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Introduction e § Walsh and Autocorrelation Spectrum

Walsh and Autocorrelation Spectrum

Walsh function of a function f : {0,1}" — {0, 1} is defined as the following
function from {0,1}" to R[—1, 1]

~ 1 ]
ory € 017, A= 3 (-1 -1y
xe{0,1}n

where x - y stands for the 0 — 1 valued expression @;—1._ ,X;V;:
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~ 1 ]
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where x - y stands for the 0 — 1 valued expression @;—1. nX;yi:

Autocorrelation function of the function f is defined as the following transformation
from {0,1}" to R[-1,1].

¥ 1
for ae€ {0,1}", f(a)= > Z (—1) ) (—1)(x®2)
xe{0,1}"
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Walsh and Autocorrelation Spectrum

m Shannon in his paper! related Walsh spectra and Autocorrelation spectra to
confusion and diffusion of cryptosystems respectively.

1Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
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Walsh and Autocorrelation Spectrum

m Shannon in his paper! related Walsh spectra and Autocorrelation spectra to
confusion and diffusion of cryptosystems respectively.

m Boolean functions with low absolute Walsh sprectral values resist linear
cryptanalysis.

m Boolean function with low absolute autocorrelation values resist differential
cryptanalysis.

1Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
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Quantum in a Page

m Qubits are the quantum version of classical bits. E.g.,

0),]1).
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a quantum state.
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Quantum in a Page

Qubits are the quantum version of classical bits. E.g.,

0),[1).
A quantum state is a configuration of the qubits. It is denoted by a ket |-).

A fundamental principle in quantum computing is superposition.
— 1 1
) = 210) + 5 [1).

m The squares of the amplitudes add up to one. Normalization is very important in
a quantum state.

m Oracles are quantum black-boxes and are denoted by Us. They act as
Ur x)|a) — |x)[a & f(x)).
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Quantum Algorithm for Walsh Spectrum

m Due to Parseval's identity which is

. 2
> (fx) =1
x€{0,1}n
it was easy to design a quantum algorithm for the Walsh sepctrum.
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Quantum Algorithm for Walsh Spectrum

m Due to Parseval's identity which is

3 (f(x))2 —1,
x€{0,1}n

it was easy to design a quantum algorithm for the Walsh sepctrum.

m It was indeed readily available as Deutsch-Jozsa algorithm.
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Quantum Algorithm for Walsh Spectrum
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Uf(z)
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Quantum Algorithm for Walsh Spectrum
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m The state of the system post the gate operations is given by

g X | 3 coelyin - 5w

ye{0,1}" Lxe{o,1}" ye{0,1}"
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Quantum Algorithm for Walsh Spectrum

lq0) = 10™) — H — H —
Uf(z)

1) = 1) — H |

m The state of the system post the gate operations is given by

g X | 3 coelyin - 5w

ye{0,1}" Lxe{o,1}" ye{0,1}"

m So, on sampling a constant number of times and with linear number of gates, we
can obtain points with high Walsh coefficient value.
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Problem with Autcorrelation Spectrum

m However, there was no study on quantum algorithms for Autocorrelation spectrum.
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Introduction e § Problem with Autcorrelation Spectrum

Problem with Autcorrelation Spectrum

m However, there was no study on quantum algorithms for Autocorrelation spectrum.

m This was due to the fact that

>, f(a)” € [1,27].

m Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as
an immediate corollary would be difficult.
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Preliminaries: Sum of Squares
The sum-of-squares indicator for the characteristic of f is defined as

or =Y f(a)’

ackj
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Preliminaries @ § Sum of Squares

Preliminaries: Sum of Squares
The sum-of-squares indicator for the characteristic of f is defined as
or =Y f(a)’

ackj

m In particular, of = 1 if f is a Bent function and of = 2" if f is a linear function.

m A small of indicates that a function satisfies the global avalanche criteria (GAC).
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Preliminaries: Derivative of a Boolean Function

m Given a point a € {0,1}", the (first-order) derivative of an n-bit function f at a is
defined as
Afy(x) = f(x® a) @ f(x)
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Preliminaries: Derivative of a Boolean Function

m Given a point a € {0,1}", the (first-order) derivative of an n-bit function f at a is
defined as
Afy(x) = f(x® a) @ f(x)

m For a list of points A = (a1, a2, ..., ak) (where k < n) the k-th derivative of f at
(a1, az,...,ax) is recursively defined as

k k—1
AFP ) = af, (ALY L (X)),

ceey

(al, ag, ..., ak,l).
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Preliminaries @ § Derivative

Preliminaries: Derivative of a Boolean Function

The i-th derivative of f at A = (a1, ap,...a;) can be shown? to be

A (x) =P f(xe )

SCA

where Xs = @ csa, f(x® S) = f(x® Xs) and S C A indicates all possible sub-lists of
A (including duplicates, if any, in A).

2The proof is present in Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. Springer US, 1994.

D. Bera, S. Maitra and Tharrmashastha S 18 December 2019 11 /28



Preliminaries @ § Derivative

Preliminaries: Derivative of a Boolean Function

m Higher-order derivatives form the basis of many cryptographic attacks, especially
those that generalize the differential attack technique against block ciphers such
as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

D. Bera, S. Maitra and Tharrmashastha 18 December 2019 12 /28



Preliminaries @ § Derivative

Preliminaries: Derivative of a Boolean Function

m Higher-order derivatives form the basis of many cryptographic attacks, especially
those that generalize the differential attack technique against block ciphers such
as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

m If the non-trivial i" derivatives of the function are constant for small i, then we
can use that fact to mount attacks on the cryptosystem.
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Our Contributions e § Walsh-Hadamard 15t Derivative Sampling

Quantum Algorithm for Walsh-Hadamard 1 Derivative
Sampling

B )

R2 |0®n> H®n

an)
%
Fan)
%
&
3

R3 |a)
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Our Contributions e § Walsh-Hadamard 15t Derivative Sampling

Quantum Algorithm for Walsh-Hadamard 1 Derivative

Sampling
Ry 1) —H}— (H}—
Uy Uy
Ry |0®™) Hen & P H®”F
R3 |a)

The final state of this circuit is given as

9 =Y [ SN () )] 1) )
— )Y AR 1) |2
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Autocorrelation Sampling
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Quantum Algorithm for Autocorrelation Sampling

. Start with three registers initialized as |1), [0”), and |0").
. Apply H" to R3 to generate the state \/% Zbng |1) [0™) | b).
. Apply HoDJ} on the registers Ri1, R> and R3 to generate the state

1 (1)
@) = 7= 1) Y > ALV Iy)b).

2” bEF?] yeF?D

. Apply fixed-point amplitude amplification® on |®) to amplify the probability of
observing R in the state |0) to 1 — ¢ for any given constant §
. Measure Rj3 in the standard basis and return the observed outcome

3Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett.,
113:210501, Nov 2014.
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Quantum Algorithm for Autocorrelation Sampling

HoDJ},
r-"-"——"—-"~"—"~—-"~—-"~-"“~-~" -~ “-~" -~ =—- =/ = B
B . . yis
f f
n |
Ry [0°7) [rer 8 oo}
Qn ®n | |
R3 0°") —H A S N

The final state of the circuit is given as

) =11 @0m @ (& S, F(0) 18)) + 3, 1) v @ (s Tp AR(y)16)
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Our Contributions e § Autocorrelation Sampling

Quantum Algorithm for Autocorrelation Sampling

The observed outcome returned by the above algorithm is a random sample from the
distribution {f(a)?/o}acry with probability at least 1 — 6. The algorithm makes

O(f/"—g log 2) queries to Ur and uses O(nf/"—‘%zr log 3) gates altogether.
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Classical Autocorrelation Estimation at a point a

m Observe that f(a) = & 3 (—1)")(—1)/x®3) = E_[X,] where the +1-valued

random variable X, = (—1)7(X)®f(x®3) is defined for x chosen uniformly at
random from {0,1}".
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Our Contributions e § Autocorrelation Estimation

Classical Autocorrelation Estimation at a point a

m Observe that f(a) = 4 3 (—1)7¥)(=1)f®2) = E,[X,] where the +1-valued

random variable X, = (—1)7(X)®f(x®3) is defined for x chosen uniformly at
random from {0,1}".

m The number of samples needed if we were to classically estimate F(a) with
accuracy € and error § is O(}2 log 1).
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Quantum Autocorrelation Estimation at a point a

Ry
Ry
Ry = [¢)
Ry =19)
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Our Contributions e § Autocorrelation Estimation

Quantum Autocorrelation Estimation at a point a |

Require: Parameters: e (confidence), d (error)
1 Start with four registers of which R; is initialized to |a), R> to |0), and R3, R4 to
07).
2 Apply these transformations.
!:> |0;3 07)107)
’7® n
T ) [0) (5 e b0 ) (B 22y 1))
CNOT
L 1310} (A= e 10 ) (B 2y v @ @) )
Ur®U «
X 13)10) (o S0P ) ) (5 32, ()0 |y @ ) )

> Uses reusable |—)

T, 1) 10) (s (=19 1) ) (5 2, (1702 |y) )
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Quantum Autocorrelation Estimation at a point a |l

= 12)10) [4) 2)
= Normalized state % S (=1)f™) |x) denoted v

m Normalized state \/% Zy(fl)f(y@a) ly) denoted ¢,
3 Apply ST on R», R3 and R4 to obtain

1 1
18) [10) © 5 (19) 162} + [¢a) 6)) + 1) @ 5 (1} 6a) 162} [0))]
a: £ < estimate the probability of observing R> in the state |0) with accuracy &5 and

error §
5. Return 2¢ — 1 as the estimate of |f(a)|?
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Quantum Autocorrelation Estimation at a point a

Theorem
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Estimation of Sum-of-Squares Indicator

m The sum of squares indicator is given as

or =Y f(a)’

EISIEY
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Our Contributions e § Autocorrelation Estimation

Estimation of Sum-of-Squares Indicator

m The sum of squares indicator is given as

or =Y f(a)’

EISIEY

m Note that 1 < o <27,

m Objective is to obtain an estimate of of with € accuracy and § probability of error.
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Classical Estimation of Sum-of-Squares Indicator

Let a, b, ¢ be three random variables chosen uniformly at random from F7 such that
b # c and let X, 5. be the +1-valued random variable (—1)f(2®b)(1)f(a®c),
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Our Contributions e § Autocorrelation Estimation

Classical Estimation of Sum-of-Squares Indicator

Let a, b, ¢ be three random variables chosen uniformly at random from F7 such that
b # c and let X, .. be the +1-valued random variable (—1)f(2®b)(—1)f(a®¢) Then,

7= Y HaP =Y [5 X (-pesieen]’

acFj acF} beFy

= 27; Z |:2n + Z (_1)f(a@b)@f(a€ac)}

EISY b#c
b,c€F]

1
=14 g7 D (1) EREr600)

aGFg
b#c

=1+ (2” — 1)Ea7b7c[Xa7b7c]
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Classical Estimation of Sum-of-Squares Indicator

m We estimate E[X, 5 ¢] using multiple independent samples of a, b, c.

D. Bera, S. Maitra and Tharrmashastha S. 18 December 2019 25 /28



Our Contributions e § Autocorrelation Estimation

Classical Estimation of Sum-of-Squares Indicator

m We estimate E[X, 5 ¢] using multiple independent samples of a, b, c.

= Note that E[X, ] = $—1 ~ 2.

D. Bera, S. Maitra and Tharrmashastha S. 18 December 2019 25 /28



Our Contributions e § Autocorrelation Estimation

Classical Estimation of Sum-of-Squares Indicator

m We estimate E[X, 5 ¢] using multiple independent samples of a, b, c.

= Note that E[X, ] = $—1 ~ 2.

m We can estimate E[X, p ] with € accuracy and § error in O(e%2 log $) calls to f().
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Classical Estimation of Sum-of-Squares Indicator

m We estimate E[X, 5 ¢] using multiple independent samples of a, b, c.

= Note that E[X, ] = $—1 ~ 2.

m We can estimate E[X, p ] with ¢ accuracy and § error in O L log 1) calls to £().
i} € 6

m To estimate of with accuracy ¢, we set ¢ = 5 N a
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Classical Estimation of Sum-of-Squares Indicator

m We estimate E[X, 5 ¢] using multiple independent samples of a, b, c.

Note that E[X, 5] = 2-1 ~ 3.

m We can estimate E[X, p ] with € accuracy and § error in O(e%2 log $) calls to f().

m To estimate of with accuracy ¢, we set ¢ = ] A oA
2n
m Hence, the number of calls to f() would be 0(26—2 log 1).
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Quantum Estimation of Sum-of-Squares Indicator

R ]
Uy Uy
Ry [0°m) P o

R |a)

m Remember that the final state of this circuit is
) = 1)@ [0m & (S, F(0) 18)) + 32, 11) ) @ (s Kb A1) 15)).
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Quantum Estimation of Sum-of-Squares Indicator

RO i
By o)

R |a)

N
N\
Fah)
N\
g
3

m Remember that the final state of this circuit is
) = 1)@ [0m & (S, F(0) 18)) + 32, 11) ) @ (s Kb A1) 15)).

m Since the probability of observing the output [0%") in Ry is 07/2", we ca estimate
of with an accuracy € and error § in © (% log %) calls to Us.
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Conclusion

m Autocorrelation is an important tool in constructing Boolean functions with good
cryptographic properties and in performing differential attacks.

m We presented an extension of Deutsch-Jozsa algorithm that can be used to
sample the Walsh spectrum of any higher order derivatives.

m We presented an algorithm to sample according to the distribution of normalized
autocorrelation spectral values.

m We presented techniques to estimate the autocorrelation coefficient value at a
point a and to estimate the Sum-of-Squares indicator of any given Boolean
function.
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Thank you for your attention! Any questions?

Hope you slept comfortably!
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