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Abstract—Parallel graph algorithms continue to attract a lot
of research attention given their applications to several fields of
sciences and engineering. Efficient design and implementation of
graph algorithms on modern manycore accelerators has to how-
ever contend with a host of challenges including not being able to
reach full memory system throughput and irregularity. Of late,
focusing on real-world graphs, researchers are addressing these
challenges by using decomposition and preprocessing techniques
guided by the structural properties of such graphs.

In this direction, we present a new GPU algorithm for
obtaining an ear decomposition of a graph. Our implementation
of the proposed algorithm on an NVidia Tesla K40c improves
the state-of-the-art by a factor of 2.3x on average on a collection
of real-world and synthetic graphs. The improved performance
of our algorithm is due to our proposed characterization that
identifies edges of the graph as redundant for the purposes of an
ear decomposition.

We then study an application of the ear decomposition of a
graph in computing the betweenness-centrality values of nodes
in the graph. We use an ear decomposition of the input graph to
systematically remove nodes of degree two. The actual compu-
tation of betweenness-centrality is done on the remaining nodes
and the results are extended to nodes removed in the previous
step. We show that this approach improves the state-of-the-art
for computing betweenness-centrality on an NVidia K40c GPU
by a factor of 1.9x on average over a collection of real-world
graphs.

I. INTRODUCTION

Graph algorithms on modern many- and multi-core archi-
tectures are fundamental to computer science with applications
to several domains. However, architectural peculiarities in
modern many- and multi-core architectures impose significant
constraints on the practical performance of parallel graph
algorithms. For instance, the irregular memory accesses that
are induced by parallel graph algorithms on modern com-
puter architectures imposes a huge performance penalty on
their performance. To alleviate these performance bottlenecks,
researchers relied on optimizations with respect to data struc-
tures [8], memory layouts, and SIMD processing [27].

A recent trend to improve the practical efficiency of parallel
graph algorithms is to, in addition, focus on real-world graphs
and look for structural properties of such graphs and their
impact on the algorithm design and implementation process.

Examples include algorithmic enhancements tailored to real-
world graphs for biconnectivity [7], strong-connectivity of
directed graphs [13], preprocessing to reduce the size of the
graph [2], decomposition into subgraphs based on biconnected
components for shortest paths and betweenness-centrality [4],
[28], decomposition based on Metis and ParMetis for shortest
paths [12], and the like.

One such property that we focus in this paper is that real-
world graphs, being sparse in nature, tend to have a reasonably
good number of nodes of degree at most two. Removing
such nodes can be helpful in problems such as computing
the betweenness-centrality of a given graph. However, care
is required to ensure that the centrality values of nodes
removed from the graph can be computed efficiently using the
corresponding values at nodes of degree greater than two. To
this end, we use the ear decomposition of a graph that helps
us to systematically identify and bookkeep details of nodes
of degree at most two. An ear decomposition of a graph is a
partitioning of a graph into simple paths that overlap only at
end points. See Figure 1 for an example.

This paper hence studies the ear decomposition of a
graph along with an application to compute the betweenness-
centrality of the nodes in a graph. Formally, an ear decom-
position of a graph is an ordered partition of the edges of
the graph into simple paths P0, P1, · · · , such that P0 is an
edge, P0 ∪ P1 is a cycle, and for i ≥ 1, Pi has no common
nodes with other lower indexed paths except the end points.
An ear decomposition of a graph finds applications to other
graph problems such as triconnectivity and planarity testing
(cf. [26]).

In this paper, we show that the existing parallel algorithm for
obtaining an ear decomposition as presented by Ramachandran
[26] offers scope for improvement. To this end, we identify
certain edges to be redundant for obtaining an ear decompo-
sition and therefore remove these edges from consideration.
(See Lemma 2.1). As a result of this characterization, the
algorithm of Ramachandran et al. [26] needs to be applied
only on a sparse subgraph of the original graph. Given the
sparse nature of the input graph, we incorporate suitable
changes in the computationally heavy steps of the algorithm of
[26]. With these techniques, our implementation outperforms



existing approaches by a factor of 2.3x on real-world instances
from the UFL dataset [1].

As an application of ear decomposition we show how to
compute the betweenness centrality of nodes in a graph G.
This measure indicates the relative importance of each node v
of G by considering number of shortest path passing through
v. We start with biconnected graphs and show that one can use
an ear decomposition of a biconnected graph to improve the
practical efficiency of computing the betweenness centrality
values of nodes in the graph. In particular, we use the ear
decomposition of a graph to remove nodes of degree two,
perform the computation of betweenness-centrality on the
remaining graph, and use a post-processing step to compute
the betweenness-centrality of nodes that were removed.

Having a post-processing step in our algorithm means that
unlike existing approaches [20], [21], [2], we need to retain
the results from the processing phase to the post-processing
phase. Doing so would require a large amount of space that far
exceeds the space available on current generation GPUs. To
address this problem, we interleave execution of the processing
and the post-processing steps along with identifying redundant
information that need not be stored and an orchestration of
nodes in the processing step. Using these techniques our
implementation outperforms existing approaches by a factor
of 1.51x speedup on a collection real-world graphs from the
UFL dataset [1].

Finally, using ideas from Sariyuce et al. [28] and Wang et
al. [31] we show how to extend our approach to graphs that
are not biconnected. Our approach achieves a speedup of 1.9x
on a collection of real world graphs from [1]. We note that
any improvements to GPU-based algorithms for breadth first
search (BFS) can improve our results too.

A. Related Work

Decomposition of graphs into subgraphs is a technique in
parallel graph algorithms that is gaining significant research
attention in recent years. Metis [17] decompose a graph into
a given number k of subgraphs such that the number of edges
that cross a partition is minimized. This decomposition is
being used parallel graph algorithms lately as a subroutine
[12]. However, for path-based problems such as shortest paths
and betweenness-centrality, decomposition via Metis may not
be ideal due to the presence of cycles that go across the
partitions induced by a Metis decomposition. These cycles
mean that computing shortest paths between nodes in two
different partitions is non-trivial.

Parallel algorithms in the PRAM style for obtaining an
ear decomposition are presented by Ramachandran [26] along
with applications to problems such as planarity testing and tri-
connectivity. Bader et al. [3] show the results of implementing
algorithm [26] on NPACI Sun E10K machines.

Computing the betweenness-centrality values of nodes in
a graph has seen lot of interest in recent years in parallel
computing research. Most papers [2], [28], [20], [21] use the
algorithmic approach of Brandes [6]. Sariyuce et al. [28] use
a biconnected component decomposition of a graph, compute
the betweenness-centrality of a node local to its biconnected

Fig. 1. An example of an ear decomposition. The labels on edges in part
(b) of the figure indicate the ear number they belong to.

component, followed by a post-processing step for computing
the betweenness-centrality values with respect to the entire
graph. In a sequential computing model, they show that such
a technique results in a speedup of 3.8x compared to Brandes
[6]. Wang et al. [31] provided optimizations similar to [28]
and achieve considerable speedup over existing multicore
implementations including that of the Ligra framework [19].

Optimizing BFS on a GPU with applications to
betweenness-centrality in unweighted graphs is studied
by Sariyuce et al. [2], and by Bader and Mc. Laughlin [20],
[21], [32]. Bader and Mc. Laughlin [20] improved the BFS
implementation of Jia et al.[16] and Shi and Zhang [29].
Bader and McLaughlin perform a BFS with each node of
the graph as the source of the BFS. Each such BFS is run
in parallel on a SMX (SM) of the GPU. The information
obtained from the BFS from v is used to compute the
betweenness-centrality of v. Improvements to GPU BFS
shown by Bader and Mc. Laughlin [21] lead to direct
improvements computing betweenness-centrality values over
their results from [20].

B. Organization of the Paper

The rest of the paper is organized as follows. In Section II,
we show our algorithm and its implementation for obtaining
an ear decomposition of a graph. In Section III, we show
how to use the ear decomposition of a graph to compute the
betweenness-centrality values of nodes in a given graph. The
paper ends with concluding remarks in Section IV.

II. EAR DECOMPOSITION

An ear decomposition of a biconnected graph G = (V,E)
is an ordered partitioning of the edges of G into simple paths
(ears) P0, P1, · · · as follows (see also [26]).
• P0 is an edge uv,
• P0 ∪ P1 is a simple cycle, and
• The end points of path Pi, for i ≥ 2, are on the

paths P0, P1, · · · , Pi−1, and path Pi has no other nodes
common with the nodes on the paths ∪i−1j=0Pj .

An example is shown in Figure 1. Notice that an ear
decomposition is not unique. The popular parallel algorithm
of Ramachandran [26] for obtaining an ear decomposition
proceeds as shown in Algorithm 1. The preorder numbers in
Line 2 of Algorithm 1 can be computed, for instance, as
described in [15]. For an edge e = uv, let lca(e) be the least
common ancestor (LCA) of the nodes u and v.

In a PRAM style of analysis [15], the algorithm has a
runtime of O(log n) and uses O(m+ n) work. However, in a



Algorithm 1 EarDecompose(G)(from[26])
1: T = SPANNINGTREE(G)
2: Root T at a node r, and label each node in T with its

preorder number
3: for each non-tree edge e = uv in G′ in parallel do
4: Label the edge e with lca(e)
5: end for
6: Sort the labels of non-tree edges in increasing order as

1, 2, · · ·
7: for each tree edge f = (parent(x), x) of T ′ in parallel do
8: Label f with the label of the nontree edge with the

smallest label whose fundamental cycle contains f .
9: end for

10: Edges with label i form the ear Pi for i ≥ 1.
11: Relabel the nontree edge with label 1 to have label 0.

practical setting, operations indicated in the algorithm usually
suffer from drawbacks mentioned below.
• Computing the preorder numbers of the nodes according

to T requires one to use the Euler tour technique [15].
This computation on pointer-based data structures such as
linked lists involves a lot of uncolasced memory accesses
that result in poor performance on GPUs.

• To identify the labels of the non-tree edges, one needs
to compute the LCA of the end points of every non-
tree edge. To achieve an O(log n) parallel runtime, the
algorithm suggests an O(log n) time and O(n) work
preprocessing based on range minima algorithms for LCA
queries. When one considers sparse graphs where the
number of LCA queries are small owing fewer non-tree
edges, such algorithms can increase the overhead on the
computation.

• The labeling of tree edges also has practical difficulties
similar to those mentioned above.

A. Our Approach for Ear Decomposition

Let G = (V,E) be a biconnected graph. In our work, we
start by identifying certain edges of G as redundant for the
purposes of obtaining an ear decomposition. These redundant
edges are removed from G to get a subgraph G′. The graph
G′ will have n nodes and at most 2n− 2 edges, making G′ a
sparse graph. We show that an ear decomposition of G′ can
be easily extended to an ear decomposition of G. To obtain an
ear decomposition of G′, we exploit its sparsity to improve on
the practical performance of the algorithm of Ramachandran
[26].

1) Identifying Redundant Edges: We consider an edge of
G as redundant for obtaining an ear decomposition if e can
be included as an ear containing just the edge e. We call such
an ear as a trivial ear. (See also [26]). A characterization for
identifying redundant edges with respect to biconnectivity of
a graph is presented by Cong and Bader [9]. A necessary and
sufficient condition for a graph to have an ear decomposition is
that the graph should be biconnected. Intuitively, edges that are
redundant in maintaining the biconnected nature of a graph can
also be possibly redundant for obtaining an ear decomposition.

Fig. 2. An example of using Lemma 2.1. In the graph on the left, we
note that edges shown in dashed lines and red color are redundant. An ear
decomposition, as ears P0 through P5, of the graph with the rest of the edges
is shown in the right part of the figure. As the lemma shows, ears P6 through
P9 correspond to trivial ears of the redundant edges.

Indeed, as we show in the following lemma, biconnectivity and
ear decomposition share the same notion of redundant edges.

Lemma 2.1: Let T be a rooted BFS tree of a biconnected
graph G and F be a spanning forest of the graph G\T . Then,
edges in G \ (T ∪F ) are redundant for the purposes of an ear
decomposition.

Proof: Consider the graph T∪F . According to the charac-
terization of Cong and Bader [9], if the graph G is biconnected,
so is the graph T ∪ F . Therefore, if G is biconnected, then
T ∪ F has an ear decomposition. Let (P0, P1, · · · , Ps) be an
ear decomposition of the graph T ∪ F .

We claim that, (P0, P1, · · · , Ps, Qs+1, Qs+2, · · · , Qs+k) is
an ear decomposition of G where Qs+i is the edge ei in the
graph G \ (T ∪ F ) with k = |E(G \ (T ∪ F ))|.

To this end, notice that a single edge can also be an ear
in itself, which we call as a trivial ear. Hence, each Qs+i,
for 1 ≤ i ≤ k, is a valid ear. The endpoints of Qs+i,
for 1 ≤ i ≤ k, belong to the nodes in ∪sj=1Pj . Finally,
it can be noticed that E(G) = (∪si=0Pi) ∪

(
∪kj=s+1Qj

)
.

Therefore, (P0, P1, · · · , Ps, Qs+1, Qs+2, · · · , Qs+k) is an ear
decomposition of G. Notice that the numbering of edges (ears)
in G \ (T ∪ F ) can be done in an arbitary manner.

An example is illustrated in Figure 2. Since T contains
n − 1 edges and F has at most n − 1 edges, the above
lemma indicates that on a graph G of n nodes and m edges,
the number of redundant edges is at least m − 2n + 2. The
remaining graph has thus at most 2n− 2 edges.

2) Algorithm for Ear Decomposition: The results of the
earlier section indicate that obtaining an ear decomposition of
a graph G can be achieved by obtaining an ear decomposition
of a sparse sub-graph G′. In this section, we make use of
properties induced by the sparsity of G′ to arrive at an ear
decomposition of G′ in an efficient manner. Our algorithm uses
a preprocessing step followed by employing the algorithm of
Ramachandran [26] with some changes, followed by a post-
processing step. Our algorithm is presented as Algorithm 2
with a brief description in the subsequent paragraphs.

a) Phase I: In Phase I, the pruning step requires a BFS
of G and another spanning forest computation on the graph
G \ T . For this, we use the optimized BFS implementation
from [22]. As mentioned in Steps 2–4 of Algorithm 2, we
first compute a BFS tree, T , of the graph G and a spanning
forest F of the graph G\T . As mentioned in Lemma 2.1, we
remove all edges in G \ (T ∪ F ) from further consideration.



Algorithm 2 EarDecompose(G)
1: /* Phase I – Pruning */
2: T = BFS(G)
3: F = SPANNINGFOREST(G \ T )
4: G′ = G \ (T ∪ F )
5: /* Phase II – Ear Decomposition*/
6: T ′ = SPANNINGFOREST(G′)
7: for each non-tree edge e = uv in G′ in parallel do
8: Label the edge e with 〈Level(lca(e)),#e〉
9: end for

10: for each tree edge f = (parent(x), x) of T ′ in parallel do
11: LABELTREEEDGE(f )
12: end for
13: /* Phase III – Postprocessing */
14: for each edge e ∈ G \ (T ∪ F ) in parallel do
15: Include e as an ear with just the edge e alone.
16: end for

The remaining graph, G′, has n nodes and at most 2n − 2
edges.

b) Phase II: Since the graph is sparse and has at most
2n−2 edges, the number nontree edges would be at most n−1.
Thus, LCA has to be found for at most n− 1 pairs of nodes.
Therefore, we note that a preprocessing for LCA queries may
not be essential. Instead, the LCA of a pair of nodes u, v can
be obtained by using the simple technique of walking along
the path from u and v to the root of the tree. This simple
technique has the advantage that all the LCA queries can be
done in parallel. The one disadvantage of the method is that
the time spent for each LCA query will now depend on the
distance of the LCA node. However, we show in a later section
that most LCA queries traverse a distance that is indeed small.
(See Tale I).

Labeling of Tree Edges: Notice that the graph for which
we obtain an ear decomposition has at most 2n− 2 edges of
which n − 1 edges appear as tree edges. Hence, the routine
LABELTREEEDGE in Line 11 of Algorithm 2 proceeds as
follows. Therefore, n − 1 fundamental cycles contain n − 1
tree edges. We therefore expect that the number of cycles that
pass through any given tree edge is small on average. This is
verified also empirically as shown in Table I.

In light of the above observation, we expect that the total
length of the fundamental cycles to be small. For this reason,
to find the label for the tree edges, we list the edges of each
fundamental cycle in an array A. Given that we can know
the length of each fundamental cycle from Steps 7–9 of our
approach, we can reserve space for each fundamental cycle
in the array and also calculate the starting index in the array
where the edges of each cycle have to be written. In this step,
there would be no need for costly synchronization operations.

Each element of the array A is of the form 〈e, `, f〉 where
e is the id of a tree edge, ` is the level number of the LCA
of the end-points of the non-tree edge f whose fundamental
cycle passes through e. We now sort [15] the elements of
A according to the first elements, followed by the second
element, and followed by the third elements of the tuples in
A. According to such a grouping, all the tuples corresponding

to each tree edge e appear in a contiguous manner. Once such
a grouping is achieved, we find the minimum in each group
using the segmented prefix operation [15].

c) Phase III – Postprocessing: In this phase, edges that
were pruned in Phase I will be included in the ear decompo-
sition of G as trivial ears.

B. Experimental Results

We study the performance of our algorithm for ear decom-
position in this section.

1) Platform: In this section, we introduce briefly our com-
puting platform that consists of an NVidia Tesla K40c GPU
attached to an Intel(R) Xeon(R) E5-2650. The Tesla K40c
GPU has 2880 compute cores arranged as 192 cores each in
15 SMXs. It has 12 GB on board memory and 64 KB of on
chip memory per each SMX. An L2 cache of 1.5 MB is shared
among all SMXs. Each SMX has a hardware scheduler which
schedules 32 threads at a time. This group is called a warp and
a half-warp is a group of 16 threads that execute in a SIMD
fashion. For more details of the Tesla K40c GPU, we refer
the reader to [23]. For programming the K40c GPU, we use
CUDA Version 7.5 as described in [24].

2) Datasets: We use the graphs listed in Table I for our
experiments. The graphs include both real-world graphs from
[1] and also Erdos-Reyni random graphs [5] generated using
the RMAT generator [11]. Since we require the graph to be
biconnected to have an ear decomposition, we made the graphs
in Table I biconnected by adding additional edges as needed.
We also remove self-loops and make all the graph undirected.

Graph name |V | |E| Edges Avg. ACE
Pruned Dist.

roadNet-CA 2.0 M 2.7M 15 K 10.42 8.18
roadNet-TX 1.4 M 1.9 M 11 K 10.44 7.77
soc-Epinions1 76K 508 K 294 K 2.17 1.89
patents main 241K 560 K 185 K 5.07 5.59
coAuthorsDBLP 299 K 977 K 447 K 2.89 4.2
soc-Slashdot0902 82K 474 K 371 K 2.44 2.72
caidaRouterLevel 192 K 609 K 284 K 3.4 4.3
scircuit 171 K 479 K 83 K 3.12 4.74
soc-sign-epinions 131 K 841 K 527 K 2.52 1.95
p2p-Gnutella31 62 K 147 K 52 K 4.16 4.17

Random Graphs G(n, p) [5]
G(1M, 10× 10−6) 1 M 10 M 8 M 4.86 9.31
G(1M, 20× 10−6) 1 M 20 M 18 M 3.99 7.79
G(1M, 40× 10−6) 1 M 40 M 38 M 3.68 6.86
G(1M, 80× 10−6) 1 M 80 M 77 M 2.99 5.92
G(2M, 10× 10−6) 2 M 10 M 6 M 5.15 7.6
G(2M, 20× 10−6) 2 M 20 M 16 M 4.98 9.66
G(2M, 40× 10−6) 2 M 40 M 36 M 4.13 8.03
G(2M, 80× 10−6) 2 M 80 M 76 M 3.87 7.3

TABLE I
LIST OF SPARSE GRAPHS THAT WE USE IN OUR EXPERIMENTS. THE

NUMBER OF NODES AND THE EDGES ARE ROUNDED TO THE NEAREST
THOUSAND (K) OR THE NEAREST MILLION (M). THE NOTATION G(n, p)

REFERS TO A RANDOM GRAPH ([5]) WITH n NODES AND AN EDGE
PROBABILITY OF p. THE NUMBER IN COLUMN LABELED ”EDGES
PRUNED” SHOWS THE NUMBER OF EDGES THAT ARE REDUNDANT

ACCORDING TO LEMMA 2.1. THE COLUMN LABELED ”AVG. DIST.” SHOWS
THE AVERAGE NUMBER OF TREE EDGES TRAVERSED TO FIND THE LCA OF

THE END POINTS OF A NONTREE EDGE. THE NUMBER IN THE COLUMN
LABELED ”ACE” INDICATES THE AVERAGE NUMBER OF FUNDAMENTAL

CYCLES ACCORDING TO A BFS TREE THAT PASS THROUGH A TREE EDGE.
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Fig. 3. Performance of our ear decomposition algorithm on real-world graph (a) and on random graphs (b). The last label ”Average” indicates the average
speedup on the dataset from Table I.

3) Results: We study the performance of our algorithm with
respect to that of [26], labeled as ”[26]” in Figure 3(a). For
a better understanding of the performance of our algorithm
labeled as OUR, we also add the pruning step from Algorithm
2 to the algorithm of Ramachandran [26]. This modification
is labeled as “[26] + Pruning” in the plot in Figure 3(a).
The “[26] + Pruning” approach uses the algorithm of [26]
on the graph G′ as described in Algorithm 1. Since there
are no implementations of the algorithm of [26] reported
on GPUs, we implemented the algorithm of [26] on GPUs.
In our implementations we have set number of threads per
CUDA block to 512 as this number was observed to provide
the best results for all implementations. Other GPU specific
considerations such as memory coalescing were also employed
to the extent possible in all implementations.

Figure 3(a) shows the absolute runtime as well as the
speedup of our algorithm with respect to that of [26]. The
speedup is shown on the secondary Y-axis. Note that the Y-
axes are on a logarithmic scale. It can be noticed that our
algorithm performs 2.3x better than the algorithm of [26]. If
we add the pruning step to the algorithm of [26], our algorithm
outperforms this variation by a factor of 1.54. This indicates
that our performance gains are due to both the pruning step
and other algorithmic enhancements to that of [26].

As the number of edges increase, Phase I of our algorithm
removes a bigger number of edges thereby reducing the
work in the latter phases resulting in a better speedup. This
observation is supported by our experiments on random graphs
in Figure 3(b) where we keep the number of nodes fixed at
1 M and 2 M nodes and increase the number of edges.

III. APPLICATION TO BETWEENNESS-CENTRALITY

An important computation on graphs is to find the
betweenness-centrality value of the nodes in the graph. Be-
tweenness centrality as a measure finds applications in several
areas of graph analytics such as those in social networks
[14] and biological graphs [18]. In a graph G = (V,E) the
betweenness centrality (BC) of a node v ∈ V is a measure of
the number of shortest paths that pass through v. Equation 1

(see also [6]) captures the above formally where σst denotes
number of shortest paths between s and t, and σst(v) denotes
number of shortest paths between s and t that also pass through
v.

bc(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(1)

Before we present our algorithmic approach for computing
the betweenness-centrality values of nodes in a given graph,
we briefly review the algorithm of Brandes [6] that has been
the algorithm of choice [28], [20], [21], [2] for computing
betweenness-centrality in parallel.

A. Brandes Algorithm

Brandes introduced an algorithm to compute betweenness
centrality that runs in O(n+m) space and O(nm) sequential
time. The algorithm of Brandes works in two stages: a forward
propagation stage and an accumulation stage. In the forward
propagation stage, from each node v ∈ V we first obtain the
sequence Sv in which nodes are visited according to the BFS
algorithm with source node as v. During this step, we also
store the number of shortest paths from v to other nodes in
V as σv and the parent of each node u in the shortest path
tree rooted at v, denoted as Pv(u). This information is used
in the accumulation stage to compute the partial betweenness
centrality of nodes in Pv by using the dependency relation
δ(u) =

∑
w:u∈Pv(w)

σvu

σvw
(1 + δ(w)), where u is the parent of

w in the shortest path tree rooted at v and δ(w) denotes the
partial betweenness centrality of a node w. The algorithm also
uses an array Dv() that contains the length of the shortest path
from v to all other nodes.

B. The Approach of Bader et al. [20], [21]

The main idea of the works of Bader and Mc. Laughlin
[20], [21] is to target GPU specific optimizations to perform
multiple BFS operations, one from each node of the graph
as a source node. Bader and Mc. Laughlin [20] use SMX
level parallelism and batch the n BFS operations on the
SMXs. Other techniques introduced in [20] include memory



Fig. 4. Figure (a) shows the input graph G with an ear decomposition where
the number on the edges indicates the ear they belong to. Figure (b) shows
the reduced graph Gr . A parallel edge in the reduced graph between nodes
a and c is shown as a dotted line for illustration purposes. Figure (c) shows
the partial betweenness-centrality values of nodes in Gr computed in the
processing phase of our algorithm. Figure (d) shows the final betweenness-
centrality values for all nodes obtained at the end of the post-processing phase.

usage optimization, reduction in atomic operations, and load
balancing based on the structure of the graph.

Bader and Mc. Laughlin [21] introduce further optimiza-
tions such as warp level parallelism and warp-level load bal-
ancing using dynamic scheduling. These optimizations result
in an improved BFS performance and a direct improvement
over [20] for computing the betweenness centrality values of
nodes in unweighted graphs.

C. Our Approach

Our algorithmic approach to compute betweenness-
centrality of nodes in a sparse graph uses the following outline.
We start by considering graphs that are biconnected. Such a
graph will have an ear decomposition as shown by [26, Lemma
2.1]. In a preprocessing step, we obtain an ear decomposition
of the graph. Using the ear decomposition to perform the
necessary book-keeping, we remove nodes of degree two
from the graph. Once the betweenness-centrality values of the
remaining nodes are computed, in a post-processing step we
compute the betweenness-centrality values for nodes removed
during the preprocessing step. Finally, we show how to extend
our approach to graphs that are not biconnected.

An illustration of our approach for biconnected graphs is
shown in Figure 4. In the following, we present a pseudocode
of our algorithm as Algorithm 3 and provide details of the
steps in our algorithm in Sections III-C1–III-C3.

1) Preprocessing: Let G = (V,E) be a biconnected graph.
The REDUCE(G) routine starts by obtaining an ear decomposi-
tion of G using Algorithm 2. In such a decomposition, nodes
of degree two, except possibly those on ear P0, appear on
exactly one ear. The resulting reduced graph Gr = (V r, Er)
is defined as follows. The nodes of Gr are the nodes of G
that have a degree at least three. Two nodes v and w in Gr

are neighbors if and only if v and w belong to a common ear
P of G and have no nodes of degree three or more between
them on the ear P . Figure 4(a)–(d) shows an example. For
a node x of degree two on ear P = (a1a2 · · · ak) in G, we
define functions left() and right() of x in Gr, denoted left(x)
and right(x), as the nodes of degree at least three on P that
are closest to x towards a1 and ak respectively. For instance,

Algorithm 3 Algorithm BetweennessCentrality(G)
1: /* Phase I : Preprocessing */
2: Gr = REDUCE(G)
3: /* Phase II : Processing */
4: for each v in Gr do in parallel do
5: (Sv , Dv , σv) = FWDSTAGE(v, G)
6: ACCUMULATE PARTIALBC(Sv , Dv , σv)
7: end for
8: /* Phase III : Post Processing */
9: for each v ∈ G \Gr do in parallel do

10: lx ← left(v) , rx ← right(v)
11: (Sv , Dv , σv) = SIM FWDSTAGE(v, lx, rx)
12: SIM ACCUMULATION(v, lx, rx, Sv , Dv , σv)
13: Update the BC values to the nodes in Gr

14: end for

in the example in Figure 4(b), left(f) = a and right(f) = c.
(The terms left and right are only mnemonic in nature.)

Notice that during the construction of the reduced graph,
there could be multiple edges between nodes in the reduced
graph. In this case, since we are interested in shortest paths,
we retain the edge with the shortest length and discard
the remaining edges. An example shown in Figure 4(b) for
purposes of illustration.

2) Processing: In the processing phase, we compute
betweenness-centrality values of nodes in Gr. We use the BFS
routine from [21] in our processing step and perform a BFS
in G from each node in Gr as the source node. Along with
each BFS, we perform the forward propagation stage and the
accumulation stage of the algorithm of Brandes. In the FWD-
STAGE routine, for each source node v, arrays Sv , Dv and σv
are recorded as the result of a BFS with v as the source node as
is done in the forward propagation phase. As G is unweighted,
Pv is not computed or stored explicitly and is simulated using
the Dv array. In the ACCUMULATE PARTIALBC routine, we
use the arrays Sv, Dv , and σv for each v ∈ Gr computed in
the forward stage to compute betweenness-centrality values of
nodes in Gr. However, these computed betweenness-centrality
values of nodes in Gr can change in the post-processing step
as the accumulation stage of nodes in G \ Gr is performed.
Therefore, we call these values as the partial betweenness-
centrality values as shown in Figure 4(c).

3) Post-processing: In this phase, we compute betweenness
centrality for nodes in G \ Gr and also make updates to the
partial betweenness-centrality values for nodes in Gr.

The routine SIM FWDSTAGE works as follows. Let x be
a node in G \ Gr with left(x) = `x and right(x) = rx.
We simulate the actions of executing the forward stage of
Brandes algorithm [6] for node x as follows. We need to
obtain arrays Sx, Dx and σx as part of the forward stage.
For obtaining the array Sx, we start by merging sequences
S`x and Srx as follows. Let v and w denote the first node in
S`x and Srx respectively. We now compare D`x(x) +D`x(v)
and Drx(x) +Drx(w). If the former is smaller, then we add
v to Sx. Otherwise, we add w to Sx. Nodes v and w are
incremented to be the next node in S`x and Srx depending
on which of v or w is added to Sx in this step. (Alike the



procedure Merge in Merge Sort [10]). In a similar fashion, we
can also obtain arrays Dx, and σx from the respective arrays
of nodes `x and rx.

Once these arrays are obtained for node x, the accumulation
stage (i.e SIM ACCUMULATION routine) of Brandes algorithm
can be simulated as described in Section III-A. During this
stage, the partial betweenness-centrality values of nodes in
Gr will be updated as needed. At the end of the post-
processing phase, we therefore have the final betweenness-
centrality values of all nodes in G as shown in Figure 4(d).

D. Implementation Details

In this section, we mention some of the important imple-
mentation details of our algorithm. Since we use the imple-
mentation from [21] in Phase II of Algorithm 3, we stand
to benefit from all the GPU specific optimimzations that are
included in the implementation of [21].

The preprocessing step in our algorithm necessitates a post-
processing step unlike other algorithms [20], [21], [32]. To run
the post-processing step, as described in our algorithm, we
need O(n) Bytes of information per node of Gr amounting
to O(n · nr) Bytes where nr = |V (Gr)|. For even moderate
value of n, this amount of space far exceeds the amount of
space available on current generation GPUs.

To alleviate this problem, we run the processing and the
post-processing steps in an interleaved manner. Doing so
naively will not result in any improvement in the space
utilization. However, we introduce two novel techniques in
our implementation that help us in the following way. Firstly,
in Section III-D1, we identify information computed in the
processing phase that is not needed in the post-processing
phase. Secondly, in Section III-D2, we orchestrate the nodes
in Gr as to when the processing step corresponding to a node
is performed and how long the information thus generated has
to be kept in the memory. This allows us to reuse the limited
space effectively.

1) Classifying Nodes in Gr: We observe that some nodes in
Gr do not correspond to the left() and right() of any node in
G\Gr. Thus, nodes in Gr can be partitioned into two subsets,
V f and V a. Nodes in V f , which we call as free nodes, are
such that their S,D, and σ arrays are not required by any
other node in G \ Gr during post-processing. On the other
hand, nodes v ∈ V a, which we call as active nodes, are such
that arrays Sv, Dv, and σv are required during post-processing.
Our storage requirement corresponds to storing the arrays for
nodes in V a. Information computed in the processing phase
with respect to nodes in V f need not be retained for the post-
processing phase.

2) Orchestrating Nodes in the Processing Phase: Our
technique here involves ordering the nodes in the processing
phase so that we can associate with every node v ∈ V a a
lifetime during which the arrays Sv, Dv, and σv are required
in memory for post-processing. Once the lifetime of a node
ends, the space used by its arrays can be reclaimed.

To this end, let F denote the subgraph of Gr induced
by V a. We now find the connected components of F using
standard parallel algorithms such as those presented in [30].
We also order the connected components of F in some

Fig. 5. Figure (a) shows the input graph G. Figure (b) shows the reduced
graph Gr . In Figure (b), nodes filled in black color indicate free nodes and
the other nodes are active nodes. The numbers on the active nodes in Figure
(b) indicate the BFS level number with f and k as the source nodes.

order, say F1, F2, · · · ,. Consider a connected component H
of F and define Dep(H) := {x|x ∈ G \ Gr, left(x) ∈
V (H) or right(x) ∈ V (H)}. Once nodes in Dep(H) finish
their post-processing, the information with respect to nodes in
H is no longer required to be in memory and the associated
space can be reused.

Further, we can seek an order of the nodes within H also as
follows. Consider a subset S ⊆ V (H) and Dep(S). Once the
post-processing of nodes in Dep(S) finishes, the arrays with
respect to nodes in S are no longer needed in memory. We
now observe the following with respect to S and Dep(S).

For a node x ∈ Dep(S), the nodes v := left(x) and w :=
right(x) are neighbors in H . Therefore, it follows that v and
w appear in either the same level or in consecutive levels of a
BFS of H . These observations allows us to define a order on
the nodes of H so that we can choose appropriate subsets S
that reduce the amount of storage required by our algorithm.

To this end, we perform a BFS in H and arrange the nodes
of H into sets L0, L1, · · · , such that nodes in Li for i ≥ 0 are
at a distance of exactly i from the source node s ∈ H of the
BFS. (The choice of s is immaterial to our discussion.) We can
start with S1 = L0∪L1 and compute Dep(S1) as defined. Once
the post-processing of nodes in Dep(S1) finishes, we define
S2 = L1 ∪ L2 and perform the post-processing of nodes in
Dep(S2). While doing so, we retain the arrays corresponding
to nodes in L1 in memory and remove those corresponding to
nodes in L0. In addition, we have to keep the arrays of nodes in
L2 in memory. In general, when performing post-processing
of nodes in Dep(Si), i ≥ 1, we need arrays for nodes in
Li−1∪Li. Thus, the space required for our implementation is
in O(maxi |Li−1 ∪ Li| · n).

The two techniques reduce our space requirement signifi-
cantly. In most real-world graphs, the technique illustrated in
Sections III-D1, III-D2 reduces amount of storage required by
76% and a further 82% on average respectively.

In our implementation, in the post-processing phase, recall
that for a node x ∈ G \Gr, we compute the arrays Sx using
the arrays S`x and Srx where `x = left(x) and rx = right(x).
To do so, we use one SMX for each node x. Threads within
an SMX compute the array Sx as explained in Section III-C3.
A similar approach is followed for computing the arrays Dx,
and σx.

E. Results

1) Platform: We use the GPU described in Section II-B1.
For comparison studies with respect to libraries running on



multicore CPUs, we use an Intel(R) Xeon(R) E5-2650 CPU
with 128 GB RAM and a memory bandwidth of 68 GB/s for
our experiments. The E5-2650 CPU is a dual processor where
each processor has 10 cores and each core can process two
threads using hyper threading. Each core operates at 2.34 GHz
which can be boosted to 3 GHz using turbo boost technology.
The E5-2650 CPU has 64 KB L1 cache per core, 256 KB L2
cache per core and a shared 25 MB L3 cache.

2) Datasets: We experiment with graphs from the dataset of
sparse graphs from the University of Florida dataset [1]. Since
we require the graph to be biconnected, we run algorithms
on the largest biconnected component of the graphs listed
Table II. Since graphs in the dataset from Table II have a
large biconnected component that spans more than 80% of
the edges, as indicated by numbers shown in column labeled
Largest BCC, the size of the graph that we run our algorithm
is not significantly compromised.

Graph name |V | |E| Largest BCC
|V | |E| %Deg=2

roadNet-CA 2.0 M 2.7 M 1.57 M 2.34 M 24.0
roadNet-TX 1.4 M 1.9 M 1.05 M 1.57 M 25.0
soc-Epinions1 76 K 508 K 36 K 365 K 27
patents main 241 K 560 K 151 K 474 K 26.1
coAuthorsDBLP 299 K 977 K 198 K 818 K 15.4
soc-Slashdot0902 82 K 474 K 515K 473K 23.0
caidaRouterLevel 192 K 609 K 132K 541 K 27.3
scircuit 171 K 479 K 135 K 335 K 13.5
soc-sign-epinions 131 K 841 K 58 K 642 K 27.7
p2p-Gnutella31 62 K 147 K 33 K 119 K 27.7

TABLE II
LIST OF GRAPHS THAT WE USE IN OUR EXPERIMENTS. IN THIS TABLE,

THE NUMBER OF NODES AND THE NUMBER OF EDGES ARE ROUNDED TO
THE NEAREST THOUSAND (K) OR THE NEAREST MILLION (M). THE LAST
COLUMN INDICATES THE PERCENTAGE OF NODES THAT ARE ELIMINATED

FROM THE LARGEST BCC DURING THE PREPROCESSING STEP.

3) Results: We compare the results of our algorithm, la-
beled as ”OUR” in the rest of this section, with a wide range
of algorithms listed in the following.

a) Bader and Mc. Laughlin [21]: This work is currently
one of the fastest for computing betweenness-centrality on a
GPU. We use the software from the authors of [21] in our
comparison. This result is labeled ”BM15” in the rest of the
section.

b) Gunrock Library [32]: Gunrock is a GPU based
library for graph algorithms, which contains a routine for
computing betweenness-centrality. We use the software from
[32] and label this result as ”Gunrock” in the rest of this
section.

c) APGRE [31] and Ligra [19]: Wang et al. [31] extend
the work of Sariyuce et al. [28] to multi-core CPUs. We
implement the algorithm of [31] on the CPU described in
Section III-E1 with a thread per core and label this result
as ”APGRE”. The Ligra library [19] consists of routines for
graph algorithms and runs on multicore CPUs. On our dataset,
as we observed that APGRE is consistently faster than Ligra,
we show only the results from APGRE [31] 1.

On the graphs from Table II, the overall time taken by
the above algorithms on the largest biconnected component

1Detailed timings are provided at cstar.iiit.ac.in/∼kkishore/paper.pdf

is plotted in Figure 6(a)2. The Y-axis of Figure 6(a) is on a
logarithmic scale. The secondary Y axis of Figure 6(a) shows
the speedup of our algorithm over the best of above mentioned
baseline algorithms.

The relative speedup obtained by our algorithm with respect
to individual algorithms is shown in Table III. The columns
under the head ”Largest BCC” refer to the speedup on each
of our instance with respect to the algorithm of Bader and
McLaughlin [21], the Gunrock library [32] and the algorithm
of Wang et al. [31]. As can be seen from Table III, the average
speedup achieved is 1.6x, 2.08x and 1.96x with respect to [21],
[32], and [31] respectively.

The throughput achieved by the algorithms under study is
shown in Figure 6(b). The throughput of an algorithm for
computing the betweenness-centrality on a graph G of n nodes
and m edges is measured as n·m

t Traversed Edges Per Second
(TEPS) where t is the time taken in seconds by the algorithm.
The quantity MTEPS refers to Million TEPS. As can be seen
from Figure 6(b), our algorithm achieves a higher MTEPS
compared to the other three algorithms.

Performance on Synthetic Datasets: To understand how
the number of nodes eliminated in the preprocessing step of
Algorithm 3 can impact the speedup achieved, we construct a
synthetic graph of n nodes with average degree d as follows.
A cycle graph on n nodes ensures that the graph will have
only one biconnected component. On this cycle graph, we
mark an t% of nodes as nodes that will have a degree of two.
The degree of the rest of the unmarked nodes is increased by
adding edges to pairs of nodes chosen uniformly at random.
We ensure that each unmarked node has degree at least three.

We study the results of our approach on synthetic graphs
of size ranging from 100 K nodes to 300 K nodes with an
average degree of 20 to 30. We vary the percentage of nodes
that can be removed from the reduction step from 10% to 50%.
We study the speedup of Algorithm 3 with respect to that of
Bader and Mc. Laughlin [21]. As shown in Figure 7, for a
fixed n, as the percentage of nodes of degree two increases,
the speedup achieved by our algorithm also increases.

F. Extending our Approach to General Graphs

So far, we have assumed that our input graph is biconnected.
In general, however, most real-world graphs are not bicon-
nected. In this section, we briefly show how to extend our
techniques to non-biconnected graphs. We start by reviewing
the BADIOS framework of Sariyuce et al. [28] and the APGRE
framework of Wang et al. [31] that we use in our solution.

1) The BADIOS and the APGRE Framework: The main
idea of the BADIOS framework [28], called as APGRE frame-
work in [31], is to decompose a graph G into its biconnected
components (BCCs) and use Brandes algorithm [6] on the
individual biconnected components.

In the algorithm of Sariyuce et al., each BCC has a copy of
the articulation point, called as an alias node, which connects
it to other neighbouring BCC’s in the original graph G.

2Note that in [21], absolute time taken as mentioned are normalized to
8192 iterations. Similarly, the timings shown in [32] are normalized to one
iteration.
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Fig. 6. Comparing the overall performance improvement of Algorithm 3 with respect to that of [21], [32], [31], [19]. The plot on the left (resp. right)
shows the absolute time (MTEPS) achieved by our algorithm, BM15 [21], Gunrock [32], and APGRE [31], in that order, respectively. The last instance on
the X-axis of part (a) of the figure shows the average speedup of our algorithm over the best of the other three algorithms.

Speed up with respect to
Graph name Largest BCC Entire Graph

BM15 GUNROCK APGRE BM15 GUNROCK APGRE
roadNet-CA 1.62 3.06 1.61 1.81 3.56 2.62
roadNet-TX 1.64 5.26 1.80 1.81 6.94 2.15
soc-Epinions1 1.30 2.32 1.41 2.59 6.03 1.92
patents main 1.81 1.38 2.12 1.80 1.43 1.28
coAuthorsDBLP 1.35 1.09 2.46 2.05 2.02 2.88
soc-Slashdot0902 1.69 1.70 1.45 2.15 2.56 1.64
caidaRouterLevel 1.83 2.07 2.73 2.53 2.98 2.30
scircuit 1.29 5.41 1.29 1.50 7.07 1.57
soc-sign-epinions 1.81 2.63 1.84 3.47 6.24 2.09
p2p-Gnutella31 1.78 3.43 1.92 3.89 10.56 2.30
Average 1.60 2.08 1.96 2.06 3.44 2.04

TABLE III
THIS TABLE SHOWS THE RELATIVE PERFORMANCE OF OUR ALGORITHM,

LABELED OUR, OVER [21] LABELED ”BM15”, [32] LABELED
”GUNROCK” AND [31] LABELED ”APGRE” ON THE LARGEST BCC

AND THE ENTIRE GRAPH.

Fig. 7. The relative performance obtained by Algorithm 3 over [21] on
synthetic graphs.

A reachability metric is defined for alias nodes as follows.
Consider the ith BCC Gi = (Vi, Ei) of G let v′ ∈ Vi be an
alias node. Consider any node u ∈ Vi that is different from v′.
The reachability metric for v′, denoted reach(v′), is set to the
number of nodes x ∈ V \Vi such that the path between u and
x passes through v′. (Note that the choice of u is immaterial
in the above.) Reach values for every alias node is computed
by a leaf-to-root traversal of the block tree T as described by

Puzis et al. [25]. The reachability metric is useful in extending
the betweenness centrality values computed on the BCCs of
G to the entire graph.

2) Our Algorithm for General Graphs: To use the frame-
work of BADIOS [28] or APGRE [31], we start by decom-
posing the input graph G into its biconnected components,
G1, G2, · · · ,. Since each of these components, Gi, i ≥ 1,
are biconnected, they possess an ear decomposition. So, each
Gi can be taken as input to Algorithm 3 to compute the
betweenness-centrality values of nodes in Gi. At this point,
once we have the reachability values for alias nodes as is done
in [28], [31], it will be possible to extend the betweenness-
centrality values of nodes with respect to each Gi to the entire
G. One can view this approach as having two preprocessing
steps: the first step decomposes G into its biconnected com-
ponents, the second step applies ear decomposition on each
component. In the processing step, betweenness-centrality val-
ues with respect to each biconnected component is computed
similar to the processing phase of Algorithm 3. Finally, we
have two post-processing steps: first that is similar to the post-
processing phase of Algorithm 3, and the second one similar
to that of the corresponding step in [28], [31].

3) Results: We reconsider the graphs listed in Table II and
apply our approach to compute betweenness-centrality. We use
the experimental platform mentioned in Section II-B1. For
performance comparison, we consider the algorithms listed in
Section III-E3. The results are shown in Figure 8.

Figure 8(a) shows the time taken by our algorithm and
the other algorithms on the graphs listed in Table II. The
numbers in Figure 8(a) show the speedup achieved by our
algorithm compared to the best of the other three algorithms.
The speedup with respect to each of the algorithms is shown in
Table III in the columns labeled ”Entire Graph”. The speedup
achieved in the case of the entire graph is higher than the
speedup achieved on the largest biconnected component of
the corresponding graph as can be seen from Figures 8(a) and
6(a). The reason for this is that when using the algorithms
from [21], [32], every BFS has to run on the entire graph. In
our algorithm, and also that of [31], each BFS runs only local
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Fig. 8. Comparing the overall performance improvement of Algorithm 3 with respect to that of [21], [32], [31], [19]. The plot on the left (resp. right) shows
the absolute time (MTEPS) achieved by our algorithm, BM15 [21], Gunrock [32], and APGRE [31], in that order, respectively. The last instance on the X-axis
of part (a) of the figure shows the average speedup of our algorithm over the best of the other three algorithms. These results are for the entire graph.

to a biconnected component. The throughput of our algorithm
as MTEPS is shown in Figure 8(b) along with the throughput
achieved by the other algorithms.

IV. CONCLUSIONS

In this paper, we studied the ear decomposition of a graph
and its application to finding the betweenness-centrality of
nodes in a graph. Our results indicate that for problems such as
betweenness-centrality, using an ear decomposition is effective
and practical. We believe that our technique is of independent
interest and can be applied to other graph problems.
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