if g∗ is not adjacent to f ∗ in AL(u, v, δ) and all the vertices on the face g is

closer to u than to v then
15 num_nodes(f ∗)+ = count_sum(g∗)
16 sum_dist(f ∗)+ = dist_dual_sum(g∗)
17 end
18 Re-balance the tree using Rotations and maintain the following two

augmented values:
19 num_nodes1(f ∗) is the sum of all the num_nodes() in the right subtree

rooted at f ∗ excluding num_nodes(f ∗) itself. sum_dist1(f ∗) is the sum
of all the sum_dist() in the right subtree rooted at f ∗ excluding
sum_dist(f ∗) itself.

/* Lines 19 and 19 be achieved using normal augmented AVL
insertion,deletion and rotation operations. There will be
O(log r) values that will be modified per insertion. */

20 s← f ∗;
21 end

Since the above algorithm is basically augmented AVL tree(persistent), the to-
tal time required to construct ABBST(u, v, .) for every pair of boundary nodes u, v
in a piece is O(r log r). Note that all the ABBST(u, v, δ) for every possible δ can
be constructed in O(r log r) time because from lemma 11, there can only be O(r)
edges and vertices that are added and deleted, and each insertion and deletion
takes O(log r) time(as we need to traverse from a node to the root for updating
the augmented values when a new node is added.). There are total O(r) pairs of
boundary nodes and O(n

r) pieces. Therefore constructing all the ABBST will re-
quire O(n

r × r× r log r) = Õ(nr) time.
Using the above algorithm, we can prove the following lemma.

I Lemma 41. Given a segment (p∗i , . . . , p∗j) of bisector β∗(b, .) (maintaining the cyclic
order, as in AL or ABBST), the sum of num_nodes(p∗k) for all p∗k ∈ {p∗i , . . . , p∗j }, p∗k /∈
{p∗i , p∗j } and sum of sum_dist(p∗k) for all p∗k ∈ {p∗i , . . . , p∗j }, p∗k /∈ {p∗i , p∗j } can be com-
puted in O(log r) time.

3.4. Augmented Balanced Binary search tree (ABBST) 37

Proof. It can be seen that the inorder traversal of the ABBST starting from the root,
gives us the bisector in the same order as the AL.

Let num_segment(p∗k) = ∑p∗w num_nodes(p∗w), where p∗w are all nodes that are in-
order successors of p∗k in ABBST(u, v, .). Similarly we define dist_segment(p∗) =

∑p∗w sum_dist(p∗w). We can find num_segment(p∗k) and dist_segment(p∗k) for any p∗k
in O(log r) time using the following algorithm(10).
Again as before, given two points on the bisector we can get two possible segments
(Figure 3.1a). We will use one of the following steps to get the desired value:

• If p∗ appears before q∗ in the inorder traversal of ABBST(or if num_segment(p∗) >
num_segment(q∗))(Figure 3.1b):
We need to look for the nodes that are after p∗ and before q∗ in the inorder
traversal of the ABBST. We will return num_segment(p∗)− [num_segment(q∗)+
num_nodes(q∗)] and dist_segment(p∗)− [dist_segment(q∗) + sum_dist(q∗)].

• If p∗ appears after q∗ in the inorder traversal (Figure 3.1c):
We need to look for the nodes that are before p∗ and after q∗ in the inorder
traversal. Let s be the left most node in ABBST(u, v, .). We will return
[num_segment(s) + num_nodes(s)]− {[num_segment(q∗) + num_nodes(q∗)]−
num_segment(p∗)} and [dist_segment(s)+ sum_dist(s)]−{[dist_segment(q∗)+
sum_dist(q∗)]− dist_segment(p∗)}.

Algorithm 10: Finding num_segment(p∗k) and dist_segment(p∗k)
input : ABBST(u, v, .),a node p∗k
output: num_segment(p∗k) and dist_segment(p∗k)

1 num_segment(p∗k)← num_nodes1(p∗k);
/* This will contain the sum of all num_nodes(p∗i), where p∗i is in

the right subtree of p∗k */

2 dist_segment(p∗k)← sum_dist1(p∗k);
/* This will contain the sum of all sum_dist(p∗i), where p∗i is in

the right subtree of p∗k */

3 Let root represent the root node of ABBST(u, v, .);
/* We need to traverse from p∗k to the root node of ABBST

following the parent pointers. We need to find the nodes on
that path, that are the inorder successors of p∗k */

4 p∗w ← p∗k ;
5 while parent(p∗w) 6= NULL do
6 if p∗w is the left child of parent(p∗w) then
7 num_segment(p∗k)+ =

{num_nodes1(parent(p∗w)) + num_nodes(parent(p∗w))};
8 dist_segment(p∗k)+ =

{sum_dist1(parent(p∗w)) + sum_dist(parent(p∗w))};
9 p∗w = parent(p∗w);

10 end

Since the algorithm 10 requires to traverse a path in the ABBST, it will take
O(log r) time to calculate num_segment() and dist_segment for each node.

J

38 Chapter 3. Data Structure

I Theorem 42. We can build a data structure in Õ(nr) for all pieces in G, such that it has
the property stated in the lemma 41.

3.4.2 ABBST for HC

ABBST for HC can be augmented as follows:

• dist_list3(p∗) (along with polynomials P13(p∗)(x) and P23(p∗)(x))—(same as
in AL): This is the union of dist_list1(f ∗) for all f ∗ in the subtree of p∗ in T∗,
including the Dist(u, t) of nodes t on the face p, that are closer to u than to v
(additively). Corresponding polynomials are constructed with the values in
dist_list3(p∗) using algorithm 0.

• dist_list4(p∗) (along with polynomials P14(p∗)(x) and P24(p∗)(x)): This is
the union of dist_list3(q∗) for all q∗ which are in the right subtree of p∗ in
ABBST(u, v, .), excluding dist_list3(p∗). Again corresponding polynomials
are constructed with the values in dist_list4(p∗) using algorithm 0.

3.4. Augmented Balanced Binary search tree (ABBST) 39

Algorithm 11: insert_segment_ABBST() - Inserting a segment(many nodes)
to ABBST(u, v, δ)

input : Augmented cotree T∗, βin(u, v, δ)
output: ABBST(u, v, δ) with some inserted nodes

1 s← βin(u, v, δ).start;
2 e← βin(u, v, δ).end;
3 for every dual node f ∗ in βin(u, v, δ) do
4 if f ∗ is not the start or end node, i.e. not s or e then
5 Add f ∗ to ABBST(u, v, δ) with key(s) < key(f ∗) < key(e);
6 dist_list3(f ∗)← NULL.
7 for every vertex t ∈ count_list(f ∗) do
8 if dist(u, t)− dist(v, t) < δ then
9 dist_list3(f ∗).append(Dist(u, t));

10 end
11 for every child g∗ of f ∗ in T∗ do
12 if g∗ is not adjacent to f ∗ in AL(u, v, δ) and all the vertices on the face g is

closer to u than to v then
13 dist_list3(f ∗).append(dist_list2(g∗));
14 end
15 P13(f ∗), P23(f ∗)← Construct the Polynomials using 2.4.1 and the values

as dist_list3(f ∗);

16 Re-balance the tree using Rotations and maintain the following
augmented values: dist_list4(f ∗) is the union of all the dist_list3() in
the right subtree rooted at f ∗ excluding dist_list3(f ∗) itself.

17 P14(f ∗), P24(f ∗)← Construct the polynomials using 2.4.1 with values as
dist_list4(f ∗);.

/* Lines 16 and 17 can be achieved using normal augmented AVL
insertion,deletion and rotation operations. There will be
O(log r) values(dist_list4()) that will be modified per
insertion. Also modify the polynomials of these O(log r)
nodes, or simply re-construct the polynomials of these
nodes. */

18 s← f ∗;
19 end

ABBST(u, v, δ) for every possible δ can be constructed in Õ(r2) time. From
lemma 11, there can only be O(r) edges and vertices that are added and deleted,
and each insertion and deletion takes Õ(r) time (as we need to traverse from a
node to the root for updating the augmented values when a new node is added
and each updation takes Õ(r) time because new polynomials are constructed using
0 which will have O(r) values as input). There are total O(r) pairs of boundary
nodes per piece and O(n

r) pieces. Therefore constructing all the ABBST will require
Õ(n

r × r× r2) = Õ(nr2) time.
Using the above algorithm we can prove the following lemma.

I Lemma 43. Given a segment γ = {p∗, . . . , q∗} of bisector β∗(b, ., .) (maintaining
the same cyclic order as in AL) and the value of polynomials P13(f ∗)(x), P23(f ∗)(x),
P14(f ∗)(x), P24(f ∗)(x) for all f ∗ ∈ γ and for some x, value of ∑ f ∗∈γ\{p∗,q∗}

P13(f ∗)(x)
P23(f ∗)(x) ,

can be calculated in Õ(1) time.

40 Chapter 3. Data Structure

Proof. It can be seen that the inorder traversal of the ABBST starting from the root,
gives us the bisector in the same order as in AL.

Let HCsegment(p∗k)(x) = ∑p∗w
P13(p∗w)(x)
P23(p∗w)(x) , where p∗w are all nodes that are inorder

successors of p∗k in ABBST(b, ., .). We can find HCsegment(p∗k)(x) for some x in O(log r)
time using the following algorithm(12).
Again as before, given two points on the bisector we can get two possible segments
(Figure 3.1a). We will use one of the following steps to get the desired value (we
will also store the list of these polynomials and the corresponding sign in a list using
algorithm 13):

• If p∗ appears before q∗ in the inorder traversal of ABBST
(or if HCsegment(p∗)(x) >HCsegment(q∗)(x)) (Figure 3.1b):
We need to look for the nodes that are after p∗ and before q∗ in the inorder
traversal of the ABBST. We will return

HCsegment(p∗)(x)−
[

HCsegment(q∗)(x) + P13(q∗)(x)
P23(q∗)(x)

]
.

• If p∗ appears after q∗ in the inorder traversal (Figure 3.1c):
We need to look for the nodes that are before p∗ and after q∗ in the inorder
traversal. Let s be the left most node in ABBST(b, ., .). We will return[

HCsegment(s)(x)+ P13(s)(x)
P23(s)(x)

]
−
([

HCsegment(q∗)(x)+ P13(q∗)(x)
P23(p∗)(x)

]
−HCsegment(p∗)(x)

)
.

Algorithm 12: Finding HCsegment(p∗k)(x) and fetching the polynomials as-
sociated with it

input : ABBST(b, ., .),a node p∗k a value x and a sign sign ∈ {+,−}
output: Value of HCsegment(p∗k)(x) and a list of polynomials with their signs

1 HCsegment(p∗k)(x)← P14(p∗k)(x)
P24(p∗k)(x) ; /* This now contains the sum of all

P13(p∗i)(x)
P23(p∗i)(x), where p∗i is in the right subtree of p∗k excluding p∗k.
*/

2 Polysegment[]← Null;
3 Polysegment[].insert((P14(p∗k)(x)), (P24(p∗k)(x)), sign); /* Similarly this

now contains the list of all P13(p∗i)(x) and P23(p∗i)(x), where
p∗i is in the right subtree of p∗k excluding p∗k. */

/* We need to traverse from p∗k to the root node of ABBST(b, ., .)
following the parent pointers. We need to find the nodes on
that path, that are the inorder successors of p∗k. */

4 p∗w ← p∗k ;
5 while parent(p∗w) 6= NULL do
6 if p∗w is the left child of parent(p∗w) then
7 HCsegment(p∗k)(x)+ = { P14(parent(p∗w))(x)

P24(parent(p∗w))(x) +
P13(parent(p∗w))(x)
P23(parent(p∗w))(x)};

8 Polysegment[].insert((P14(parent(p∗w))(x)), (P24(parent(p∗w))(x)), sign);
9 Polysegment[].insert((P13(parent(p∗w))(x)), (P23(parent(p∗w))(x)), sign);

10 p∗w = parent(p∗w);
11 end
12 return HCsegment(p∗k)(x) and Polysegment[];

3.4. Augmented Balanced Binary search tree (ABBST) 41

Since the algorithm 12 requires to traverse a path in the ABBST, it will take
O(log r) time to calculate HCsegment() for each node.

J

Also, same as AL, we use the following algorithm(13) to fetch the list of required
polynomials for a given segment of bisector:

Algorithm 13: Fetching list of polynomials needed for Lemma 43
input : ABBST(u, v, δ), segment of bisector γ = {p∗, . . . , q∗}
output: List of polynomials and their corresponding signs

1 Polynomials[]← Null; /* Each entry of Polynomial[] contain two
polynomials and a sign (+ or -). */

2 if If p∗ appears before q∗ in the inorder traversal of ABBST(u, v, δ) then
/* All the polynomials are from ABBST(u, v, δ). */

3 Polynomials[].insert(Polysegment(p∗) with sign = +);

/* This will insert the polynomials (O(log r) polynomials) in
Polysegment(p∗)(from algorithm 12) into Polynomials[]. */

4 Polynomials[].insert(Polysegment(q∗) with sign = −);
5 Polynomials[].insert((P13(q∗)(x)), (P23(q∗)(x)),−);
6 if p∗ appears after q∗ in the inorder traversal of ABBST(u, v, δ) then

/* All the polynomials are from AL(u, v, δ). */
7 s← root node in ABBST(u, v, δ);
8 Polynomials[].insert(Polysegment(s∗) with sign = +);
9 Polynomials[].insert((P13(s∗)(x)), (P23(s∗)(x)),+);

10 Polynomials[].insert(Polysegment(q∗) with sign = −);
11 Polynomials[].insert((P13(q∗)(x)), (P23(q∗)(x)),−);
12 Polynomials[].insert(Polysegment(p∗) with sign = +);
13 return Polynomials[];

Since, the polynomials in algorithm 13 are exactly same as described in the proof
of lemma 43, it will require Õ(1) time per segment of bisector.

I Theorem 44. We can build a data structure in Õ(nr2) for all pieces in G, such that it
has the property stated in the lemma 43.

43

Chapter 4

Upper Bounds

In this chapter, we first present a linear upper bound for calculating BHC of a single
node in sparse graphs (in section 4.1) using the fast multipoint evaluation technique
for evaluating a d−degree polynomial on n points in O(max n, d log2 d) time (section
2.4).

In section 4.2, we present the o(n2) algorithms for computing CC,HC and NFC
of all nodes in planar graphs. We also present the o(n2) algorithm to compute BNFC
of a single node in a planar graph.

4.1 Linear Upper Bound for BHC

In this section, we show that BHC of any one node of a sparse graph can be com-
puted in linear time, up to logarithmic factors. Since planar graphs are sparse in
nature, the same Õ(n) running time holds for planar graphs as well.

I Theorem 45. For a sparse graph with n nodes and O(n) edges, the BHC of single node
can be computed in Õ(n) time.

Proof. For computing BHC(s), we first compute ai = dist(s, ti) for all other nodes
ti by using Dijkstra’s algorithm. Since the graph is sparse, this takes Õ(n) time. We
will use claim 46 to prove the theorem. J

B Claim 46. Given n numbers {a1, a2, . . . an}, B = ∑i ∑j
1

ai+aj
can be computed in

Õ(n).

Proof. Let A = {a1, . . . an}. Define two polynomials P1(x) = ∑i ∏j 6=i(aj + x) and

P2(x) = ∏i(ai + x) using those points. Observe that B = ∑i
P1(ai)
P2(ai)

. Therefore, B can
be computed by computing {P1(x) : x ∈ A} and {P2(x) : x ∈ A}— which can
be accomplished using multi-point evaluation of P1(x) and P2(x) on points in A.

However, multi-point evaluation requires coefficients of a polynomial, whereas
in our case, P1(x) and P2(x) are not readily available in the coefficient form. To
resolve this, we design an FFT-based recursive algorithm to obtain the coefficients
of P1(x) and P2(x) that is explained in Section 2.4.1 and has a time complexity of
O(n log2 n).

Once we have the coefficients of P1(x) and P2(x) we can evaluate them on all
points in A using multipoint evaluation in time O(n log2 n). B can be computed
by simply summing P1(ai)/P2(ai). The total complexity of computing B remains
Õ(n). J

The claim proves the theorem as well since BHC(s) = ∑i ∑j
1

ai+aj
.

44 Chapter 4. Upper Bounds

4.2 Subquadratic Upper Bounds for Planar Graphs

In this section, we design strictly subquadratic algorithms for computing CC, HC
and NFC of all nodes in a planar graph. All these algorithms have a similar structure
that is composed of 4 stages. Observe that computing the above centrality values at
all nodes requires looking at the shortest paths between every pair of vertices. These
stages group these paths based on a decomposition of the graph in a manner that
allows us to avoid explicitly looking at all O(n2) shortest path.

Pre-processing: Perform an r-division of G. r can be chosen depending on the over-
all complexity.

Stage 1: Compute centrality values of all boundary nodes. This step considers the
shortest paths with boundary nodes as source vertices.

Stage 2: Compute partial centrality values of all internal nodes by considering each
piece separately and singly; essentially, here we consider the shortest paths
between two internal nodes of every piece. To separate a piece p in G, we
construct a graph GP that has all the vertices of P. Edges of GP are those that
were inside P only and we also add additional edges as and when needed
using the values calculated in stage 1.

Stage 3: Now, we need to consider the shortest paths between two internal nodes
but from different pieces. Let s be an internal node and P be a piece that does
not contain s. To consider the shortest paths from s to those internal to P, we
observe that these paths must pass through some boundary node of P. This
stage can be further sub-divided into sub-stages:

1. Firstly, we triangulate each face of each piece except for the holes. Then
we perturb the edge weights such that the distance between each pair
of vertices is unique. This implies that there is a unique shortest path
between two nodes. We use deterministic lexicographic perturbation for
this purpose (See section 2.2).

2. We then consider the shortest path tree Tb from each boundary node b
to all the nodes of P (already constructed in stage 2) and construct the
augmented cotree T∗b . We compute and store some values in T∗b .

3. We then consider the bisectors β∗(u, v, δ) for each pair of boundary nodes
u and v in P and each critical value δ. These are stored as either AL(u, v, δ)
or ABBST(u, v, δ) (details in Chapter 3). We augment some values to the
AL and ABBST constructed during the pre-processing stage of AWV con-
struction. Appropriate values are fetched from the bisector segments to
calculate the centralities efficiently.

Stage 4: Finally, we update the centrality value of all internal nodes s by considering
paths starting from them, passing through some boundary vertex and ending
at an internal node of a different piece P. For this, a weighted Voronoi diagram
is generated for every piece using its boundary nodes as sites, and the weights
on the sites are the distances from s to the respective sites. For each boundary
node b, the AWV construction gives us the Voronoi region of b as segments of
bisectors. We then use the pre-calculated values in stage 3, and compute the
centrality by carefully aggregating them. This allows us to only consider paths
ending at boundary nodes leading to the subquadratic running time.

4.2. Subquadratic Upper Bounds for Planar Graphs 45

(a) Path from s to t1 and t2 in G (b) Path from s to t1 and t2 in GP

Figure 4.1: Computing ωint by creating GP

We describe stages 1,2, 3, and 4 in detail for each of the centralities. We addition-
ally use the fact that the number of edges in a planar graph is O(n) and, therefore,
running Dijkstra from a single vertex takes Õ(n) steps.

4.2.1 CC of all nodes

The main result of this section is the following theorem.

I Theorem 47. For a planar graph with n nodes and O(n) edges, the CC of all nodes can
be computed in Õ(n5/3) time.

Instead of CC, we actually show how to compute its reciprocal, that we refer
to as partial Weiner index (PWI). Denoted ω(s), PWI of a vertex s is defined as
the sum of shortest path distances from s to all other nodes in the graph: ω(s) =

∑t∈V\{s} Dist(s, t). ω(s) can be computed by simply running Dijkstra from s.

Stages 1 and 2

For stage 1, we need to compute ω(b) for all boundary nodes, and this is done by
simply running Dijkstra from each boundary of every piece. Since boundary vertices
are part of multiple pieces, a quick check can ensure that each boundary vertex is
chosen as b only once.

For any internal node s whose piece we denote by P(s) and we denote the set of
all boundary nodes by B , we decompose ω(s) into three components :

ω(s) = ∑
t∈B

Dist(s, t) + ∑
t∈P(s)\B

Dist(s, t) + ∑
t/∈P(s) and t/∈B

Dist(s, t)

= ωB(s) + ωint(s) + ωext(s) (4.1)

Since in stage 1, we have already calculated Dist(s, b) for all boundary nodes b,
we can substitute the values in equation 4.1 to get ωB(s).

In stage 2 we compute ωint(s) by taking GP = (VP, EP) and running Dijkstra on
GP from all internal nodes of P. The extra edges in GP handle those paths that goes
outside P. But since the source and target nodes are both inside P, such a path must
leave and reenter the piece via some boundary node (illustrated in Figure 4.1). We
capture this by adding an edge in GP between every pair of boundary nodes inside
a piece.

46 Chapter 4. Upper Bounds

(a) Path from s to internal
nodes of P

(b) Using Voronoi cells to
group such paths

(c) Using AWV regions to com-
pute ωext(s)

Figure 4.2: Computing ωext(s) by grouping internal nodes and their
closest boundary nodes

Stage 3

The only value left to compute is ωext(s) for some internal node s; however, these
involve shortest paths that partly lies inside P(s) and partly lies outside P(s).

The distance from s to any t /∈ P(s) can be broken down to dist(t, b) for some
boundary b ∈ P(t) (there can be more than one boundary) and dist(b, s) (see Fig-
ure 4.2a). Observe that we already have computed both these distances in Stage 1;
however, naively trying all b ∈ ∂P(t) is not sufficient since it leads to a complexity
of O(n2√r) — there are O(n) possible s, O(r) many t in any piece, O(

√
r) many b

for any piece and O(n
r) pieces.

Our strategy is to use Voronoi regions to pre-compute the closest boundary node
for every internal node in P(t) — this depends on s as well (see Figure 4.2b). Let P
denote the piece of t and let b be a boundary node of P. We define J(s, b) as the set
of internal nodes of P whose shortest path to s pass through b. For example, J(s, b1)
contains t1 in Figure 4.2a. Assuming that J(s, bi) are disjoint across all bi’s, we can
group the internal nodes inside P based on their “closest” boundary.

ωext(s) = ∑
t/∈P(s)

dist(s, t) = ∑
piece P 6=P(s)

∑
b∈∂P

∑
t∈J(s,b)

[
dist(s, b) + dist(b, t)

]
= ∑

piece P
∑

b∈∂P

(
dist(s, b)× |J(s, b)|+ ∑

t∈J(s,b)
dist(b, t)

)
(4.2)

The crux of the final stage is a technique to efficiently compute J(s, b) and the
bracketed expression in Equation 4.2. Consider an AWV decomposition of P using
∂P as sites and dist(s, b) as the weight of the site b (see Figures 4.2b and 4.2c).

In this stage, we construct the AL or ABBST data structures for all pieces. Details
are given in section 3.3.1 and section 3.4.1. We also do the preprocessing needed for
constructing the AWV diagram ([18]).

Stage 4

Now in this stage, we actually compute the ωext(s) using the values computed in
stage 3. The notations are as usual. We will describe the algorithm for a single
boundary node b, and repeating this for all the boundary nodes will give us the end
result.

4.2. Subquadratic Upper Bounds for Planar Graphs 47

1. For each piece P and each internal node s not in P, we compute the AWV
diagram with respect to the distance from s to all boundary nodes in P. From
this, we get the relevant segments of bisectors. From each segment, we already
know the adjacent boundary vertex (or adjacent cell). Suppose, we have a
segment of a bisector with the adjacent cell as b′. Now, for finding the right δ,
we run binary search on c_val(b, b′) to find the largest value that is ≤ w(b′)−
w(b). Now, we extract the information from the data structure ABBST(b, b′, δ)
(or AL(b, b′, δ)). Since, δ can be different from the actual weight difference, we
need to prove lemma 48

2. |J(s, b)| can be computed by adding num_nodes values of each segment, as
described in lemma 35 and lemma 41. Let f ∗ be the node that is shared between
two consecutive segments of bisector on a cycle C∗ ∈ C∗ and f ∗ 6= h∗, where
h∗ is the dual node of hole h which is the hole of b. Therefore by lemma 25,
f ∗ is a voronoi vertex of degree 3 and the edge f ∗g∗ which is not on the cycle
C∗ is not in Vor(b), i.e the vertices of face g are not in Vor(b). So there are no
edges from f ∗ that are entering into Vor(b). We only need to add 1 to |J(s, b)|
because only 1 vertex of face f is inside Vor(b).

3. And ultimately, for each of the cycles in C∗ \ {C∗0}, we figure out the unique
edge f ∗g∗ (lemma 19). We subtract num_nodes(f ∗) from |J(s, b)|. If there exists
any other child of f ∗ in T∗ (let’s say t∗ 6= g∗), then we add num_nodes(t∗) to
|J(s, b)|. Since, there are O(1) holes in piece P, there can be O(1) such cycles
in piece P (except the C∗0 of each boundary node), therefore, this step requires
O(1) time per piece.

4. For calculating SUM = ∑t∈J(s,b) dist(b, t), we do the same thing as done for
|J(s, b)|. We add sum_dist values of each segment to SUM, as described in
lemma 35 and lemma 41. We also check which vertex of f is inside Vor(b)(say
vertex t), we add Dist(b, t) to SUM.

5. Finally, for each of the cycles in C∗ \ {C∗0}, we figure out the unique edge f ∗g∗.
(lemma 19). We subtract sum_dist(f ∗) from SUM. If there exists any other
child of f ∗ in T∗ (let’s say t∗ 6= g∗), then we add sum_dist(t∗) to SUM. Again
this step will require O(1) time per piece.

After we calculate both |J(s, b)| and SUM, we just substitute the values in equa-
tion 4.2 to get the value of ωext(s).

I Lemma 48. For any node t, if t is in Vor(b), then dist(b, t) + w(b) is the least additive
distance from any boundary node to t.

Proof. Suppose t is associated with segment β∗(b, b′, δ). Since, t is in Vor(b), there-
fore, dist(b, t)− dist(b′, t) < δ ≤ w(b)− w(b′) =⇒ dist(b, t) + w(b) < dist(b′, t) +
w(b′). J

I Lemma 49. |J(s, b)| and SUM are calculated correctly for all boundary nodes b. In
other words, for each vertex v , v is counted in |J(s, b)| exactly once (and Dist(b, v) is added
to SUM exactly once) iff v is in the voronoi cell of b.

Proof. We will prove that |J(s, b)| is computed correctly. The correctness of SUM
will follow. Suppose v is associated with face f and dual node of f is f ∗. Let v be
associated with the segment of bisector β∗(b, b′, δ).

48 Chapter 4. Upper Bounds

• (⇒) If v is not in Vor(v), then v will not be counted in |J(s, b)|:
f ∗ can either lie on the cycle C∗0 or face f can be entirely outside Vor(b). In
both the cases, v is not counted in |J(s, b)|. If f ∗ lies on C∗0 , then from the
lemma 35, each node t on the face f is checked for the following condition:
dist(b, v) − dist(b′, v) < δ. Since the condition is false in case of v (v not in
Vor(b)), therefore v is not counted. Now, if face f is entirely outside Vor(b),
then the root to f ∗ path of T∗ does not contain any dual node which is on any
cycle, therefore, no node of f is counted.

• (⇐) If v is in Vor(v), then v will be counted in |J(s, b)| exactly once:
To prove this, we use lemma 22.

Case 1: If the root to f ∗ path of T∗ has only one boundary node, then f ∗ has
to lie on C∗0 . As discussed above, if f ∗ lies on C∗0 , then after checking the
condition, v will be counted. Since, the root to f ∗ path in T∗ has only one
boundary node and a vertex is associated with a single face (and hence a
single dual node in T∗), therefore, v won’t be counted again.

Case 2: If the root to f ∗ path of T∗ has x penetrating edges and x − 1 ex-
iting edges, it means that the count of vertices associated with face f
(count(f ∗)) is excluded (or subtracted) x− 1 times from |J(s, b)|. But since
there are x penetrating edges, therefore, count(f ∗) is added x times which
proves that count(f ∗) is ultimately added only once.

Case 3: If the root to f ∗ path of T∗ has x penetrating edges and x exiting edges,
it means f ∗ is on some cycle C∗. Suppose (p∗, q∗) is the exiting edge of
cycle C∗ and it lies on the path from root to f ∗. If we consider the subpath
excluding the path p∗ f ∗, then it has x penetrating edges and x − 1
exiting edges. Therefore, by the previous argument, we can say that for
that subpath, count(f ∗) is added once. Now, we subtract count(f ∗) once
for the exiting edge (p∗, q∗), but then we also add count(f ∗) once for the
node f ∗ itself. Therefore, in total count(f ∗) is added exactly once.

J

From lemma 48 and lemma 49, we can conclude that the algorithm for computing
CC of all nodes is correct.

Running time analysis

We finish the proof of Theorem 47 by discussing it’s subquadratic complexity. The
running times of the different stages are explained below.

Pre-processing: r-division takes O(n log n) time using the naive recursive approach
by Frederickson[14]. We can also use a recently proposed linear time algorithm
[30].

Stage 1: Computing ω(s) of the boundary nodes can be found by running Dijkstra′s
algorithm on G taking each boundary as a source. The number of boundary
nodes in G is O(n√

r) leading to a running time of O(n√
r × n log n).

Stage 2: Computing ωint(s) also involves running Dijkstra on the graph GP with
O(r) nodes and O(r) edges (in GP we add O(r) edges between every pair of
boundary nodes). The running time of this stage is O(n

r × r log r).

4.2. Subquadratic Upper Bounds for Planar Graphs 49

Stage 3: The cost for AWV pre-processing is Õ(nr) (theorem 4). The cost of building
the augmented cotree is Õ(n

√
r) (theorem 31) and the cost of building ABBST

is Õ(nr)—from theorem 42 (O(nr2) if we use AL—from theorem 36). There-
fore, the total running time of this stage is Õ(n

r × r2) (O(nr2 if AL is used).

Stage 4: In this stage, we construct AWVs for all internal nodes s and all pieces dif-
ferent from P(s). The construction takes Õ(

√
r) time (Theorem 4). That is fol-

lowed by a processing of all boundary nodes in every piece. For every bound-
ary node, the information from all the segments are aggregated. Fetching the
information fom each segment require Õ(1) time using ABBST—lemma 41
(O(1) time if AL is used—lemma 35). Since, each segment can be part of two
voronoi cells and total number of segments per piece is O(

√
r), therefore, fetch-

ing of information for all the boundary node will require Õ(
√

r) time. Repeat-
ing this for each outside node s will result in a running time of Õ(n

√
r) per

piece. Total number of pieces are O(n
r), therefore the total running time of this

stage is Õ(1)×O(n× n
r ×
√

r) = Õ(n2
√

r).

Since we use r = n
2
3 , we get the total running time for computing CC of all nodes

as Õ(n
5
3) (using AL we will get Õ(n

9
5) using r = n

2
5).

4.2.2 HC of all nodes

Adaptation of the algorithm for computing CC gives us a subquadratic algorithm
for computing HC of all nodes.

I Theorem 50. For a planar graph with n nodes and O(n) edges, the HC of all nodes can
be computed in Õ(n9/5) time.

Stage 1 and 2

Stage 1 is similar to CC. We compute HC(b) for all boundary nodes b, which can
be done by running Dijkstra from each boundary of every piece. Since boundary
vertices are part of multiple pieces, a quick check can ensure that each boundary
vertex is chosen as b only once.
As in CC, we can also write the equation of HC for an internal node s in piece P(s)
as follows:

HC(s) = ∑
t∈B

(
1

Dist(s, t)

)
+ ∑

t∈P(s)\B

(
1

Dist(s, t)

)
+ ∑

t/∈P(s) and t/∈B

(
1

Dist(s, t)

)
=HCB(s) + HCint(s) + HCext(s) (4.3)

Stage 2 is also similar to that for computing CC (see Section 4.2.1) in which HCB
and HCint are calculated for all internal nodes s in all pieces. We give an overview
of an algorithm to compute HCext(s) in stages 3 and 4.

The challenge of considering all internal nodes and all boundary-nodes of P one-
at-a-time, as that in Section 4.2.1, remains but a bigger problem arises due to the ag-
gregation of 1/Dist(·, t) instead of Dist(·, s) as in CC. Using b to denote the bound-
ary node through which the shortest path from s to t passes, it was possible in CC
to add Dist(s, b) to Dist(b, t) for all t whose shortest path from s passes through b.
However, here we need to compute for all such t the expression 1

Dist(s,b)+Dist(b,t) . The
clever trick employed here is to use multipoint evaluation of polynomials (section

50 Chapter 4. Upper Bounds

2.4), using Dist(s, b) as the variable, to simultaneously compute many such expres-
sions.

Stage 3

As in CC, HCext can be written as:

HCext(s) = ∑
t/∈P(s) and t/∈B

Dist(s, t) = ∑
piece P 6=P(s)

∑
b∈∂P

∑
t∈J(s,b)

[
1

dist(s, b) + dist(b, t)

]

= ∑
piece P

∑
b∈∂P

(
P1J(s,b)(Dist(s, b))
P2J(s,b)(Dist(s, b))

)
(4.4)

where P1J(s,b)(x) = ∑ti∈J(s,b) ∏tj∈J(s,b)\{ti}(x + Dist(b, tj))

and P2J(s,b)(x) = ∏ti∈J(s,b)(x + Dist(b, ti)).

For efficiently computing P2J(s,b)(x) and P2J(s,b)(x), we use the data structure
described in section 3.4.2 (or section 3.3.2). In this stage, we build the necessary data
structure and also do the pre-processing needed for the AWV construction.

Stage 4

In this stage, we figure out the polynomials P1J(s,b)(x) and P2J(s,b)(x) for each bound-
ary node b. We cleverly, aggregate many such polynomials to get the exact value of
P1J(s,b)(x) and P2J(s,b)(x) for every x. We then use multipoint evaluation on these
polynomials. The details of stage 4 is given in Algorithm 14. In this algorithm,
we build a hash table HT(P) for each piece P. The keys of the hash table are <
integer id, polynomial P1, polynomial P2 >, where id is the corresponding id associ-
ated with the polynomial P1. The value of HT is of the form < node s, number n, sign >,
where s is some node in G, n is some number and sign is either + or -. Since id is
associated with a polynomial, and a polynomial is associated with a dual vertex on
a bisector, therefore total number of id′s (and hence total number of polynomials) is
#bisectors per piece× #dual vertices on a bisector = O((

√
r)2 × r× r) = O(r3).

4.2. Subquadratic Upper Bounds for Planar Graphs 51

Algorithm 14: Building the Hash table
input : all ABBST/AL of all pieces, graph G with the pieces and the

augmented cotrees of all boundary nodes of all pieces
output: HT(P) for all P

1 for each internal node s do
2 for each Piece P 6= P(s) do
3 Construct the AWV diagram of P wrt the dist(s, b) for all boundary

nodes b ∈ ∂P;
4 for a bisector segment γ = p∗, . . . , q∗ of some bisector β∗(u, v) do

/* We first find the appropriate δ, which is a value
from c_val(u, v). */

5 δ← Binary search on c_val(u, v) to find the largest value which is
≤ w(v)− w(u);

6 Polynomials[]← Fetch the polynomials using algorithm 13 (or
algorithm 5);

7 for each entry in Polynomials[] do
8 Let the entry be P1(x), P2(x), sign;
9 Let id← P1(x).id;

10 HT(P)[(id, P1(x), P2(x))].insert((s, Dist(s, b), sign));
11 end
12 end

/* Now we need to handle the case when there are multiple
holes. */

13 for each cycle C∗ ∈ C∗ \ {C∗0} do
14 Let f ∗, g∗ be the unique edge where f ∗ is parent of g∗ in T∗ and g∗

is on the cycle C∗ (lemma 19);
15 Let id← P12(f ∗)(x).id;
16 HT(P)[(id, P12(f ∗)(x), P22(f ∗)(x))].insert((s, Dist(s, b),−));
17 if ∃t∗ 6= g∗ child of f ∗ in T∗ then
18 Let id← P12(t∗)(x).id;
19 HT(P)[(id, P12(t∗)(x), P22(t∗)(x))].insert((s, Dist(s, b),+));
20 end
21 end
22 end

I Lemma 51. Building HT(P) for all P requires Õ(n2
√

r) time using algorithm 14.

Proof. For each segment of bisector, fetching Polynomials[] takes Õ(1) time using
the ABBST data structure, from lemma 43 (or O(1) time using AL, from lemma 37).
There can be O(

√
r) segments of bisector, and each segment is used twice (for two

adjacent sites). Therefore, fetching all the Polynomials[] for all boundary node of a
piece will take Õ(

√
r) time. Also, size of each Polynomial[] is Õ(1) time, therefore,

storing the polynomials from the list to HT(P) require Õ(1) time (it will take O(1)
time if AL is used). To handle the case of multiple holes, it will require additional
O(1) time per piece, because there can be O(1) holes (hence O(1) cycles) in P. There-
fore building HT(P) for all s will take Õ(n×

√
r) time. Building all the hash tables

for all pieces will require Õ(n
r × n

√
r) = Õ(n2

√
r) time. J

52 Chapter 4. Upper Bounds

Now, we use the algorithm 15 to evaluate all the stored polynomials and calcu-
lating HCext of all nodes.

Algorithm 15: Evaluating all the polynomials in HT(.) and calculating the
HC of all nodes

input : HT(P) for all P
output: HCext(.) of all nodes
/* Evaluate all the polynomials stored in HT. */

1 for each piece P do
2 /* Traverse HT(P); */
3 for every non-empty entry in HT(P) do
4 Let the entry be HT[(id, P1(x), P2(x))]; /* This contains list

of triplets. */
5 Numbers[]← Null;
6 for each triplet in HT[(id, P1(x), P2(x))] do
7 Let the triplet be (s, Dist(s, b), sign);
8 Numbers[].insert(Dist(s, b));
9 end

10 Evaluate P1 and P2 on the values in the list Numbers[] using
Multipoint evaluation (section 2.4);

/* Now we replace the second entry of each triplet in

HT[(id, P1(x), P2(x))] with the evaluated value P1(x)
P2(x). */

11 end
/* Again traverse HT(P); */

12 for every non-empty entry in HT(P) do
13 Let the entry be HT[(id, P1(x), P2(x))]; /* This contains list

of triplets. */
14 for each triplet in HT[(id, P1(x), P2(x))] do
15 Let the triplet be (s, val, sign);
16 HCext(s)+ = (sign)val;
17 end
18 end
19 end

I Lemma 52. Evaluating all the polynomials on all the stored values in HT(P) for all P
require Õ(n2

√
r) time.

Proof. For a piece P, the polynomials are computed for each dual node on the bisec-
tors. There can be O(r) dual nodes on each bisector and O(r) total bisectors for each
pair of sites. Polynomials are also constructed for each node of each cotree. Therefore
total number of polynomials per piece can be O((

√
r2 × r× r) + (

√
r× r)) = O(r3).

Also, degree of each such polynomial is O(r). There are M = O(r3) many polynomi-
als per peice of degree d = O(r) each that need to be evaluated on N = O(n×

√
r)

different points. Therefore these N points can be grouped into atmost M groups,
such that the points in each group are evaluated for the same polynomial.

Suppose ci denote the number of points in each group and ∑i ci = N. Then
the total time complexity for evaluating all the M polynomials for all N points is
∑i≤M max(ci, d)log2d (as each polynomial is of degree d = O(r)). Suppose ci =
O(n
√

r), then there can only be θ(
√

r) many such terms and max(ci, d) = O(n
√

r).
Therefore the total time taken to evaluate will be O(

√
(r)× n log2 r). If ci = O(r3),

4.2. Subquadratic Upper Bounds for Planar Graphs 53

then there can be θ(n×
√

r
r3) such terms. So total time taken in this case will be O(n

√
r

r3 ×
r3 log2 r) = O(n

√
r log2 r).

Repeating this for all the pieces will take Õ(n2
√

r) time. J

Lemma 48 also holds for HC, since δ may not be same as the weight difference.

I Lemma 53. For any node v in piece P and some internal node s not in P, T (b, v) =
1

Dist(b,v)+w(b) is added to HC(s) exactly once iff v is in Vor(b) (AWV decomposition w.r.t
the distances from s to the boundary nodes of P).

Proof. Suppose v is associated with face f and dual node of f is f ∗. Let v be associ-
ated with the segment of bisector β∗(b, b′, δ).

• (⇒) If v is not in Vor(v), then T (b, v) will not be added to HC(s):
f ∗ can either lie on the cycle C∗0 or face f can be entirely outside Vor(b). If f ∗

lies on C∗0 , then from the lemma 37, each node t on the face f is checked for the
following condition: dist(b, v)− dist(b′, v) < δ. Since the condition is false in
case of v (v not in Vor(b)), therefore T (b, v) will not be added to HC(s). Now, if
face f is entirely outside Vor(b), then the root to f ∗ path of T∗ does not contain
any dual node which is on any cycle, therefore, for no node of f , T (b, v) will
be added to HC(s).

• (⇐) If v is in Vor(v), then T (b, v) will not be added to HC(s) exactly once:
To prove this, we use lemma 22.

Case 1: If the root to f ∗ path of T∗ has only one boundary node, then, f ∗ has
to lie on C∗0 . As discussed above, if f ∗ lies on C∗0 , then after checking the
condition, T (b, v) will be added to HC(s) (since, v is in Vor(b)). Since,
the root to f ∗ path in T∗ has only one boundary node and a vertex is
associated with a single face (single dual node in T∗), therefore, T (b, v)
won’t be added to HC(s) again.

Case 2: If the root to f ∗ path of T∗ has k penetrating edges and k − 1 exiting
edges, then polynomials P12(e∗)(x) and P22(e∗)(x) will be added to HT
with value < s, Dist(s, b),− > inserted for all exiting edge endpoint e∗

on the path. Therefore, value < s, Dist(s, b),− > is inserted k− 1 times.
Since, the α1 form of the polynomial P12(e∗)(x)

P22(e∗)(x) (see section 2.4.1) for all e∗

has a term 1
Dist(b,v)+x (as f ∗ is in the subtree of all these e∗ in T∗), therefore,

1
Dist(b,v)+x will be evaluated for x = Dist(s, b) and will be subtracted from
HC(s) (because sign = −) k − 1 times. Therefore, we can say that (k −
1)× T (b, v) is subtracted from HC (as Dist(s, b) = w(b)).
Now, for every penetrating edge endpoint p∗ on the path, P12(e∗)(x) and
P22(e∗)(x) will be added to HT with value < s, Dist(s, b),+ > inserted.
Since f ∗ is in the subtree of these p∗ in T∗ and each p∗ has a unique parent
pp∗ which lies on one of the cycles, therefore, each of these p∗ is asso-
ciated with a unique segment of a bisector (on each cycle). For each of
these segments, we have a polynomial P1(x)/P2(x) (given in lemma 43
or lemma 37). All these polynomial in the α1 form will have 1

Dist(b,v)+x

as a term. Therefore, 1
Dist(b,v)+x will be evaluated and added to HC(s)

for x = Dist(s, b), k many times. So, k × T (b, v) is added to HC (as
Dist(s, b) = w(b)).
Therefore, we can say that T (b, v) is added to HC(s) exactly once.

54 Chapter 4. Upper Bounds

Case 3: If the root to f ∗ path of T∗ has x penetrating edges and x exiting edges,
it means f ∗ is on some cycle C∗. Suppose (p∗, q∗) is the exiting edge of
cycle C∗ and it lies on the path from root to f ∗. If we consider the subpath
excluding the path p∗ f ∗, then it has x penetrating edges and x − 1
exiting edges. Therefore, by the previous argument, we can say that, for
that subpath, T (b, v) is added once. Now, we subtract T (b, v) once for
the exiting edge (p∗, q∗), but then we also add T (b, v) once for the node
f ∗ itself. Therefore, in total T (b, v) is added exactly once.

J

Therefore, the above lemma and lemma 48 proves the correctness of the algorithm
for computing HC of all nodes in planar graphs.

Running time analysis

We finish the proof of Theorem 50 by discussing it’s subquadratic complexity. The
running times of the different stages are explained below.

Pre-processing: r-division takes O(n log n) time using the naive recursive approach
by Frederickson[14]. We can also use a recently proposed linear time algorithm
[30].

Stage 1: Computing HC(s) of the boundary nodes can be found by running Dijkstra′s
algorithm on G taking each boundary as a source. The number of boundary
nodes in G is O(n√

r) leading to a running time of O(n√
r × n log n).

Stage 2: Computing internal HC(s) also involves running Dijkstra on the graph GP
with O(r) nodes and O(r) edges (in GP we add O(r) edges between every pair
of boundary nodes). The running time of this stage is O(n

r × r log r).

Stage 3: The AWV pre-processing requires Õ(n
r × r2) time. Construction of the cotree

require Õ(nr
3
2) time (theorem 32). Construction of the data structure ABBST

(or AL) HC require Õ(nr2) (or O(nr3)) time by theorem 44 (or theorem 38).

Stage 4: In this stage, we construct AWVs for all internal nodes s and all pieces
different from P(s). The construction takes Õ(

√
r) time (Theorem 4). From

lemma 51 and lemma 52, we can say that, the total time required for this stage
is Õ(n2

√
r) time.

We use r = n
2
5 , we get the total running time for computing HC of all nodes

as Õ(n
9
5). If we use AL instead of ABBST, the running time will be Õ(n

13
7) using

r = O(n
2
7).

I Note 54. The same bound (Õ(n
9
5)) for HC (different name in the paper) was

proved recently in this paper [6]–Corollary 16, using different techniques–also uses
fast multipoint evaluation and AWVD.

4.2.3 NFC of all nodes

The main result of this section is the following theorem.

I Theorem 55. For a planar graph with n nodes and O(n) edges, the NFC of all nodes
can be computed in Õ(n9/5) time.

4.2. Subquadratic Upper Bounds for Planar Graphs 55

The stages of the algorithm are very similar to that of CC (section 4.2.1).

Stages 1 and 2

For stage 1, we need to compute NFC(b) for all boundary nodes, and this is done
by simply running Dijkstra from each boundary of every piece. Since boundary
vertices are part of multiple pieces, a quick check can ensure that each boundary
vertex is chosen as b only once.

For any internal node s whose piece we denote by P(s) and we denote the set of
all boundary nodes by B , we decompose NFC(s) into three components :

NFC(s) = ∑
t∈B

σ(s, t) + ∑
t∈P(s)\B

σ(s, t) + ∑
t/∈P(s) and t/∈B

σ(s, t)

= NFCB(s) + NFCint(s) + NFCext(s) (4.5)

Since in stage 1, we have already calculated σ(s, b) for all boundary nodes b, we
can substitute the values in equation 4.5 to get NFCB(s).

In stage 2 we compute NFCint(s) by taking GP = (VP, EP) and running Dijkstra
on GP from all internal nodes of P. The extra edges in GP handle those paths that
goes outside P. But since the source and target nodes are both inside P, such a path
must leave and reenter the piece via some boundary node (illustrated in Figure 4.1).
Note that the graph GP has to preserve the number of shortest paths between every
pair of vertices along with the shortest path distances.

Consider a piece P. There can be three kinds of paths between any pair of vertices
in P:

1. Internal paths: All the vertices on an internal path belong to P.

2. External paths: None of the vertices (except the endpoints) on an external path
belong to P. Note that external paths can only exist between boundary vertices,
i.e., end points of any external path are boundary vertices of P.

3. Mixed paths: Paths that are neither internal nor external. A mixed path can be
decomposed into a sequence of internal and external paths. Also note that any
contiguous subpath of a mixed path which is external, starts and ends at two
boundary vertices in P.

We are interested in finding the number of external shortest paths between every
pair of boundary vertices in a piece P. For this, we follow the following steps and
construct GP:

• We first consider the graph G′, which is constructed by deleting all the edges
that are in P. Now, for every boundary vertex b in P, we run Dijkstra’s al-
gorithm in G′ and find the number of shortest paths from b to all the other
boundary vertices in P (we also find the shortest path distances from b). Graph
G′ might be disconnected, but we are only interested in the connected compo-
nent which has b, therefore, we will run Dijkstra’s algorithm in that component
only. Note that, since there does not exist any edge from P in G′, therefore, for
any boundary vertices b′ in P, the number of shortest paths that is computed
in this step is actually the number of external shortest paths between b and b′,
wrt piece P. Let’s denote this quantity by σext(b, b′) (let’s denote the shortest
path distance between b and b′ in G′ by Distext(b, b′)). We find the value of

56 Chapter 4. Upper Bounds

σext(b, b′) (and Distext(b, b′)) for every pair of boundary vertices b, b′ in a piece
P, and for every piece P.

• Now, we construct GP. Initially, GP = P (i.e., GP will contain all the edges and
vertices of P). Then, for every pair of boundary vertices b, b′ in P, we check
the following condition: if Dist(b, b′) = Distext(b, b′) and σext(b) > 0, then add
edge (b, b′) in GP with edge weight = Dist(b, b′). If the edge was already there
in P, consider this edge to be σext(b, b′) + 1 parallel edges of equal weights. If
the edge was not there in P before, consider this edge to be σext(b, b′) parallel
edges of equal weights.

Note that GP may not be a simple graph, but Dijkstra’s algorithm also works for
graphs with multi edges and self loops.

Stage 3

The only value left to compute is NFCext(s); however, these involve shortest paths
that partly lies inside P(s) and partly lies outside P(s).

The number of shortest paths from s to any t /∈ P(s),i.e. σ(s, t), can be broken
down to σ(t, b) for some boundary b ∈ P(t) (there can be more than one boundary)
and σ(b, s) (see Figure 4.2a), such that σ(s, t) = σ(s, b) × σ(t, b). Observe that we
already have computed both these distances in Stage 1; however, naively trying all
b ∈ ∂P(t) is not sufficient since it leads to a complexity of O(n2√r) — there are O(n)
possible s, O(r) many t in any piece, O(

√
r) many b for any piece and O(n

r) pieces.
Our strategy is to again use Voronoi regions to pre-compute the closest boundary

node for every internal node in P(t) — this depends on s as well (see Figure 4.2b).
Let P denote the piece of t and let b be a boundary node of P. We define J(s, b) as
the set of internal nodes of P whose shortest path to s pass through b. For example,
J(s, b1) contains t1 in Figure 4.2a. Note that unlike in CC, in NFC, J(s, bi) are not
disjoint across all bi’s.

NFCext(s) = ∑
t/∈P(s)

σ(s, t) = ∑
piece P 6=P(s)

∑
b∈∂P

∑
t∈J(s,b)

[
σ(s, b)× σ(b, t)

]
= ∑

piece P
∑

b∈∂P

(
σ(s, b)× ∑

t∈J(s,b)
σ(b, t)

)

= ∑
piece P

∑
b∈∂P

(
σ(s, b)× N(s, b)

)
(4.6)

The crux of the final stage is a technique to efficiently compute J(s, b) and the
bracketed expression in Equation 4.6. We will not compute J(s, b) explicitly, but
will compute the expression: N(s, b) efficiently using the voronoi diagram for each
boundary node b in P.

In this stage, we construct the AL or ABBST data structures for all pieces. Details
are given in section 3.3.3. We also do the preprocessing needed for constructing the
AWV diagram ([18]).

Stage 4

Now in this stage, we actually compute the NFCext(s) using the values computed
in stage 3. The notations are as usual. We will describe the algorithm for a single

4.2. Subquadratic Upper Bounds for Planar Graphs 57

boundary node b, and repeating this for all the boundary nodes will give us the end
result.

1. For each piece P and each internal node s not in P, we compute the AWV
diagram with respect to the distance from s to all boundary nodes in P. From
this, we get the relevant segments of bisectors. We denote Dist(s, b) as w(b)
for the proofs in this section.

2. N(s, b) can be computed by adding num_paths3 values of each segment, as de-
scribed in lemma 39. Let f ∗ be the node that is shared between two consecutive
segments of bisector on a cycle C∗ ∈ C∗ and f ∗ 6= h∗, where h∗ is the dual node
of hole h which is the hole of b. Therefore f ∗ is a voronoi vertex of degree 3
and the edge f ∗g∗ which is not on the cycle C∗ is not in Vor(b), i.e the vertices
of face g are not in Vor(b). So there are no edges from f ∗ that are entering into
Vor(b). We only need to check which vertex of f is inside Vor(b)(say vertex t),
we add σ(b, t) to N(s, b).

3. And ultimately, for each of the cycles in C∗ \ {C∗0}, we figure out the unique
edge f ∗g∗ (lemma 19). We subtract num_paths3(f ∗) from N(s, b) for each cy-
cle. If there is some other child of f ∗ in T∗ (let’s say t∗ 6= g∗), then we add
num_paths2(t∗) to N(s, b).

After we calculate N(s, b) for all b, we just substitute the values in equation 4.6
to get the value of NFCext(s).

Note that lemma 48 does not hold for NFC. There can be vertices outside Vor(b)
which are included in J(s, b). Moreover, J(s, b) for all b are no longer disjoint.

I Lemma 56. For each vertex t , if t is in Vor(b), then the distances and count are added
exactly once.

The proof is similar to the forward direction proof of lemma 49

I Lemma 57. If a node t is in Vor(b), then the the shortest path from s to t will pass
through b.

Proof. Suppose there exist a node p ∈ Vor(b) and the shortest path from s to p does
not pass through b but passes through some other boundary node u, that means
Dist(b, p) + w(b) > Dist(u, p) + w(u) and Dist(b, p) − Dist(u, p) ≤ δ.original ≤
w(u)− w(b) , which is a contradiction. J

From lemma 56 and lemma 57, we can say that every node from Vor(b) will be
there in J(s, b).

Note that, even though we did not compute J(s, b) explicitly, but it can be said
that t is included in J(s, b) iff σ(b, t) is added to N(s, b).

I Lemma 58. The nodes in J(s, b) forms a connected subtree of T rooted at b.

Proof. Suppose t′ be the ancestor of t in T and t belongs to J(s, b), but t′ does not.
Therefore there must exist some u, such that t′ belongs to J(s, u) (figure 4.3a). So,

Dist(b, t′)− Dist(u, t′) > δ.original
=⇒ Dist(b, t′) + Dist(t, t′)− Dist(t, t′)− Dist(u, t′) > δ.original

=⇒ Dist(b, t)− Dist(u, t) > δ.original

But, we know that Dist(b, t) − Dist(u, t) < δ.original, because t belongs to J(s, b).
Therefore we arrive at a contradiction.

J

58 Chapter 4. Upper Bounds

(a) A path from b to t in T is shown. t ∈ Vor(v)
and t′ ∈ Vor(u). Vor(u) is adjacent to Vor(b).

(b) A path from b to t and a path from
b to t′ in T is shown. t and t′ are not in

Vor(b). p and p′ are in Vor(b).

I Lemma 59. A node t not in Vor(b) is included in J(s, b) (or σ(b, t) is added to N(s, b))
iff the shortest path from s to t passes through b.

Proof. Suppose t ∈ Vor(v) for some boundary node v in P. Let t′ be an ancestor of
t in T and t′ ∈ Vor(u). Also, Vor(u) is adjacent to Vor(b). Refer to figure 4.3b.

(⇒) If t is included in J(s, b) then the shortest path from s to t passes through b:
Let us assume that t is included in J(s, b) but the shortest path from s to t does not
pass through b. From the lemma 58, we know that t′ must also be included in J(s, b).
Therefore,

Dist(b, t′)− Dist(u, t′) = Dist(b, t)− Dist(u, t)
= δ.original
≤ w(u)− w(b) (4.7)

The shortest path from s to t does not pass through b and passes through v.
Therefore,

Dist(b, t) + w(b) > Dist(v, t) + w(v)
=⇒ Dist(b, t′) + Dist(t, t′) + w(b) > Dist(v, t) + w(v),

(since Dist(b, t) = Dist(b, t′) + Dist(t, t′))
=⇒ Dist(u, t′) + w(u) > Dist(v, t)− Dist(t, t′) + w(v),

(from equation 4.7 we get Dist(u, t′) + w(u) ≥ Dist(b, t′) + w(b))
=⇒ Dist(u, t′) + w(u) > Dist(v, t′) + w(v), (4.8)

(this is a contradiction, because t′ is in Vor(u))

Note that it will still be a contradiction if u = v.
(⇐) If the shortest path from s to t passes through b , then t is included in J(s, b):

Let us assume that the shortest path from s to t passes through b, but t is not included
in J(s, b). Therefore,

Dist(b, t) + w(b) = Dist(v, t) + w(v) (4.9)

Since t is not included in J(s, b), therefore, Dist(b, t)− Dist(u, t) > δ.original.
We can also say that

Dist(b, t)− Dist(u, t) > w(u)− w(b) (4.10)

4.2. Subquadratic Upper Bounds for Planar Graphs 59

, because w(u) − w(b) > δ.original, t will still be outside Vor(b) (as for all weight
differences > δ, t remains outside Vor(b)).
If u = v, then from equation 4.9 and equation 4.10, we get a contradiction.
If u 6= v, then we get, Dist(v, t) + w(v) > Dist(u, t) + w(u), which is not possible,
since t ∈ Vor(v). J

From corollary 28, we can say that a node not in Vor(b) is in included exactly
once iff the shortest path from s to t passes through b. Therefore, from lemma 56,
lemma 57 and lemma 59 N(s, b) is computed correctly.

Running time analysis

We finish the proof of Theorem 55 by discussing it’s subquadratic complexity. The
running times of the different stages are explained below.

Pre-processing: r-division takes O(n log n) time using the naive recursive approach
by Frederickson[14]. We can also use a recently proposed linear time algorithm
[30].

Stage 1: Computing ω(s) of the boundary nodes can be found by running Dijkstra′s
algorithm on G taking each boundary as a source. The number of boundary
nodes in G is O(n√

r) leading to a running time of O(n√
r × n log n).

Stage 2: Computing ωint(s) also involves running Dijkstra on the graph GP with
O(r) nodes and O(r) edges (in GP we add O(r) edges between every pair of
boundary nodes). The running time of this stage is O(n

r × r log r).

Stage 3: The cost for AWV pre-processing is Õ(n
r × r2). It will require additional

O(nr2) time to construct the data structure needed for calculating NFC (theo-
rem 40)

Stage 4: In this stage, we construct AWVs for all internal nodes s and all pieces
different from P(s). The construction takes Õ(

√
r) time (Theorem 4). That is

followed by a processing of all boundary nodes in every piece. Therefore the
total running time of this stage is Õ(1)×O(n× n

r ×
√

r).

Since we use r = n
2
5 , we get the total running time for computing NFC of all nodes

as Õ(n
9
5).

4.2.4 BNFC of a single node

ITheorem 60. For a planar graph with n nodes and O(n) edges, the BNFC of single node
can be computed in Õ(n

9
5) time.

Proof. BNFC of single node v can be found using algorithm 15. This is basically a
reduction from BNFC (v) to NFC. Since NFC of all nodes in planar graphs can be
computed in Õ(n

9
5) time (theorem 55), therefore using the claim 61, we can say that

BNFC(v) can be computed in Õ(n
9
5) time. J

60 Chapter 4. Upper Bounds

Algorithm 15: Finding BNFC of v
input : Graph G(V, E) and node v
output: BNFC (v)

1 Create a new graph Gn (see Figure 4.4b).
2 Gn ← G
3 for each neighbour ui of v do
4 create a node wi
5 Add weighted edges (wi, ui) = 0 and (wi, v) = dist(ui, v).
6 end

/* Suppose NFC(G) = ∑si ∑ti
σ(si, tj)−∑s 6=v(σ(s, v) + σ(v, s)) =

∑s 6=v(NFC(s)− σ(s, v)). */

7 BNFC1 ← NFC(Gn)
8 BNFC2 ← NFC(G)

9 BNFC(v)← BNFC1−BNFC2
3

Suppose NFC (G) = ∑si ∑ti
σ(si, tj)

(a) Graph G with a node v and it’s neighbours (b) Modified graph Gn

Figure 4.4: Showing G and Gn with the node v

B Claim 61. NFC(Gn)− NFC(G) = x iff BNFC(v) in G is x
3 .

Proof. Suppose σ(s, t) = σ(s, t, v) + σ(s, t, v), where σ(s, t, v) is the number of short-
est paths between s and t that does not pass through v. The proof follows from
the fact that, all the σ(., ., v) terms gets cancelled out in NFC(Gn) − NFC(G) = x,
so x only has σ(., ., v) terms, i.e,. the paths that pass through v. Now note that,
if σ(s, t, v) = k in G, then σ(s, t, v) = 4k in Gn, because of those additional edges.
Therefore, subtracting σ(s, t, v) in Gn from σ(s, t, v) in G will give us 3k for each
s, t. C

61

Chapter 5

Lower bounds

We present the lower bounds (quadratic) of various centrality measures on both
planar and sparse graphs in this chapter.

For the sparse graph lower bounds in section 5.1, we have used a similar tech-
nique that was proposed in the paper [3] for proving the quadratic lower bound of
BC in sparse graphs. In fact, the underlying unweighted graph (reduced graph) is
exactly the same graph as given in the paper (theorem 4.3 of [3]).

Unlike for sparse graphs, there aren’t many lower bound results for planar graphs
when it comes to problems in P. This may be because of the fact that most of the pla-
nar variant of the problems in P have faster upper bounds than their generalized
sparse variant, like the ones that are given in this thesis. Most of the algorithms use
the planar separator theorem (and some other structural properties) to achieve the
faster upper bound. In section 5.2, we have proved that it is unlikely that BHC of
all nodes can be computed in truly-subquadratic time even in planar graphs. We
have reduced a variant of the 3SUM problem to BHC for planar graphs. Although
two recent papers ([2, 1]) have some results on planar lower bounds, but none of
the techniques in the papers use 3SUM conjecture. Our reduction in section 5.2 is
completely different from the reductions in the other two papers.

5.1 Lower Bound for Sparse graphs

I Theorem 62. If we can find an O(n2−ε) time algorithm for CC in sparse graph then we
can solve CNF-SAT in O((2− δ)n)(number of variables and clauses is O(n)) time, which
will imply that SETH is false.

First, we present Algorithm 16 for reducing CNF-SAT to the problem of comput-
ing CC of all nodes.

62 Chapter 5. Lower bounds

Algorithm 16: Reduction from CNF-SAT to CC
input : CNF-SAT Formula F on n variables and m clauses
output: Graph G(V, E)

1 create Null Graph G(V, E)
2 Divide number of variables into two disjoint sets(X and Y) of size n

2 each.
3 Xi ← ith Partial Assignment on X, where i ∈ {1, 2, 3, . . . , 2

n
2 }

4 Yi ← ith Partial Assignment on Y, where i ∈ {1, 2, 3, . . . , 2
n
2 }

5 cj ← jth clause, where j ∈ {1, 2, 3, . . . , m}
6 for i← 1 to 2

n
2 do

7 create node Ai for each Xi and add it to V
8 create node Bi for each Yi and add it to V
9 end

10 for i← 1 to m do
11 create node Ci for each clause ci
12 V ← V ∪ Ci

13 for j← 1 to 2
n
2 do

14 if Partial assignment Xj does not satisfy clause ci or variables in X are
missing in clause ci then

15 Add an edge of weight 1 between Ci and Aj

16 if Partial assignment Yj does not satisfy clause ci or variables in Y are
missing in clause ci then

17 Add an edge of weight 1 between Ci and Bj

18 end
19 end
20 Create nodes b, Sa, Sb and add them to V
21 Add an edge of weight 1 from Sa to every Ai, where i ∈ {1, 2, 3, . . . , 2

n
2 }

22 Add an edge of weight 1 from Sb to every Bi, where i ∈ {1, 2, 3, . . . , 2
n
2 }

23 Add an edge of weight x from b to every Ai and Bi, where i ∈ {1, 2, 3, . . . , 2
n
2 }

Next, observe that for showing the reduction for CC it is sufficient to show that
ω(Ai) for all i is > something.

I Lemma 63. A CNF-SAT formula is unsatisfiable iff for every pair of (Ai,Bj) the shortest
path between them passes through some Ck.

Proof. For any pair (Ai,Bj), if the shortest path between them does not pass through
any Ck, then we can say that atleast one of Xi, Yj satisfy all the clauses which implies
assignment (Xi, Yj) satisfies every clause. This will imply that F is satisfiable.
Now suppose F is satisfiable, then there is an assignment (Xi, Yj) that satisfies all the
clauses. This implies either Xi or Yj or both satisfy all the clauses. If Xi satisfy all
the clauses, then there won’t be any edge between Ai and any Ck. If Yj satisfy all
the clauses, then there won’t be any edge between Bj and any Ck. Then, in any case,
there won’t be any path between Ai and Bj that passes through some Ck. J

Proof of Theorem 62. We claim that CNF-SAT formula F is satisfiable iff there ex-
ists an Ai such that ω(Ai) > 5(2

n
2) + 4m + 2 (Similarly we can also take the Bi).

Observe that:

I: dist(Ai, Sa) = 1 because there is an edge of weight 1 between Ai and Sa.

II: dist(Ai, Aj) = 2, for every j 6= i, because of the path Ai Sa Aj. Therefore
∑j 6=i dist(Ai, Aj) = 2(2

n
2 − 1).

5.1. Lower Bound for Sparse graphs 63

Figure 5.1: red edges have weight m+ 1 and green edges have weight
1

III: dist(Ai, b) = x, because there is an edge of weight 2 between Ai and b.

• if F is unsatisfiable then:

i: dist(Ai, Cj) ≤ 3, for any j, more accurately either 1 or 3. There can either
be a direct edge Ai Cj or a path passing through Sa. But for atleast
one Cj, dist(Ai, Cj) = 1, because of Lemma 63. Therefore ∑j dist(Ai, Cj) ≤
3(m− 1) + 1.

ii: dist(Ai, Bj) = 2, for any j, because of Lemma 63. The path passes through
any Ck. Therefore ∑j dist(Ai, Bj) = 2(2

n
2).

iii: dist(Ai, Sb) = 3 because of Lemma 63. There is a path Ai Cj Bk
Sb.

• Then ω(Ai) ≤ 1[I] + 2(2
n
2 − 1)[I I] + x[I I I] + [3(m − 1) + 1][i] + 2(2

n
2)[ii] +

3[iii] = 4(2
n
2) + 3m + x, if F is unsatisfiable.

• if F is satisfiable then atleast for one Ai:

a: dist(Ai, Cj) ≤ 3, for any j, more accurately either 1 or 3. Same reason as
above. Therefore ∑j dist(Ai, Cj) ≥ m.

b: dist(Ai, Bj) = 2 or dist(Ai, Bj) = 2x for any j, because of Lemma 63.
The path can be either Ai Cj Bk or Ai b Bj. Infact there
should be atleast one such pair (Ai, Bj) with dist(Ai, Bj) = 2x. Therefore
∑j dist(Ai, Bj) = 2(2

n
2 − 1) + 2x.

64 Chapter 5. Lower bounds

c: dist(Ai, Sb) = 3 or dist(Ai, Sb) = 2x + 1 because of Lemma 63. The path
can be either Ai Cj Bk Sb or Ai b Bj Sb.

• Then ω(Ai) ≥ 1[I] + 2(2
n
2 − 1)[I I] + x[I I I] +m[a] + [2(2

n
2 − 1)+ 2x][b] + 3[c] =

4(2
n
2) + m + 3x, if F is satisfiable.

Therefore for x = m+ 1, we can say that F is unsatisfiable if ω(Ai) ≤ 4(2
n
2) + 4m+ 1

and is satisfiable if ω(Ai) ≥ 4(2
n
2) + 4m + 3.

Now suppose for some Ai, Bj, the path between them does not pass through any
Ck, then ω(Ai) ≥ 1[I] + 2(2

n
2 − 1)[I I] + x[I I I] + m[a] + [2(2

n
2 − 1) + 2x][b] + 3[c] =

4(2
n
2) + m + 3x = 4(2

n
2) + 4m + 3. Then from 63, we can say that F is satisfiable.

Now we can say that if ω(Ai) can be found in O(m(2−ε)) time, for some ε > 0,
then we can solve CNF-SAT in time O((n(2

n
2))(2−ε)) = O∗((2(1−δ))n) = O∗((2 −

δ′)n), for δ, δ′ > 0.
The number of nodes in the graph, |V| = 2

n
2 + 2

n
2 + m + 3 = O(2

n
2). The number of

edges, |E| = 2
n
2 + 2

n
2 + n(2

n
2) + n(2

n
2) + 2(2

n
2) = O(n(2

n
2)). Therefore the reduction

takes O∗((2− δ)n) time. J

I Theorem 64. For a sparse graph with N nodes and O(N) edges, the HC of all nodes
cannot be computed in truly subquadratic time.

Proof. Here also we reduce CNF-SAT to HC.
The reduced graph will be the same as in CC (illustrated in Figure 5.1) with weights
on red edges to be 2 and weights on green edges to be 1.
Here we only consider F with even number of variables for simplicity.
Note that it is enough to show the hardness of HC′(Ai) = ∑j

1
dist(Ai ,Bj)

for all Ai. The
following claim will finish the proof of the theorem. J

B Claim 65. We claim that F is unsatisfiable iff HC′ of all Ai =
1
2 × 2

n
2 .

Proof. Note that HC′ of each Ai has 2
n
2 terms.

Suppose F is satisfiable. Then there exists Xi, Yj such that either Xi or Yj satisfy all
the clauses (from lemma 63). This implies that there exists (Ai, Bj), such that the
shortest path between Ai and Bj passes through b only. Since dist(Ai, Bj) = 2 or 4,

then if atleast one term out of 2
n
2 terms is 1

4 , we can say that HC′(Ai) <
2

n
2

2 .

Suppose for some Ai, HC (Ai) <
2

n
2

2 . Since there are 2
n
2 terms in HC (Ai) and all the

terms are either 1
2 or 1

4 , there must be atleast one term which is 1
4 . That means there

is atleast one such Bj for which dist(Ai, Bj) = 4. This implies that the path from Ai
to Bj does not pass through any Ck and pass through b only. That means either Xi or
Yj satisfy all the clauses. Therefore F will be satisfied by the assignment (Xi, Yj).

C

I Theorem 66. For a sparse graph with N nodes and O(N) edges, the NFC of all nodes
cannot be computed in truly subquadratic time.

Proof. We use the same reduction algorithm as used in CC (Figure 5.1). Only the
weights on red edges will be 1 instead of 2.
Again we only consider F with even number of variables for simplicity.
Note that it is enough to show the hardness of NFC′(Ai) = ∑j σ(Ai, Bj) for all Ai. to
finish the proof, we will prove the following claim. J

B Claim 67. We claim that F is unsatisfiable iff NFC′ of all Ai = 2
n
2 × 2.

5.2. Lower Bound for BHC of all nodes 65

Proof. Note that NFC′ of each Ai has 2
n
2 terms.

Suppose F is satisfiable. Then there exists pair (Xi, Yj) for which F is satisfiable. That
means either Xi or Yj or both satisfy F which implies there exists (Ai, Bj), such that
the shortest path between Ai and Bj passes through only b and not through any Ck.
Then NFC′(Ai) < 2

n
2 × 2 because atleast one term out of 2

n
2 terms is 1 and instead

of 2.
Suppose NFC′(Ai) < 2

n
2 × 2 and all the terms are either 1 or 2 and the number of

terms is 2
n
2 , then atleast one of the terms must be 1 for NFC (Ai) to be < 2

n
2 × 2. That

means there exists one (Ai, Bj) for which dist(Ai, Bj) = 1 as it only passes through
b and not through any Ck. This implies that there exists partial assignments Xi, Yj
such that either Xi or Yj or both satisfy all the clauses. Therefore F is satisfied by the
assignment (Xi, Yj). C

I Theorem 68. For a sparse graph with N nodes and O(N) edges, the BNFC of even a
single node cannot be computed in truly subquadratic time.

Proof. This is basically the same reduction as shown in the paper [3]. The claim that
was shown in the paper was : "F is unsatisfiable iff BC(b) = 0 (i.e., there does not
exist any path that passes through b)". We can use the exact same claim to prove the
hardness of BNFC, since BC(v) = 0 iff BNFC(v) = 0.

The reduced graph will be same as in CC (Figure 5.1) with the weights on the red
edges to be 2 and the weights on the green edges to be 1.
Again we only consider F with even number of variables for simplicity.
We will prove the hardness of BNFC′(b) = ∑i ∑j σ(Ai, Bj, b) for all Ai which is just
a subproblem of BNFC of all nodes. To finish the proof, we will prove the following
claim. J

B Claim 69. We claim that F is unsatisfiable iff BNFC′(b) = 0.

Proof. This directly follows from Lemma 63. Suppose F is satisfiable, then there ex-
ists atleast one Xi, Yj such that either one of them satisfies all the clauses. Then there
exists (Ai, Bj) such that the shortest path between them passes through b. Therefore
BNFC′(b) > 0.
Suppose BNFC′(b) = 0, that means no path pass through b. That means there does
not exist any Ai, Bj for which the path passes through b, which implies there is no
Xi, Yj such that either one of them satisfies all the clauses. Therefore F is unsatisfi-
able. C

5.2 Lower Bound for BHC of all nodes

Here we prove that the trivial O(n2) algorithm is the best algorithm for comput-
ing BHC of O(n) nodes unless there is a strictly subquadratic algorithm for solving
3SUM.

I Theorem 70. For a planar graph with n nodes and O(n) edges, if the BHC of O(n)
nodes can be computed in O(n2−δ) time then 3SUM can be solved in O(n2−δ) time as well.

Proof. We show a linear-time reduction from 3SUM to BHC of O(n) nodes in Algo-
rithm 17. J

We consider the following version of 3SUM: Given n positive integers {a1, . . . , an},
where all integers are distinct, ai > 0∀0 ≥ i ≤ n, each integer is even and there does
not exist any ai, aj, such that 2ai = aj, does there exist ai, aj, ak such that ai + aj = ak.

66 Chapter 5. Lower bounds

Note that this version is as hard as the original version of 3SUM defined in section
2.5.

Algorithm 17: Reduction from 3SUM to BHC
input : set of n numbers {a1, a2, . . . , an}
output: Graph G(V, E)

1 create two nodes x and y
2 create n nodes S = {s1, s2, . . . , sn}, add edges (si, x) for i ∈ {1, n} with

w(si, x) = ai
3 create n nodes T = {t1, t2, . . . , tn}, add edges (ti, y) for i ∈ {1, n} with

w(ti, y) = −ai
4 create n nodes {v1, v2, . . . , vn}
5 add edges (vi, x) and (vi, y) for i ∈ {1, n} with w(vi, x) = ai and w(vi, y) = b;

The reduced graph is illustrated in Figure 5.2. For the proof of the theorem, it
suffices to prove the following claim.

B Claim 71. 3SUM returns true iff BHC(vi) > 2n2 + 4n + 3 for some vi.

Proof. Consider any three si ∈ S, tk ∈ T and vj ∈ {v1, . . . vn}.
First, observe that the sum of any three numbers of this set {a1, . . . , an} is either

0 or always even.

dist(si, tk, vj) = dist(si, x) + dist(x, vj) + dist(vj, y) + dist(y, tk)

=

{
ai + aj + b− ak = b if ai + aj − ak = 0
m + b otherwise, where m ≥ 2 or m ≤ −2

For the first case, dist(si, tk, vj) = (1/b) = 1
4n2+8n+4 for b = 4n2 + 8n + 4.

For the second case, dist(si, tk, vj) = m + b. Note that if |m| ≥ 2, then either
(m + b) < −1 or (m + b) > 1 which implies that −1 < 1

(m+b) < 1.
In all the other cases dist(a, b, vi) = m + b for m ≥ 2 and m ≤ −2. We can write

the equation for BHC(vi) as follows:

BHC(vj) = 2×
(

∑
1≤i,j,k≤n

1
dist(si, tk, vj)

)
+ 2×

(
∑

1≤i,j≤n

1
dist(si, y, vj)

)
+

2×
(

∑
1≤i,j≤n

1
dist(ti, x, vj)

)
+ 2× dist(x, y, vj)

= BHC1(vj) + BHC2(vj) + BHC3(vj) + BHC4(vj) (5.1)

From the above equation, we can say that the number of terms in BHC(vj) is equal
to (#terms in BHC1(vj) + #terms in BHC2(vj) + #terms in BHC3(vj)+ #terms in
BHC4(vj)) = 2n2 + 4n + 2.
Now, suppose that 3SUM returns true, then there exists distinct ai, aj, ak such that
ai + aj − ak = 0. Therefore, dist(si, tk, vj) = dist(tk, si, vj) = 1

b . There are total
2n2 + 4n + 2 terms in the summation of BHC(vj), therefore, BHC(vj) > (−1)(2n2 +
4n + 2− 1) + (1/d) > 2n2 + 4n + 3 for some vj when d = 1/(4n2 + 8n + 4).

For the other direction, suppose that BHC(vi) > 2n2 + 4n + 3 for some vi. Since
there are (2n2 + 4n + 2) terms in its summation and since each term can be either in
(−1, 1) or equal to 1

b = 4n2 + 8n + 4, therefore at least one term should be 1
b . That

5.2. Lower Bound for BHC of all nodes 67

means for at least one (sj, tk) pair dist(sj, tk, vi) = b for distinct i, j, k. This implies
that aj + ai − ak = 0, i.e., 3SUM returns true.

C

Figure 5.2: The graph obtained after the reduction from 3SUM to
BHC.

I Note 72. The edge weights of the reduced graph in algorithm 17 can be negative.
We can also prove theorem 70 if all edge of the planar graph are non-negative. In
this case, we have to reduce BHC problem to 3SUM’—Given n non-negative integers

{a1, . . . , an}, find SUM′ =

(
∑

1≤i,j,k≤n

1
(ai+aj+ak)

)
+

(
∑

1≤i,j≤n

2
(ai+aj)

)
. Note that 3SUM

is just a decision version of 3SUM’ and 3SUM’ is harder than 3SUM. Now instead of
the negative weights on edges (y, ti), we can put w(y, ti) = ai and b = 0. So, finding
∑i BHC(vi) is basically the 3SUM’ problem because ∑i(BHC(vi)− 2× dist(x, y) =
2× SUM′.

69

Chapter 6

Conclusion

We showed that there a few centrality problems for which the best technique, even
for sparse graphs, is probably the trivial quadratic one, and yet a subquadratic algo-
rithm exists for planar graphs. We conclude with the question on the tight complex-
ity of betweenness centrality of planar graphs. Given that it uses number of shortest
paths, along with the use of fractions and aggregation, and largely due to the con-
sideration of shortest paths that “pass through” a vertex, instead of merely starting
or ending at one, we conjecture that BC of even a single node probably cannot be
computed in truly subquadratic time.

71

Appendix A

Properties of a hole

As discussed in section 2.1, a hole is a face of P that is not a face of G. We have the
following 2 properties of a hole:

• Every hole must contain atleast one boundary node.
Since P is a subgraph of G, therefore a face of P which is not a face of G can
only be created by deleting some faces from G (deleting vertices and edges).
Suppose v is vertex, deleting which created a hole h. Now, v /∈ P and v is
adjacent to some vertex on h (which by definition will be a boundary vertex of
P), therefore, every vertex on h cannot be internal.

• Every boundary node must lie on some hole.
Suppose a boundary vertex v lie on a face of P which is also a face of G. In
this case all the adjacent vertices of v belong to piece P only, therefore, v by
definition is not a boundary node.

I Lemma 73. If a planar graph G is triangulated (and biconnected), then all the vertices
on a hole are boundary vertices.

Proof. Suppose v is some vertex on the hole h of piece P and let us assume that v is
an internal node of P. That means v was part of some face of G which is not a face
of P (since h was created by deleting some faces of G). Therefore, v must be part
of some triangulated of G that was deleted. This is only possible if there exists a, b
which are adjacent to v and lie on the hole too and there is an edge between a, b (abv
forms a triangle). As, it can be seen in figure A.1a, that face abc is not part of the hole
because it is a face of G. This leads to a contradiction.

J

(a) A hole is shown, with a, b, v on the hole. (b) Two kinds of triangulated face that are al-
lowed.

73

Bibliography

[1] Amir Abboud, Vincent Cohen-Addad, and Philip N Klein. “New hardness
results for planar graph problems in p and an algorithm for sparsest cut”. In:
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing.
2020, pp. 996–1009.

[2] Amir Abboud and Søren Dahlgaard. “Popular conjectures as a barrier for dy-
namic planar graph algorithms”. In: 2016 IEEE 57th Annual Symposium on Foun-
dations of Computer Science (FOCS). IEEE. 2016, pp. 477–486.

[3] Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. “Subcu-
bic Equivalences Between Graph Centrality Problems, APSP and Diameter”.
In: Proceedings of the Twenty-sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms. SODA ’15. San Diego, California: Society for Industrial and Applied
Mathematics, 2015, pp. 1681–1697. URL: http://dl.acm.org/citation.cfm?
id=2722129.2722241.

[4] Jeffrey D Achter et al. Algebraic Curves and Finite Fields: Cryptography and Other
Applications. Vol. 16. Walter de Gruyter GmbH & Co KG, 2014.

[5] Ulrik Brandes. “A faster algorithm for betweenness centrality”. In: Journal of
mathematical sociology 25.2 (2001), pp. 163–177.

[6] Sergio Cabello. “Computing the inverse geodesic length in planar graphs and
graphs of bounded treewidth”. In: arXiv preprint arXiv:1908.01317 (2019).

[7] Sergio Cabello. “Subquadratic algorithms for the diameter and the sum of
pairwise distances in planar graphs”. In: ACM Transactions on Algorithms (TALG)
15.2 (2018), p. 21.

[8] Sergio Cabello, Erin W Chambers, and Jeff Erickson. “Multiple-source short-
est paths in embedded graphs”. In: SIAM Journal on Computing 42.4 (2013),
pp. 1542–1571.

[9] Timothy M Chan. “More logarithmic-factor speedups for 3SUM,(median,+)-
convolution, and some geometric 3SUM-hard problems”. In: Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM.
2018, pp. 881–897.

[10] Mark De Berg et al. Computational Geometry: Algorithms and Applications. Santa
Clara. 2008.

[11] James R Driscoll et al. “Making data structures persistent”. In: Proceedings of
the eighteenth annual ACM symposium on Theory of computing. 1986, pp. 109–121.
URL: https://www.cadmo.ethz.ch/education/lectures/HS18/SAADS/
papers/persistent.pdf.

[12] Dóra Erdős et al. “A divide-and-conquer algorithm for betweenness central-
ity”. In: Proceedings of the 2015 SIAM International Conference on Data Mining.
SIAM. 2015, pp. 433–441.

http://dl.acm.org/citation.cfm?id=2722129.2722241
http://dl.acm.org/citation.cfm?id=2722129.2722241
https://www.cadmo.ethz.ch/education/lectures/HS18/SAADS/papers/persistent.pdf
https://www.cadmo.ethz.ch/education/lectures/HS18/SAADS/papers/persistent.pdf

74 Bibliography

[13] Jeff Erickson, Kyle Fox, and Luvsandondov Lkhamsuren. “Holiest minimum-
cost paths and flows in surface graphs”. In: Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing. 2018, pp. 1319–1332.

[14] Greg N Frederickson. “Planar graph decomposition and all pairs shortest paths”.
In: Journal of the ACM (JACM) 38.1 (1991), pp. 162–204.

[15] Greg N. Frederickson. “Fast Algorithms for Shortest Paths in Planar Graphs,
with Applications”. In: SIAM J. Comput. 16.6 (Dec. 1987), pp. 1004–1022. ISSN:
0097-5397. DOI: 10 . 1137 / 0216064. URL: http : / / dx . doi . org / 10 . 1137 /
0216064.

[16] Linton C Freeman. “A set of measures of centrality based on betweenness”. In:
Sociometry (1977), pp. 35–41.

[17] Ari Freund. “Improved subquadratic 3SUM”. In: Algorithmica 77.2 (2017), pp. 440–
458.

[18] Pawel Gawrychowski et al. “Voronoi diagrams on planar graphs, and comput-
ing the diameter in deterministic Õ (n 5/3) time”. In: Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM. 2018, pp. 495–
514.

[19] Michelle Girvan and Mark EJ Newman. “Community structure in social and
biological networks”. In: Proceedings of the national academy of sciences 99.12
(2002), pp. 7821–7826.

[20] Omer Gold and Micha Sharir. “Improved bounds for 3SUM, k-SUM, and lin-
ear degeneracy”. In: arXiv preprint arXiv:1512.05279 (2015).

[21] Allan Grønlund and Seth Pettie. “Threesomes, degenerates, and love trian-
gles”. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
IEEE. 2014, pp. 621–630.

[22] David Hartvigsen and Russell Mardon. “The all-pairs min cut problem and the
minimum cycle basis problem on planar graphs”. In: SIAM Journal on Discrete
Mathematics 7.3 (1994), pp. 403–418.

[23] Monika R Henzinger et al. “Faster shortest-path algorithms for planar graphs”.
In: journal of computer and system sciences 55.1 (1997), pp. 3–23.

[24] Monika R Henzinger et al. “Faster shortest-path algorithms for planar graphs”.
In: journal of computer and system sciences 55.1 (1997), pp. 3–23.

[25] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. “Which problems
have strongly exponential complexity?” In: Journal of Computer and System Sci-
ences 63.4 (2001), pp. 512–530.

[26] Goossen Kant. “Algorithms for drawing planar graphs”. PhD thesis. 1993.
URL: https://dspace.library.uu.nl/handle/1874/842.

[27] Haim Kaplan et al. “Submatrix maximum queries in monge matrices and par-
tial monge matrices, and their applications”. In: ACM Transactions on Algo-
rithms (TALG) 13.2 (2017), pp. 1–42.

[28] Shiva Kintali. “Betweenness centrality: Algorithms and lower bounds”. In:
arXiv preprint arXiv:0809.1906 (2008).

[29] Alec Kirkley et al. “From the betweenness centrality in street networks to
structural invariants in random planar graphs”. In: Nature communications 9.1
(2018), p. 2501.

https://doi.org/10.1137/0216064
http://dx.doi.org/10.1137/0216064
http://dx.doi.org/10.1137/0216064
https://dspace.library.uu.nl/handle/1874/842

Bibliography 75

[30] Philip N Klein, Shay Mozes, and Christian Sommer. “Structured recursive sep-
arator decompositions for planar graphs in linear time”. In: Proceedings of the
forty-fifth annual ACM symposium on Theory of computing. ACM. 2013, pp. 505–
514.

[31] Philip Klein et al. “Faster shortest-path algorithms for planar graphs”. In: Pro-
ceedings of the twenty-sixth annual ACM symposium on Theory of computing. 1994,
pp. 27–37.

[32] Massimo Marchiori and Vito Latora. “Harmony in the small-world”. In: Phys-
ica A: Statistical Mechanics and its Applications 285.3 (2000), pp. 539–546. ISSN:
0378-4371. DOI: https://doi.org/10.1016/S0378-4371(00)00311-3. URL:
http://www.sciencedirect.com/science/article/pii/S0378437100003113.

[33] Charudatt Pachorkar et al. “Efficient parallel ear decomposition of graphs with
application to betweenness-centrality”. In: 2016 IEEE 23rd International Confer-
ence on High Performance Computing (HiPC). IEEE. 2016, pp. 301–310.

[34] Alexandros Pappas et al. “Exploring importance measures for summarizing
RDF/S KBs”. In: European Semantic Web Conference. Springer. 2017, pp. 387–
403.

[35] Mateusz K Tarkowski et al. “Closeness centrality for networks with overlap-
ping community structure”. In: Thirtieth AAAI Conference on Artificial Intelli-
gence. 2016.

[36] Dekel Tsur. Persistent Data Structure. 2016. URL: https://www.cs.bgu.ac.il/
~tids162/wiki.files/lec05.pdf.

[37] Joachim Von Zur Gathen and Jürgen Gerhard. Modern computer algebra. Cam-
bridge university press, 2013.

[38] Eric W Weisstein. Triangulated Graph.

https://doi.org/https://doi.org/10.1016/S0378-4371(00)00311-3
http://www.sciencedirect.com/science/article/pii/S0378437100003113
https://www.cs.bgu.ac.il/~tids162/wiki.files/lec05.pdf
https://www.cs.bgu.ac.il/~tids162/wiki.files/lec05.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Overview of results
	Road map

	Background
	r-Division
	Assumptions for the Voronoi Diagram Construction
	Voronoi Diagram
	Computing bisectors for every pair of sites
	Additional Structure and Properties of Additively Weighted Voronoi Diagram
	Properties of Voronoi diagram in the presence of multiple holes

	Representation of the Voronoi Diagram — same representation used in gawrychowski2018voronoi
	Some more structural properties of AWV Diagram

	Fast Multipoint Evaluation
	Converting polynomials in root form to coefficient form

	Complexity Assumptions
	Related Work

	Data Structure
	Augmented Cotree
	Augmented Cotree for CC
	Augmented Cotree for HC
	Augmented Cotree for NFC

	Computing in and out
	Augmented List Data Structure
	AL for CC
	AL for HC
	AL for NFC

	Augmented Balanced Binary search tree (ABBST)
	ABBST for CC
	ABBST for HC

	Upper Bounds
	Linear Upper Bound for BHC
	Subquadratic Upper Bounds for Planar Graphs
	CC of all nodes
	Stages 1 and 2
	Stage 3
	Stage 4
	Running time analysis

	HC of all nodes
	Stage 1 and 2
	Stage 3
	Stage 4
	Running time analysis

	NFC of all nodes
	Stages 1 and 2
	Stage 3
	Stage 4
	Running time analysis

	BNFC of a single node

	Lower bounds
	Lower Bound for Sparse graphs
	Lower Bound for BHC of all nodes

	Conclusion
	Properties of a hole
	Bibliography

