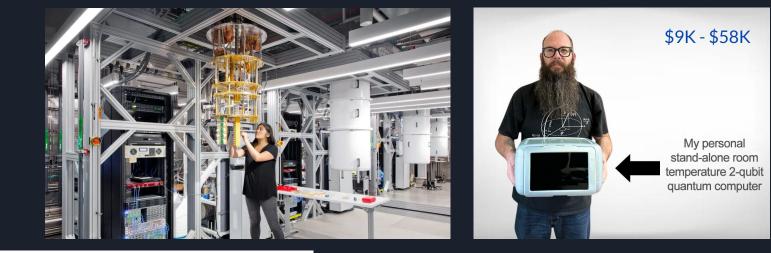


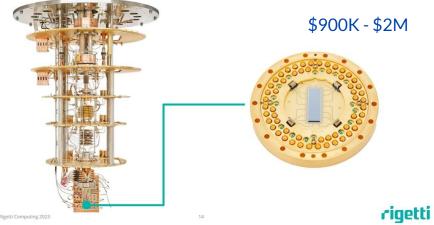
Quantum Computing

How can it save the world?

Debajyoti Bera Department of Computer Sc. & Engg. Center for Quantum Technologies IIIT-Delhi



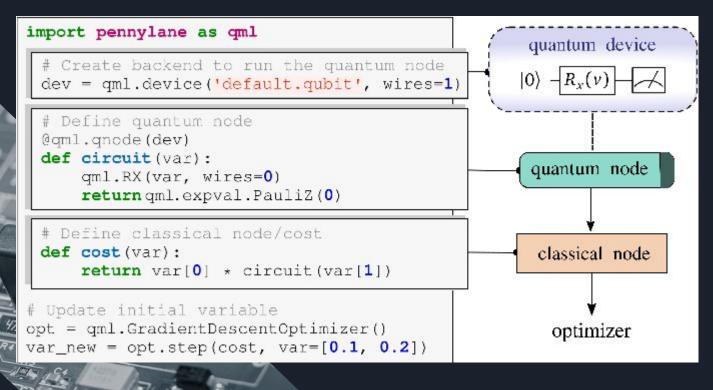
https://en.wikipedia.org/wiki/List_of_quantum_processors

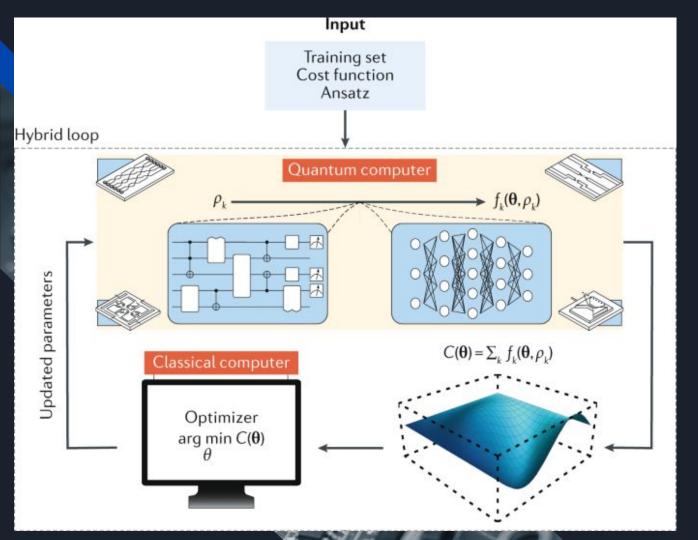


Modern QPU

Company	Technology of qubits	Architecture
IBM	Superconducting	
Google	Superconducting	
Intel	Superconducting & semiconductor spin	
lonQ	Trapped ion	Gate-based
Quantinuum	Trapped ion	
Rigetti	Superconducting transmon	
SpinQ	Nuclear magnetic resonance (NMR)	
DWAVE	Superconducting	Quantum annealing

The Chip is the Heart of the Quantum Computer





How to program QPUs?

Variational Quantum Algorithms

Quantum development ecosystem

Many programming languages. Lot of libraries. Active community. Several tutorial, blogs, open Github projects,

SDK

Qiskit by IBM

Ocean by D-Wave

Strawberry Fields & Pennylane

Forest by Rigetti

Circ by Google

QDK by Microsoft

CUDA-Quantum by NVIDIA

THE EUROPEAN QUANTUM COMPUTING STARTUP LANDSCAPE Hardware Software Computing **Operating Systems** ●AQT OBaltic QM OQC QM 😹 DUANTASTICA RIVERLANE 🔗 Parity QC eleQtron Applications Security & Encryption Chemistry & Pharma Others naun QUSIDE HOS OUANTUM SIMULATIONS O PHASECRAFT QuBalt $\langle b | e^{\bullet}$ **Components & Materials** rahko (InfiniQuant) KUANO QUANTUM IMPENETRABLE AuantLR D QBLOX AVANETIX Aegio Q Ketita) Crypta ArQit Kronus Quant Fi) kiutra . ChemAlive nu • MIRAEX QuantiCor "SHIELD MULTIVERSE QueCo Mami Delft Circuits KETS) celera QUANDELA) shyn Creative ()uantum CRYPTONE @alex_kiltz

Quantum Algorithms for ...

Traditional CS problems

Quantum Algorithm Zoo

Number theoretic algorithms Linear algebraic algorithms Algebraic algorithms Sorting, searching, ... Graph algorithms String algorithms Group-theoretic algorithms Linear programs Semi-definite programs

•••

 $\begin{array}{c} & (0) : 1 \\ (0) : 1 \\ (0) : 1 \\ (0) : 1 \\ (0) : 1 \\ (0) : 0$

(qp) tawer(dp)

Tp.measure(qr,cr)

Hp.tx(np.pi/2,qr[0])
Hp.tx(np.pi/2,qr[0])

Ir = QuantumRe pr = ClassicalRe пр = QuantumCircui

> μροτέ πιμ. τοπ σι. τοπ

https://quantumalgorithmzoo.org/

Quantum algorithms for ...

Data analysis

QUANTUMALGORITHMS.ORG

Singular-value estimation based algorithms Monte-carlo techniques PCA and other dimensionality reduction methods Clustering algorithms like k-means, k-median, ... Matrix operations like inversion, solving linear system, ... Column Singular Vectors $\{|\hat{u}_j\rangle, |\hat{v}_j\rangle\}$

 $\operatorname{MMU}_{\boldsymbol{\alpha},\boldsymbol{\beta}} L(\boldsymbol{\alpha},\boldsymbol{\beta}) = \sum q_{j} \times \operatorname{Re}\langle \psi_{j} | UMV$

= T

q'D

_M([m]

 $\{J_{l}$

1(**G**)

 $\Im \ge T \nabla \mathbb{J}$

Quantum algorithms for ...

Machine learning & optimization

https://en.wikipedia.org/wiki/Quantum_machine_learning

Quantum-enhanced reinforcement learning Quantum annealing Training Boltzmann machines Quantum convolutional neural networks (QCNN) Dissipative QNN Quantum generative adversarial networks (QGAN) Hidden quantum markov models Quantum graph neural networks Quantum physics-inspired neural networks (QPINN)

	2	Type of Algorithm	
ſ		classical	quantum
Type of Data	classical	CC	CQ
	quantum	QC	QQ

 $z^{i} = \vartheta(\sum w_{ij} z_{i} + p_{j})$

IZ 8

3

£\$M

 S^0_{Σ}

12tm

Input:
$$n, s, \eta, T, C, \delta$$

1: Initialize $U_{\rho(0)} = \mathbb{I}$, $\tilde{I} = 1$ and $q^{(1)} = (1, \dots, 1)$, $U_{q^{(1)}} = \mathbb{I}$.
2: for $t = 1$ to T do
3: $q_{max} \leftarrow Find the largest element of $q^{(t)}$ using $U_{q^{(t)}}$ and quantum maximum finding [56] with success
probability $1 - \frac{\delta}{4T}$.
4: $\tilde{Z}^{(t)} \leftarrow Estimate the norm of $\frac{q^{(t)}}{q_{max}}$ using $U_{q^{(t)}}$, q_{max} , Lemma 2, and Lemma 3(i), with relative error
 $\epsilon_Z = \frac{\eta^2}{r_{min}^2}$ and success probability $1 - \frac{\delta}{4T}$.
5: $U_{w^{(t)}} \leftarrow Prepare quantum circuit for approximating $|\tilde{w}^{(t)}\rangle$ of the quantum state $|w^{(t)}\rangle$, where
 $w^{(t)} = \frac{q^{(t)}}{\|q^{(t)}\|_1}$, using $U_{q^{(t)}}$, q_{max} , $\tilde{Z}^{(t)}$, Lemma 2, Lemma 3(ii), with success probability $1 - \frac{\delta}{4T}$.
6: Γ , W , $V \leftarrow Determine using Lem. 5$ applied to $\tilde{w}^{(t)}$ with probability $1 - \frac{\delta}{4T}$.
7: $i_1^{(t)}, \dots, i_s^{(t)}$ Perform multi-sampling using Γ , W , V and Lemma 6 with probability $1 - \frac{\delta}{4T}$.
8: Invest the amount $1/s$ in each asset $i_1^{(t)}, \dots, i_s^{(t)}$ at cost C each.
9: Wait until end of day.
10: Receive price relative oracle $U_{\rho(t)}$.
11: $\rho_{j^{(t)}} \leftarrow Query U_{\rho(t)}$ with $|j^{(t)}\rangle|0|$.
12: $\tilde{I}^{(t)} \leftarrow Estimate \tilde{w}^{(t)} \cdot \rho^{(t)}$ using $U_{w^{(t)}}$, $U_{\rho(t)}$, and Lemma 4, with relative error
success probability $1 - \frac{\delta}{4T}$.
13: $U_{q^{t+1}} \leftarrow Prepare quantum circuit to compute $q^{(t+1)} = \exp\left(\eta \sum_{i'=1}^{t} \frac{\rho_{i'}^{(t')}}{\hat{j}^{(t')}}\right)$ usi
Lemma 2.
14: end for
Output: $LS_{samp}^Q := \frac{1}{T} \sum_{t=1}^{T} \log\left(\frac{1}{s} \sum_{\ell=1}^{s} \rho_{\ell_{1}}^{(t)}\right)$.$$$$

Quantum Online Portfolio Optimization

Name	Alg.	Regret	Run time
Online	1	$\frac{1}{r_{\min}}\sqrt{\frac{\log n}{2T}}$	O(Tn)
Sampling-based Online	2	$\frac{2}{r_{\min}}\sqrt{\frac{\log n}{2T}}$	$O(T^2 n \log \frac{T}{\delta})$
Approximate Sampling-based Online	3	$\frac{8}{r_{\min}}\sqrt{\frac{\log n}{2T}}$	$O\left(Tn + \frac{T^2}{r_{\min}}\log\frac{T}{\delta}\right)$
Quantum Online	4	$\frac{12}{r_{\min}}\sqrt{\frac{\log n}{2T}}$	$\tilde{O}\left(T^{3}\sqrt{\frac{n}{r_{\min}}}\log^{1.5}\left(\frac{1}{\delta}\right)\right)$

Why quantum?

Fundamentally different point of view! Backed by quantum mechanics.

10 qubits represent a distribution over 1024 elements ≡ 1024-sized "stochastic" vector + Distribution allows "negative" probabilities ⇒ Cancellation of probabilistic scenarios + Certain impossibility results advocated by quantum mechanics

Classically impossible tasks are now possible.

Better speedup compared to classical techniques.

Better quality of optimization solutions.

Why not (yet) quantum?

No Quantum RAM (yet)!

Lots of errors - T1, T2, Gate, Readout, ...

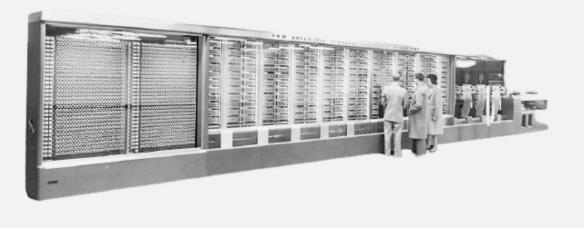
Barren plateau observed in variational QA

No clear case of quantum supremacy!

Perceived learning curve.

QUANITUM FOR REAL-WORLD IMPACT

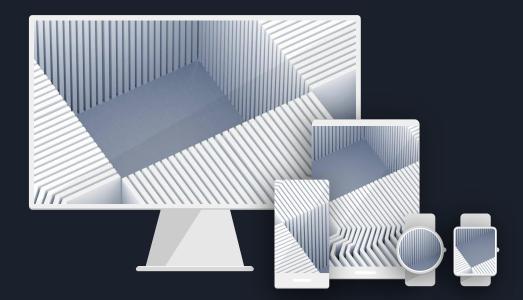
PHASE Launch


Google Quantum Al

Presented by: gesda

First generation CPU

Harvard Mark I



Specification

- + : 0.3 sec
- x : 6 secs
- ÷ : 15 secs
- sin, cos, etc. : 1 min +
- Operated on 72 73-bit registers
- 51'x8'x2'
- 4.3 ton

Thank you!

https://braqiiit.github.io/

