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Introduction • § Walsh and Autocorrelation Spectrum

Walsh and Autocorrelation Spectrum

Walsh function of a function f : {0, 1}n −→ {0, 1} is defined as the following
function from {0, 1}n to R[−1, 1]

for y ∈ {0, 1}n, f̂ (y) =
1

2n

∑
x∈{0,1}n

(−1)f (x)(−1)x ·y

where x · y stands for the 0− 1 valued expression ⊕i=1...nxiyi :

Autocorrelation function of the function f is defined as the following transformation
from {0, 1}n to R[−1, 1].

for a ∈ {0, 1}n, f̆ (a) =
1

2n

∑
x∈{0,1}n

(−1)f (x)(−1)f (x⊕a)
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Introduction • § Walsh and Autocorrelation Spectrum

Walsh and Autocorrelation Spectrum

Shannon in his paper1 related Walsh spectra and Autocorrelation spectra to
confusion and diffusion of cryptosystems respectively.

Boolean functions with low absolute Walsh sprectral values resist linear
cryptanalysis.

Boolean function with low absolute autocorrelation values resist differential
cryptanalysis.

1Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
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Introduction • § Walsh and Autocorrelation Spectrum

Quantum in a Page

Qubits are the quantum version of classical bits. E.g., |0〉 , |1〉.
A quantum state is a configuration of the qubits. It is denoted by a ket |·〉.
A fundamental principle in quantum computing is superposition.

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉.

The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

Oracles are quantum black-boxes and are denoted by Uf . They act as

Uf |x〉 |a〉 −→ |x〉 |a⊕ f (x)〉.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 5 / 28



Introduction • § Walsh and Autocorrelation Spectrum

Quantum in a Page

Qubits are the quantum version of classical bits. E.g., |0〉 , |1〉.
A quantum state is a configuration of the qubits. It is denoted by a ket |·〉.
A fundamental principle in quantum computing is superposition.

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉.

The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

Oracles are quantum black-boxes and are denoted by Uf . They act as

Uf |x〉 |a〉 −→ |x〉 |a⊕ f (x)〉.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 5 / 28



Introduction • § Walsh and Autocorrelation Spectrum

Quantum in a Page

Qubits are the quantum version of classical bits. E.g., |0〉 , |1〉.
A quantum state is a configuration of the qubits. It is denoted by a ket |·〉.
A fundamental principle in quantum computing is superposition.

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉.

The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

Oracles are quantum black-boxes and are denoted by Uf . They act as

Uf |x〉 |a〉 −→ |x〉 |a⊕ f (x)〉.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 5 / 28



Introduction • § Walsh and Autocorrelation Spectrum

Quantum in a Page

Qubits are the quantum version of classical bits. E.g., |0〉 , |1〉.
A quantum state is a configuration of the qubits. It is denoted by a ket |·〉.
A fundamental principle in quantum computing is superposition.

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉.

The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

Oracles are quantum black-boxes and are denoted by Uf . They act as

Uf |x〉 |a〉 −→ |x〉 |a⊕ f (x)〉.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 5 / 28



Introduction • § Walsh and Autocorrelation Spectrum

Quantum in a Page

Qubits are the quantum version of classical bits. E.g., |0〉 , |1〉.
A quantum state is a configuration of the qubits. It is denoted by a ket |·〉.
A fundamental principle in quantum computing is superposition.

|ψ〉 = 1√
2
|0〉+ 1√

2
|1〉.

The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

Oracles are quantum black-boxes and are denoted by Uf . They act as

Uf |x〉 |a〉 −→ |x〉 |a⊕ f (x)〉.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 5 / 28



Introduction • § Quantum Algorithm for Walsh Spectrum

Quantum Algorithm for Walsh Spectrum

Due to Parseval’s identity which is∑
x∈{0,1}n

(
f̂ (x)

)2
= 1,

it was easy to design a quantum algorithm for the Walsh sepctrum.

It was indeed readily available as Deutsch-Jozsa algorithm.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 6 / 28



Introduction • § Quantum Algorithm for Walsh Spectrum

Quantum Algorithm for Walsh Spectrum

Due to Parseval’s identity which is∑
x∈{0,1}n

(
f̂ (x)

)2
= 1,

it was easy to design a quantum algorithm for the Walsh sepctrum.

It was indeed readily available as Deutsch-Jozsa algorithm.

D. Bera, S. Maitra and Tharrmashastha S. Efficient Quantum Algo. Related to A.C. Spectrum 18 December 2019 6 / 28



Introduction • § Quantum Algorithm for Walsh Spectrum

Quantum Algorithm for Walsh Spectrum

The state of the system post the gate operations is given by

|ψ〉 =
1

2n

∑
y∈{0,1}n

[ ∑
x∈{0,1}n

(−1)f (x)⊕x ·y

]
|y〉 |−〉 =

∑
y∈{0,1}n

f̂ (y) |y〉 |−〉

So, on sampling a constant number of times and with linear number of gates, we
can obtain points with high Walsh coefficient value.
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Introduction • § Problem with Autcorrelation Spectrum

Problem with Autcorrelation Spectrum

However, there was no study on quantum algorithms for Autocorrelation spectrum.

This was due to the fact that ∑
a f̆ (a)2 ∈ [1, 2n].

Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as
an immediate corollary would be difficult.
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Preliminaries • § Sum of Squares

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

σf =
∑
a∈Fn

2

f̆ (a)2

In particular, σf = 1 if f is a Bent function and σf = 2n if f is a linear function.

A small σf indicates that a function satisfies the global avalanche criteria (GAC).
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Preliminaries • § Derivative

Preliminaries: Derivative of a Boolean Function

Given a point a ∈ {0, 1}n, the (first-order) derivative of an n-bit function f at a is
defined as

∆fa(x) = f (x ⊕ a)⊕ f (x)

For a list of points A = (a1, a2, . . . , ak) (where k ≤ n) the k-th derivative of f at
(a1, a2, . . . , ak) is recursively defined as

∆f
(k)
A (x) = ∆fak (∆f

(k−1)
a1,a2,...,ak−1(x)),

where ∆f
(k−1)
a1,a2,...,ak−1(x) is the (k − 1)-th derivative of f at points

(a1, a2, . . . , ak−1).
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Preliminaries • § Derivative

Preliminaries: Derivative of a Boolean Function

The i-th derivative of f at A = (a1, a2, . . . ai ) can be shown2 to be

∆f
(i)
A (x) =

⊕
S⊆A

f (x ⊕ S)

where Xs =
⊕

a∈S a, f (x ⊕ S) = f (x ⊕Xs) and S ⊆ A indicates all possible sub-lists of
A (including duplicates, if any, in A).

2The proof is present in Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. Springer US, 1994.
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Preliminaries • § Derivative

Preliminaries: Derivative of a Boolean Function

Higher-order derivatives form the basis of many cryptographic attacks, especially
those that generalize the differential attack technique against block ciphers such
as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

If the non-trivial i th derivatives of the function are constant for small i , then we
can use that fact to mount attacks on the cryptosystem.
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Our Contributions • § Walsh-Hadamard 1st Derivative Sampling

Quantum Algorithm for Walsh-Hadamard 1st Derivative
Sampling

Indocrypt Additions

Tharrmashastha SAPV

June 2019

R1 |1〉 H
Uf Uf

H

R2 |0⊗n〉 H⊗n H⊗n

R3 |a〉 • •

The above figure illustrates the quantum circuit for HoDJ1
n. On applying

each operator, the quantum state evolves as follows:

Initial State = |1〉
∣∣0⊗n

〉
|a〉

H⊗H⊗n⊗I−−−−−−−→ 1√
2n

∑
x

|−〉 |x〉 |a〉

I⊗Uf⊗I−−−−−→ 1√
2n

∑
x

(−1)f(x) |−〉 |x〉 |a〉

I⊗Uf ·CNOT23−−−−−−−−−−→ 1√
2n

∑
x

(−1)f(x)⊕f(x⊕a) |−〉 |x⊕ a〉 |a〉

I⊗CNOT23−−−−−−−→ 1√
2n
|−〉

∑
x

(−1)f(x)⊕f(x⊕a) |x〉 |a〉

H⊗H⊗n⊗I−−−−−−−→ |1〉
∑
y

[ 1

2n

∑
x

(−1)f(x)⊕f(x⊕a)
]
|y〉 |a〉

= |1〉
∑
y

f̆(y) |y〉 |a〉

1

The final state of this circuit is given as

|ψ〉 = |1〉
∑
y

[ 1

2n

∑
x

(−1)(x ·y)(−1)f (x)⊕f (x⊕a)
]
|y〉 |a〉

= |1〉
∑
y

∆̂fa(y) |y〉 |a〉
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Our Contributions • § Autocorrelation Sampling

Autocorrelation Sampling

Lemma

f̆ (a) = ∆̂f
(1)
a (0n)

Proof.

LHS is equal to 1
2n
∑

x(−1)f (x)(−1)f (x⊕a) = 1
2n
∑

x ∆f
(1)
a (x). Now observe that

∆̂f
(1)
a (0n) = 1

2n
∑

x ∆f
(1)
a (x) and this proves the lemma.
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Our Contributions • § Autocorrelation Sampling

Quantum Algorithm for Autocorrelation Sampling

1: Start with three registers initialized as |1〉, |0n〉, and |0n〉.
2: Apply Hn to R3 to generate the state 1√

2n

∑
b∈Fn

2
|1〉 |0n〉 |b〉.

3: Apply HoDJ1
n on the registers R1, R2 and R3 to generate the state

|Φ〉 =
1√
2n
|1〉
∑
b∈Fn

2

∑
y∈Fn

2

∆̂f
(1)
b (y) |y〉 |b〉.

4: Apply fixed-point amplitude amplification3 on |Φ〉 to amplify the probability of
observing R2 in the state |0〉 to 1− δ for any given constant δ

5: Measure R3 in the standard basis and return the observed outcome

3Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett.,
113:210501, Nov 2014.
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Our Contributions • § Autocorrelation Sampling

Quantum Algorithm for Autocorrelation Sampling

New Alternate Circuit for Second Order Sampling

Tharrmashastha SAPV

July 2019

R1 |1〉 H

Uf Uf Uf Uf

H

R2a

∣∣0⊗4
〉

H⊗5 H⊗5

R2b |0〉 xconda5
xcondb5 xconda5

xcondb5

R3

∣∣0⊗4
〉

H⊗4 • •

R4

∣∣0⊗4
〉

H⊗4 • •

This is an alternate circuit which we used for sampling due to the limitations on the number of qubits in real
device. The gates xconda5

and xcondb5 are the gates that implement x gate on R2b if a5 = 1 and b5 = 1 respectively.
We have first four qubits of a and b each in the circuit, so there will be no problem in implementing the cnots from
R3 and R4 to R2a. But for the fifth qubit, due to the limitation of the max number of qubits in the real device, we
use the xconda5 and xcondb5 gates for implementing the cnot on R2b according to the values of a5 and b5 and values
of a5 and b5 will be user defined. So, since there are four different possible (a5,b5) pairs, to sample with respect to all
possible a’s and b’s, we need to implement the circuit four times with different (a5,b5) pairs.

HoDJ1
n

R1 |1〉 H
Uf Uf

H

R2 |0⊗n〉 H⊗n H⊗n

R3 |0⊗n〉 H⊗n • •

1

The final state of the circuit is given as

|ψ〉 = |1〉 ⊗ |0n〉 ⊗
(

1√
2n

∑
b f̆ (b) |b〉

)
+
∑

y |1〉 |y〉 ⊗
(

1√
2n

∑
b ∆̂fb(y) |b〉

)
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Our Contributions • § Autocorrelation Sampling

Quantum Algorithm for Autocorrelation Sampling

Theorem

The observed outcome returned by the above algorithm is a random sample from the
distribution {f̆ (a)2/σf }a∈Fn

2
with probability at least 1− δ. The algorithm makes

O( 2n/2
√
σf

log 2
δ ) queries to Uf and uses O(n 2n/2

√
σf

log 2
δ ) gates altogether.
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Our Contributions • § Autocorrelation Estimation

Classical Autocorrelation Estimation at a point a

Observe that f̆ (a) = 1
2n
∑

x(−1)f (x)(−1)f (x⊕a) = Ex [Xx ] where the ±1-valued

random variable Xx = (−1)f (x)⊕f (x⊕a) is defined for x chosen uniformly at
random from {0, 1}n.

The number of samples needed if we were to classically estimate f̆ (a) with
accuracy ε and error δ is O( 1

ε2 log 1
δ ).
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Quantum Autocorrelation Estimation at a point a

R1 |a〉 • •
R2 |0〉 H • H

R3 = |ψ〉 |0⊗n〉 H⊗n

Uf

×

|1〉 H
Uf

H

R4 = |φ〉 |0⊗n〉 H⊗n ×
ST
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Quantum Autocorrelation Estimation at a point a I

Require: Parameters: ε (confidence), δ (error)
1: Start with four registers of which R1 is initialized to |a〉, R2 to |0〉, and R3,R4 to
|0n〉.

2: Apply these transformations.

|a〉 |0〉 |0n〉 |0n〉
Hn⊗Hn

−−−−→ |a〉 |0〉
(

1√
2n

∑
x |x〉

)(
1√
2n

∑
y |y〉

)
CNOT−−−−→ |a〉 |0〉

(
1√
2n

∑
x |x〉

)(
1√
2n

∑
y |y ⊕ a〉

)
Uf⊗Uf−−−−→ |a〉 |0〉

(
1√
2n

∑
x(−1)f (x) |x〉

)(
1√
2n

∑
y (−1)f (y⊕a) |y ⊕ a〉

)
. Uses reusable |−〉

CNOT−−−−→ |a〉 |0〉
(

1√
2n

∑
x(−1)f (x) |x〉

)(
1√
2n

∑
y (−1)f (y⊕a) |y〉

)
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Quantum Autocorrelation Estimation at a point a II

= |a〉 |0〉 |ψ〉 |φa〉
Normalized state 1√

2n

∑
x(−1)f (x) |x〉 denoted ψ

Normalized state 1√
2n

∑
y (−1)f (y⊕a) |y〉 denoted φa

3: Apply ST on R2,R3 and R4 to obtain

|a〉
[
|0〉 ⊗ 1

2

(
|ψ〉 |φa〉+ |φa〉 |ψ〉

)
+ |1〉 ⊗ 1

2

(
|ψ〉 |φa〉 − |φa〉 |ψ〉

)]
4: `← estimate the probability of observing R2 in the state |0〉 with accuracy ± ε

2 and
error δ

5: Return 2`− 1 as the estimate of |f̆ (a)|2
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Quantum Autocorrelation Estimation at a point a

Theorem

The QAE algorithm makes Θ
(
π
ε log 1

δ

)
calls to Uf and returns an estimate α such that

Pr
[
α− ε ≤ f̆ (a)2 ≤ α + ε

]
≥ 1− δ
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Estimation of Sum-of-Squares Indicator

The sum of squares indicator is given as

σf =
∑
a∈Fn

2

f̆ (a)2

.

Note that 1 ≤ σf ≤ 2n.

Objective is to obtain an estimate of σf with ε accuracy and δ probability of error.
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Classical Estimation of Sum-of-Squares Indicator

Let a, b, c be three random variables chosen uniformly at random from Fn
2 such that

b 6= c and let Xa,b,c be the ±1-valued random variable (−1)f (a⊕b)(−1)f (a⊕c).Then,

σf =
∑
a∈Fn

2

f̆ (a)2 =
∑
a∈Fn

2

[ 1

2n

∑
b∈Fn

2

(−1)f (b)⊕f (b⊕a)
]2

=
1

22n

∑
a∈Fn

2

[
2n +

∑
b 6=c

b,c∈Fn
2

(−1)f (a⊕b)⊕f (a⊕c)
]

= 1 +
1

22n

∑
a∈Fn

2
b 6=c

(−1)f (a⊕b)⊕f (a⊕c)

= 1 + (2n − 1)Ea,b,c [Xa,b,c ]
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Classical Estimation of Sum-of-Squares Indicator

We estimate E[Xa,b,c ] using multiple independent samples of a, b, c .

Note that E[Xa,b,c ] = σf−1
2n−1 ≈

σf
2n .

We can estimate E[Xa,b,c ] with ε′ accuracy and δ error in O( 1
ε′2

log 1
δ ) calls to f ().

To estimate σf with accuracy ε, we set ε′ = ε
2n−1 ≈

ε
2n .

Hence, the number of calls to f () would be O( 22n

ε2 log 1
δ ).
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Quantum Estimation of Sum-of-Squares Indicator

Indocrypt Additions

Tharrmashastha SAPV

June 2019

R1 |1〉 H
Uf Uf

H

R2 |0⊗n〉 H⊗n H⊗n

R3 |a〉 • •

The above figure illustrates the quantum circuit for HoDJ1
n. On applying

each operator, the quantum state evolves as follows:

Initial State = |1〉
∣∣0⊗n

〉
|a〉

H⊗H⊗n⊗I−−−−−−−→ 1√
2n

∑
x

|−〉 |x〉 |a〉

I⊗Uf⊗I−−−−−→ 1√
2n

∑
x

(−1)f(x) |−〉 |x〉 |a〉

I⊗Uf ·CNOT23−−−−−−−−−−→ 1√
2n

∑
x

(−1)f(x)⊕f(x⊕a) |−〉 |x⊕ a〉 |a〉

I⊗CNOT23−−−−−−−→ 1√
2n
|−〉

∑
x

(−1)f(x)⊕f(x⊕a) |x〉 |a〉

H⊗H⊗n⊗I−−−−−−−→ |1〉
∑
y

[ 1

2n

∑
x

(−1)f(x)⊕f(x⊕a)
]
|y〉 |a〉

= |1〉
∑
y

f̆(y) |y〉 |a〉

1

Remember that the final state of this circuit is

|ψ〉 = |1〉 ⊗ |0n〉 ⊗
(

1√
2n

∑
b f̆ (b) |b〉

)
+
∑

y |1〉 |y〉 ⊗
(

1√
2n

∑
b ∆̂fb(y) |b〉

)
.

Since the probability of observing the output |0⊗n〉 in R2 is σf /2n, we ca estimate
σf with an accuracy ε and error δ in Θ

(
2n

ε log 1
δ

)
calls to Uf .
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Conclusion

Autocorrelation is an important tool in constructing Boolean functions with good
cryptographic properties and in performing differential attacks.

We presented an extension of Deutsch-Jozsa algorithm that can be used to
sample the Walsh spectrum of any higher order derivatives.

We presented an algorithm to sample according to the distribution of normalized
autocorrelation spectral values.

We presented techniques to estimate the autocorrelation coefficient value at a
point a and to estimate the Sum-of-Squares indicator of any given Boolean
function.
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Thank you for your attention! Any questions?

Hope you slept comfortably!
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