
SMIM framework to generalize high-utility itemset mining
Siddharth Dawar, Vikram Goyal and *Debajyoti Bera(dbera@iiitd.ac.in)

Department of Computer Science, Indraprastha Institute of Information Technology (IIIT-Delhi)

Full version at https://www.iiitd.edu.in/∼dbera/docs/2021-smim.pdf

SMIM: Generalization of High-Utility Itemset Mining (HUIM)

Table 1: Example of a transaction database and utilities of two itemsets {A,C}, {G,H} for two different utility functions u() (as
used in HUIM) and ucov() (which is subadditive and monotone). ucov() also takes a relationship graph as input as shown in Fig. 1.

TID Transaction w(A) w(C) w(G) w(H) u(AC) u(GH) ucov(AC) ucov(GH)
T1 (A : 5) (C : 10) (D : 2) 5 10 0 0 15 0 35 0
T2 (A : 10) (C : 6) (E : 6) (G : 5) 10 6 5 0 16 0 40 0
T3 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 10 0 0 0 0 0 0 0
T4 (A : 5) (B : 2) (C : 3) (D : 2) (G : 1) (H : 41) 5 3 1 41 8 42 20 83
T5 (B : 8) (C : 13) (D : 6) (E : 3) 0 13 0 0 0 0 0 0
T6 (F : 1) (G : 2) 0 0 2 0 0 0 0 0
T7 (F : 4) (G : 3) 0 0 3 0 0 0 0 0

u(AC) = 39 and u(GH) = 42, so u(GH) > u(AC); however, ucov(AC) = 95 and ucov(GH) = 83, so
ucov(GH) < ucov(AC). High-utility itemsets may change when the underlying utility function is changed.

High-utility itemset mining
(HUIM)

Given a threshold θ, identify itemsets X with
utility u(X) ≥ θ, where the utility of an itemset
is defined as

u(X) =
∑

T∈D,X⊆T
u(X,T),

and the utility of X in a transaction is defined as
u(X,T) =

∑
y∈X

w(y, T),

where w(y, T) denotes the weight/individual-
utility of the item y in T .

SM utility functions

•A function f : U → R+ is defined as subadditive
if ∀X, Y ⊆ U , f (X ∪ Y) ≤ f (X) + f (Y);
SUM(U) =

∑
y∈U

f (y) is subadditive, but

PROD(U) =
∏
y∈U

f (y) is not.

•A function f : U → R+ is defined as monotone if
∀X ⊆ Y ⊆ U , f(X) ≤ f(Y); SUM(U) =

∑
y∈U

f (y)

is monotone, but MIN(U) = min
y∈U

f (y) is not.

Acknowledgements
This work was supported in part by Infosys Centre for Artificial
Intelligence, IIIT-Delhi, and Visvesvaraya Ph.D. scheme for
Electronics and IT.

SMIM: HUIM using a subadditive
& monotone utility function

Given any arbitrary subadditive and monotone
(SM) utility function u′() over weighted itemsets,
and threshold θ, identify itemsets X with utility
u′(X) ≥ θ, where the utility of an itemset is
defined as

u(X) =
∑

T∈D,X⊆T
u(X,T),

and the utility of X in a transaction, denoted
u′(X,T), is defined in terms of the items in X
along with their weights/individual utilities.

Examples of SM functions

Let w(y) denote the weight of an item y in a set X .
•SUM(X) = ∑

y∈X w(y) – this is used in HUIM
•Discounted profit DP (X) = total profit X under
the scheme “Buy 1 pencil, get 1 eraser free”

•Co(X) = number of nodes that are either in X
or neighbor of some node in X

• (order X in increasing order of weights)
ucov(X,T) = w(y1)× Co(X)
+ ∑k

j=2(w(yj)− w(yj−1))× Co({yj · · · yk})

B A

C D E

F G

H

Figure 1: External graph
used to compute Co()
and ucov()

Contributions

1 SMIM framework for mining high-utility
itemsets using any subadditive and monotone
utility function defined on weighted itemsets.

2 SM utility functions have mathematically
helpful properties, and can model traditional
HUIM, HUIM in the presence of multi-item
discounts, and several variations of HUIM as
considered by [Yao,Hamilton,Geng 2006].

3 Going beyond the HUIM framework, SMIM
can incorporate extraneous interactions among
the items in an itemset in their utility, e.g., to
identify influential users in a Twitter dataset.

4 We prove a few interesting utility functions to
be subadditive and monotone, e.g., DP (),
Co(), and ucov().

5 A novel inverted-list data structure called
SMI-List and an algorithm called SM-Miner to
mine high-utility itemsets for SM functions.

6 We also show how to adapt the existing HUIM
algorithms for SMIM, but empirically show
that SM-Miner delivers better performance.

Adapting HUIM algorithms

•Transaction merging should be disabled when
adapting projection-based algorithms to SMIM.

•Ex.: ucov({F,G}, T6) = 7 and
ucov({F,G}, T7) = 15. If we merge them to a
single transaction M = {(F : 5), (G : 5)}, then
we get ucov({F,G},M) = 20.

•Tree-based algorithms for HUIM may be adapted
towards SMIM if unpromising items are retained
during local tree creation since removing them
may yield incorrect estimates of some utilities.

•Ex.: Let T = {(A1 : q1), . . . (An : qn)} be some
transaction, itemset X = {A1} and itemset
Y = {A2, . . . , An}. Suppose that A1 is
unpromising. For HUIM, u(X,T) + u(Y, T) =
u(X ∪ Y, T); therefore, u(X ∪ Y, T)− u(X,T)
correctly estimates u(Y, T). However, this may
not hold for other utility functions where
f (X,T) + f (Y, T) > f (X ∪ Y, T).

SM-Miner

A single efficient list-based algorithm for mining
high SM-utility itemsets given blackbox access to
any SM-utility function.

Figure 2: Performance evaluation of SM-Miner (our), and SMIM
implementations of EFIM, D2HUP, UP-Growth+ (using ucov).

•For HUIM (using SUM utility function), D2HUP
and EFIMSM were observed to perform the best
on sparse and dense datasets, respectively.

•Tree-based algorithm UPG+-SM and list-based
algorithm SM-Miner performs better than
projection-based algorithms on sparse datasets.
SM-Miner competes with EFIMSM on dense
datasets.

•The total execution time of the algorithms appear
to be more correlated with the number of utility
function calls than the number of candidates
generated, unlike for HUIM.

