
BOSTON UNIVERSITY

GRADUATE SCHOOL OF ARTS AND SCIENCES

Dissertation

QUANTUM CIRCUITS: POWER AND LIMITATIONS

by

DEBAJYOTI BERA

B.Tech., Indian Institute of Technology, Kanpur, 2002

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

2010

Approved by

First Reader
Steven Homer, Ph.D.
Professor of Computer Science
Boston University

Second Reader
Frederic Green, Ph.D.
Professor of Mathematics and Computer Science
Clark University

Third Reader
Péter Gács, Ph.D.
Professor of Computer Science
Boston University

DEDICATION

To Bhai

and

other young minds of Kolkata

Acknowledgements

“So long, and thanks for all the fish”

Looking back at the year 2001, I see a lean, bespectacled IIT-ian madly hitting a keyboard

to fix the X configuration of some friend’s Linux installation. It was almost decided,

by my peers of course, that the next protagonist of the Open source movement would be

“dBera”. That disaster was narrowly, and thankfully, averted when I enrolled for the

“Circuit Complexity Theory” course taught by Prof. Manindra Agrawal. Many of the

random ideas that struck me during that course took shape in various forms over the

next several years and culminated in this thesis. Nostalgia breaths even more because

one of the next chapters is based on a question that first occurred to me back then.

Prof. Agrawal deserves a special mention because other than being an excellent teacher,

he was also my undergraduate advisor and introduced me to “Quantum Computing” as

part of my final year project. He is solely responsible for turning my attention towards

theoretical computer science. This thesis, on quantum circuit complexity, is my humble

token of appreciation for his effort and sincerity.

Barring a sojourn of 6 months, the cruise continued on unknown waters, with a differ-

ent commander now on the deck. My Ph.D. advisor, Prof. Steve Homer, patiently let me

explore the depths but gave the screw the crucial half-turn just when needed to prevent

me from floating away. I can’t thank him enough for his constant encouragement and his

confidence in me.

My co-advisor, Prof. Fred Green, has a direct contribution in this thesis with his stylish

penchant for precision and the quotation in the final chapter. His overall effect on my

research spans a multitude of expert guidance, from technicalities of circuit complexity to

iv

physics insights to quantum computing. Anytime I had a crazy idea, I could safely throw

it at him and hope to receive a surprisingly inspiring reply, or at the very least, a witty

and funny remark to end the discussion.

I had many fruitful discussions with Prof. Jin-Yi Cai when he was visiting Boston,

some of which helped me shape the lower bound results in this thesis. I would also like

to thank Prof. Steve Fenner, one of my co-authors, for a successful collaboration on the

“universal circuit” paper. I would like to thank Prof. Péter Gács foremost for agreeing

to read my thesis and also for all the insights he shared with me at other times. I still

have fond memories of one of my first graduate courses in BU which was taught by

Péter. Prof. Leo Reyzin, who agreed to be on my thesis defence committee, exposed me

to the dark world of thieves and eavesdroppers (aka cryptography). Now I not only find

cryptography research stimulating but I also know how to keep myself secure 1.

I could not have asked for a better mentor than my long time office-mate Benjamin

“Joe” Hescott. Soon after we started sharing office during my second semester, he began

my training for initiation into the league of extraordinary graduate students. Over the next

few years, I saw first-hand how to explore The Complexity Zoo, set goals for research and

go about achieving them. I believe his training was successful, as a sign of which, he

bestowed me with a great many bounties when he left, including a well-maintained bike.

All that I inherited from Ben and still unconsumed, will now be passed on to Bhavana

Rukmini Kanukurthi, my office-mate and the next care-taker of the theory cells. After

Ben left, she occupied his desk and along with that, the hat of a perfect office-mate

anyone could ask for. It is not uncommon during graduate study to slip and lose sight

of the goal. She kept an unerring eye on me to ensure an unhindered finish and offered

support, asked or unasked, professional and personal. Befriend her if you get a chance,

if only for the delicious aloo-parathas2 and chai that she makes.

Kyle “Monkey”3 Burke began after me but beat me in graduation. He actually made it

1(Off the record) and, how to steal without getting caught.
2Not many Indian restaurants in the USA serve this stuffed flat-bread delicacy.
3self-proclaimed

v

easier for me by figuring out the logistics. Always overflowing with energy, he is a great

asset for any gathering. We were partners in crime (nothing serious here). I am greatly

indebted to him also for his ... the list is long but I don’t have the space. Sorry, Kyle!

Scott was the quintessential American, and graced our tiny bench of culinary experts.

Pastry and workout, party and sincerity, these are allowed to appear together when we

talk about him. During his final year, his job was to keep my procrastination under

control and I am sure I would have graduated earlier if he deferred his. The last person

from the older generation who was a part of the intellectual hangout of PSY-221 is Nenad.

It was, and is, a pleasure talking to him, maybe because he knows how to read between

my lines or maybe because he plays computer games. I interacted with both Scott and

Nenad on some of their crypto research, and I owe a large part of my current skills in

cryptography to them.

After Ben, Scott and Nenad ditched my words of wisdom in exchange of real pay-

checks, the reputation of our office was kept floating by Ilir and David (besides Bhavana

and Kyle). I would like to officially thank the former, a diver from a small country, for

marrying someone who makes über-awesome Turkish coffee. She’s the best. David was

always the oracle, especially in algebra, with ready solutions to most of the questions we

asked. When I was his TF, I surely learnt more Algebra myself than the students.

I made many new friends in this department, and some of the friendship will hope-

fully continue even after I leave. The faces that immediately come to the forefront are

mostly from the networking group. There was a time when I used to spend more time

in the network research area (the dual-core dual-monitor machines were just a good ex-

cuse). The enthralling atmosphere created by Kanishka, Dhiman, Georgios, Niky and

others stimulated a lot of discussions and produced interesting research. It felt great to

participate in solving networking research problems without actually writing any code! I

always enjoyed my special rapport with Vijay. After he graduated, the lab never felt the

same and I miss our long sessions with XBox or on contemporary politics. The cama-

raderie among the graduate students in the department is something we are proud of.

vi

Surrounded by Ashwin, Gabe, Mike, Vitaly (and his little friend), Sowmya, Vatche and

many others, we always had a great time together whenever we met. It was wonderful to

have all these great researches as my peers during my graduate days.

Outside of BU too, many new bonds were forged and some existing ones were tight-

ened. Most of my friends outside BU have some form of MIT connection. I became very

close friends with Saikat and Siddharth, which is something I will cherish for the rest of

my life. Living in Boston would have been very different, and very difficult for sure, if

not for the MIT mafia!.

On our mission to scale the heights that are set for us, we sometimes share our road

with other peregrines, in a way that changes forever our perception of the mission. I was

lucky our paths crossed during the final years of my PhD programme. This effort would

not have its shine without her words of inspiration, her confidence in me, her endurance,

and a lot of simple wishes.

I am dedicating this dissertation to my loving brother, Debarun. While I was busy

balancing my way on a slippery road, he took over on his young shoulders the huge

responsibility of everything else back home. He sacrificed much to ensure that I have a

free run with my apocalyptic idiosyncrasies.

My parents are above and beyond all thanks that I can ever gather. It is plain futile

to even try to put into words their support and encouragement for me during all these

years as a graduate student. I hope I somewhat succeeded in meeting their expectations.

This thesis, which contains whatever outcome of my research efforts that I could

possibly “write”4 in words, is a joint fruit of labour, persistence and confidence of a lot of

people, spread all around the globe. I took this opportunity to thank all those who helped

me turn a possibility into a reality. I surely missed more names than I remembered to

mention above. But mentioned or unmentioned, my gratitude transgresses the words I

used to express my heartfelt thanks.

4Though this thesis was typed, all the results were first proved on rough papers, the unsung heroes of
academic life.

vii

QUANTUM CIRCUITS: POWER AND LIMITATIONS

(Order No.)

DEBAJYOTI BERA

Boston University, Graduate School of Arts and Sciences, 2010

Major Advisor: Steven Homer, Professor of Computer Science

Boston University

ABSTRACT

Quantum computation was proposed as an alternate computing process in the late-

20th century, when classical computing models faced limitation in solving quantum me-

chanical problems. Major breakthroughs came in the 1990s, when quantum algorithms

for integer factoring and black-box searching were invented that are faster than the best

classical algorithms known even today. In this thesis, we look at quantum circuits with

limited depth and size and analyse their power and limitations.

Computer Science is about the study of computational problems, many of which are

motivated by real-world applications. We are interested as much in an actual method

to solve a problem as in its unsolvability. In computational complexity theory we sep-

arate out the actual problem from the computing apparatus (e.g. a Turing machine, an

AND-OR circuit) and analyse the hardness of the computation, due both to the intrinsic

complexity of the problem and to the underlying model.

In this thesis, we consider quantum circuits built with a universal set of gates and

show that non-constant depth is required to compute a particular function (parity) and

other similar functions. The parity function, extensively studied previously, was shown

to take non-constant depth for classical circuits too, thus providing an evidence of an

inherent hardness in the function itself. On the other hand we show that the quantum

circuit model is rich enough to build a universal circuit (one circuit that can simulate all

circuits) that has roughly the same depth or size as the simulated circuit. We also consider

a fault model in which some of the inputs to a gate might not be connected to the gate’s

output. We ask if we can detect the faulty inputs by testing the gate on different inputs.

viii

Our goal is to minimise the number of tests. We show that this is very hard for general

gates but for certain gates it can be provably easier to detect faulty inputs. We even show

that quantum algorithms can provably outperform classical algorithms for these gates.

These results give us a sense of wherein lies the power of quantum computation and

quantum circuits in particular.

ix

Contents

Acknowledgements iv

Contents x

List of Tables xiii

List of Figures xiv

List of Abbreviations xvi

1 Introduction 1

1.1 Quantum Computing . 3

1.2 Outline and main contributions . 4

1.2.1 Universal Quantum Circuit . 5

1.2.2 Lower Bounds . 6

1.2.3 Detection of Faulty Gates . 7

1.2.4 Future Direction . 7

2 Quantum Circuit Complexity 9

2.1 Background . 9

2.1.1 Motivation . 11

2.2 Quantum Circuit Model . 12

2.2.1 Quantum Gates . 15

2.2.2 Fanout Gate . 18

2.2.3 Ancillæ . 19

2.2.4 Universal quantum gates . 20

2.3 Previous results . 21

2.4 Other models: Quantum decision tree . 23

x

3 Universal Quantum Circuit 25

3.1 Introduction . 26

3.1.1 Other relevant work . 28

3.2 Building Blocks: Quantum Gates . 30

3.3 Depth-universal quantum circuits . 31

3.4 Size-universal quantum circuits . 37

3.5 Other results . 40

3.6 Summary . 42

4 Quantum Circuit Lower Bound 44

4.1 Introduction . 44

4.2 Motivation and related work . 46

4.3 Bounded fanin circuits . 48

4.4 Unbounded fanin circuits . 50

4.4.1 Earlier technique . 50

4.4.2 Our technique . 51

4.4.3 Approximating a circuit . 54

4.5 Application: Lower bound for parity . 58

4.6 Summary . 62

5 Detecting Input Sensitivity of Gates 64

5.1 Introduction . 65

5.2 Problem statement . 66

5.2.1 Relation to sensitivity . 68

5.2.2 Organisation . 69

5.3 Related work . 70

5.4 Parity gate . 71

5.4.1 Quantum detection circuit . 72

5.4.2 Classical deterministic lower bound 72

5.4.3 Classical probabilistic lower bound 73

xi

5.5 Algebraic query complexity . 74

5.5.1 Generalised unordered search . 75

5.5.2 Lower bound for generalised query complexity 77

5.6 AND gate . 78

5.6.1 Quantum detection algorithm . 79

5.6.2 Lower bounds . 80

5.6.3 Path query model for directed graphs 81

5.7 Conclusion . 82

6 The Last Chapter 85

6.1 Quantum complexity classes . 85

6.2 Analysis of quantum circuits . 87

6.3 Quantum query complexity . 90

Bibliography 92

Curriculum Vitae 100

xii

List of Tables

6.1 Circuit classes based on the types of the constituent gates 86

xiii

List of Figures

2.1 Some important single qubit gates: Pauli X gate, Pauli Y gate, Pauli Z gate,

Hadamard gate, π/8 gate and phase gate . 15

2.2 Matrix representations of the popular quantum gates 15

2.3 2-qubit CNOT gate and other multi-qubit gates: Toffoli, parity, fan out and

Z-fanout gate. The black dots represent the control qubits whose value

does not change when acting on any standard basis state. The fanout gate

is described in Section 2.2.2. 17

2.4 The parity and fanout gates are conjugates of each other by a layer of

Hadamard gates. 19

3.1 Equivalence of Toffoli gate and Z gate (left) and F gate and z f anout gate

(right) . 30

3.2 Simulating a layer of single-qubit G gates with controlled G gates. The

ancilla in the implementation of the controlled π/8 gate is assumed part of

the encoding. The ancilla is reset to 0 at the end and hence can be reused

for implementing all π/8 layers. 33

3.3 Simulating a layer of Z-fanout gates. 34

3.4 Subcircuit Ai in the simulation of Z-fanout gates. 35

3.5 Subcircuit Ai for a layer of Z gates. 36

3.6 The gate for a pole vertex pi is mapped to input xi. 39

3.7 The gates at a non-pole vertex v. The encoding bit cv specifies if first output

qubit should be mapped to first input or second input qubit and similarly

for second output qubit. 39

xiv

3.8 Example of the gates at a pole vertex v simulating a circuit with CNOT and

H gates. The encoding bits cg
v specify which kind of gate is at vertex v,

and the cd
v specify which qubit the gate acts on (for H gate) or which is the

control qubit (for CNOT gate). 39

5.1 Circuit to check a faulty parity gate. a′i is 1 if i ∈ S , 0 otherwise. 72

xv

List of Abbreviations

ACk Poly-size Poly-log Depth Unbounded Fanin Classical Circuit

BQP . Bounded Error Quantum Polynomial Time

NCk Poly-size Poly-log Depth Bounded Fanin Classical Circuit

NP . Nondeterministic Polynomial Time

P . Polynomial Time

PP . Probabilistic Polynomial Time

QACk Poly-size Poly-log Depth Unbounded Fanin Quantum Circuit

QACk
wf . QACk With Fanout

xvi

1 Introduction

“There is no quantum world. There is only an abstract

physical description. It is wrong to think that the task of

physics is to find out how nature is. Physics concerns what we

can say about nature...”

– Niels Bohr

It can be debated whether the goal of physics is to understand how nature is or how

nature behaves. In Computer Science, our goal is rather modest: To analyse the myriads

of computations that we experience in nature1. Often that process involves analysing other

computations that bear little or no similarity to anything that actually exists. These mostly

serve to enrich our understanding of the properties of the computations. Since our goal is

to gain insight about certain processes, we will henceforth ignore the issue of immediate

relevance with the real world. If you are still hesitant to accompany me in this pursuit of

theoretical knowledge, bear in mind that the magic number 0 was invented to understand

arithmetic and possibly without any industrial application in sight.

Once we view a physical process as some kind of computation, involving an initial

state, a time-dependent evolution function and (optional) inputs from outside, everything

looks like a nail for this hammer. Pretty much anything around us is a computation in a

sense; from making the perfect espresso to finding free food in a university campus2.

1The name Computer Science is a misnomer in that sense. But we will not bother ourselves with that here.
2This is my modest attempt to acknowledge coffee, which is very essential for great research. As Alfréd

Rényi once said, “... a mathematician is a machine for converting coffee into theorems”. Free food is another
very important resource for graduate students.

2

One of the first steps in analysing a process is to come up with a suitable model

that adequately characterises it. A marvellous exercise in this was undertaken by Antoni

Gaudı́, a great Spanish architect, who lived around the turn of the century. His design

of the holy family church, (la sagrada familia) in Barcelona is a masterpiece of art, and is

still in the process of being build, after almost a hundred years. The church resembles a

sand palace, with a tremendous complexity of delicate thin but tall towers and arcs. Since

the plan of the church was so complicated, towers and arcs emerging from unexpected

places, leaning on other arcs and towers, it is practically impossible to solve the set of

equations which corresponds to the requirement of equilibrium in this complex. Instead

of solving this impossible task, Gaudı́ thought of the following ingenious idea: For each

arc he desired in his complex, he took a rope, of length proportional to the length of the

arc. He tied the ends of one rope to the middle of some other rope, or where the arcs were

supposed to lean on each other. Then he just tied the edges of the ropes corresponding to

the lowest arcs, to the ceiling. All the computation was instantaneously done by gravity!

The set of arcs arranged itself such that the whole complex is in equilibrium, but upside

down. Everything was there, the angles between the different arcs, the radii of the arcs.

Putting a mirror under the whole thing, he could simply see the design of the whole

church![Aha99].

The above example is lacking in important details e.g. on why a stable structure

can also be stable when physically turned upside-down but nevertheless it inspires us

to try to capture the relevant details of any complicated problem in a simpler model.

Considering the suitable model is very essential for a computation and at the core of

any algorithm to solve a problem. This has resulted in many models that are studied

in Computer Science. The most common are random access machines, Turing machines,

Boolean circuits, cellular automata [vEB90]. Each of these models have some nice feature

that makes it suitable for analysing a particular kind of computation. This huge crowd

of models would be overwhelming if not for equivalence theorems between the different

models. These enable us to continue working in any preferred model yet know that at

3

the end of the day the result is true irrespective of the model used.

Not all of these models punctiliously follow the computation process it was designed

for. Real world processes can be too complex to be captured by simple rules of mathe-

matics and logical deductions. Some of the models, e.g. the non-deterministic models,

do not have any practical analogue. Instead, these models strive to capture some of the

fundamental characteristics of the computation process and in this way, pave the way for

a rigorous analysis of the complexity of the computation. In Complexity Theory, we separate

out the hardness which is due to the model from the inherent model-agnostic difficulty

of the problem itself and study them independently.

1.1 Quantum Computing

Quantum computation was first proposed in the late-20th century as an alternate comput-

ing process when classical computing models (which were based on Newtonian mechan-

ics) were unable to explain all observed phenomena. Stated simply, during a quantum

computation the data is carried by objects which follow the laws of quantum mechanics.

For example, the spin of an electron might be used to denote 0 and 1 and flipping its spin

will mean flipping a bit. Great progress has been made in quantum computation. It is

currently even used in the communication industry, especially for secure communication.

For a history of quantum computation, see [NC00].

In quantum complexity theory, we try to model the quantum computation with an

aim to understand the magic that makes everything work. Major breakthroughs came

in quantum computing in the 1990s where it was shown that integer factoring [Sho97]

or black-box searching [Gro96] could likely be done significantly faster on a quantum

computer than on a classical computer. It is to be noted that a practical implementation

of quantum integer factoring would cause major disruption in the secure communication

and e-commerce industry.

4

A quantum circuit is one of the ways to model a quantum computation3. Some of the

other models are quantum Turing machine, quantum decision trees etc. These models

have been shown to be roughly equivalent to one another. We will describe the details of

the quantum circuit model in Chapter 2. But roughly, a quantum circuit consists of a col-

lections of quantum gates which are connected by wires. The wires, like those in classical

digital circuits, carry 0 or 1, except that the value can also be a quantum superposition of 0

and 1. For now think of the superposition as the state akin to Schrödinger’s cat [Wikb]

- a wire can simultaneously carry the value 0 and 1 until it is explicitly measured by a

physical measuring device. It is profoundly different than the wire carrying 0 or 1 with-

out us knowing which one, in a sense it carries both the values. This leads to the funny

situation, which is also responsible for the magic, where two wires taken together might

not carry a particular value, say 00, with positive probability even though individually

the wires could be carrying the value 0 with non-zero probabilities.

Like classical circuits, there are quantum gates that change the values of the wires

that pass through them following the rules of quantum mechanics. The quantum circuits

that we study are limited in the sense that there are no feedback loops and the number

of gates is bounded above by a fixed polynomial in the number of inputs. One or more

wires are specified as the output wire; the final value of the circuit is the value obtained

by measuring these wires.

1.2 Outline and main contributions

Most of the common models of quantum computing have been proved to be equivalent;

this usually means that if a problem can be solved with reasonable resources4 in one

model, then it can also be solved using reasonable resources in another model. However,

some peculiarities of the circuit model make it suitable for certain problems. In this thesis,

3To other fields e.g. physics, our models might seem too simplistic.
4An important resource for a Turing machine could be the number of states or the time taken; for a circuit

it could be the number of gates used or the types of the gates.

5

we try to analyse this model and specially focus on the role of the different gates that are

used in the quantum circuits. We provide key insights on wherein lies the strength of

quantum circuits and what limits their power. We begin by giving a brief description of

the quantum circuit model in Chapter 2.

1.2.1 Universal Quantum Circuit

One of the novelties of modern day computers over earlier computing devices was the

idea of stored programs and universal machines. Unlike the calculators which were spe-

cialised to perform only a single operation, a computer is designed as a general purpose

machine which takes two inputs, an encoded form of the steps of an operation known as

the program and the data for the program. It then executes the program on the data and

outputs the output of the program. Such a simulator which can conceptually simulate

many different kinds of operations is usually called a universal machine.

There are several remarkable results showing how to construct universal Turing ma-

chines and universal machines for other models of computing. In Chapter 3, we explore

the idea of a single quantum circuit to simulate a family of similar quantum circuits. We

also focus on the efficiency of their simulation. For example, a machine which takes ex-

ponential time to simulate a constant step algorithm might not be very interesting. Since

the quantum circuit model of computing is equivalent to the Turing machine model, it is

obvious that there exists a universal circuit. However, it is not clear how large this circuit

is. Valiant, Cook, Hoover and others have studied classical universal circuits. We simi-

larly define quantum universal circuits and give explicit constructions where the universal

circuit uses similar resources compared to the simulated circuit.

In Theorem 3.3.2, we show how to construct a quantum universal circuit with only a

constant factor increase in depth. We show how to construct a quantum universal circuit

with only a minor blowup in the size in Theorem 3.4.5.

6

1.2.2 Lower Bounds

After we show that low depth (or size) circuits with certain sets of gates can be powerful

enough to contain a universal circuit for all circuits of the same depth (or size), we can

ask a contrasting question: How powerful is a circuit with a fixed set of gates and of a

limited size or depth? Historically, the study of (classical) circuit lower bounds gained

popularity as a possible approach to separating P from NP. While progress towards this

goal has been slower than as expected, the field of circuit lower bounds has nevertheless

remained popular in complexity theory.

In Chapter 4 we look at lower bounds of quantum circuits. Specifically, we consider

circuits with constant depth5 and created by a fixed family of 1-input gates and a specific

multi-input gate. Our goal is to prove that this kind of circuits are not powerful enough

to compute some functions that we believe to be computationally hard.

Similar questions had been asked before for classical circuits. But quantum circuits

often behave in a way that defies intuition. For example, a very useful technique used

in classical circuit construction is to take a wire, split it using a wire-splitter or solder

another wire to it to obtain several wires carrying an identical value. This obviously

simple operation, known as cloning, is not allowed in any quantum circuit by the rules of

quantum mechanics.

Classical circuits and gates are usually analysed based on the function they compute

i.e. the mapping between input and output values. On the other hand, quantum models

are inherently probabilistic in nature. For example, for every input, instead of a single

output value, there is a probability distribution of outputs. This will be explained in detail

in Chapter 2. Thus, the classical techniques cannot be applied anymore. We provide a

new lower bound technique using probabilistic analysis of the functions computed by

the gates and the circuits (Theorem 4.4.7). This gives us the desired lower bounds for a

certain class of quantum circuits. We also apply the technique to show that parity cannot

be computed by a certain type of constant-depth quantum circuits (Theorem 4.5.2).

5Depth of a circuit is the maximum number of gates from the output to any input.

7

1.2.3 Detection of Faulty Gates

In any office, tracking a lost file can be significantly easier if the bureaucracy has very

strict rules of operation. It is debatable if moving to electronic data would reduce the

chances of losing files in the first place but I think most would agree that if a system is

very robust against disturbances, then any discrepancy might be easily detected.

In Chapter 5, we consider a new fault model for classical and quantum gates where a

faulty gate might not depend on all its inputs. If we are given multiple copies of the same

exact faulty gate, then we can always create a circuit using these gates to determine which

inputs are faulty. Our goal is to minimise the number of copies of the gate. We consider

a few types of gates and show matching classical and quantum upper and lower bounds

on the number of such gates that we need to use to detect faults. We also observe that

for gates that are harder to compute (this notion will be elaborated in later chapters), it

is easier to find these faults; this should be seen as a supporting evidence of the intuition

described above.

We consider gates computing the parity function and give a quantum algorithm for

faulty quantum parity gates (Theorem 5.4.1) which is not-only optimal for the quantum

case but also provably more efficient than any classical algorithm for faulty classical parity

gates (Corollary 5.4.4). We similarly consider gates computing the AND function: we give

an algorithm (Theorem 5.6.1) for quantum gates computing this function and show it is

optimal (Corollary 5.6.2) and provably better than any classical algorithm for faulty AND

gates (Corollary 5.6.3).

1.2.4 Future Direction

In this thesis we consider a few fundamental quantum gates and evaluate their properties,

especially their relative power against one another. Also, the circuits we consider mostly

belong to a specific class. A lot of questions remain unanswered, mostly regarding other

types of quantum gates and using different classes of circuits. We end this thesis with

8

Chapter 6 where we describe what we think are prospective directions for future research

in this area.

2 Quantum Circuit Complexity

“Anyone who is not shocked by quantum theory has not

understood it.”
– Niels Bohr

In this chapter we will present some background on quantum circuit complexity. A

full review of quantum computation is beyond the scope of this thesis. For a quick

introduction, we recommend Fenner [Fen03a] or Fortnow and Rogers [FR99]; for an in-

depth treatment, see Nielsen and Chuang [NC00]. Instead, we will focus on quantum

circuits and accordingly introduce the technical concepts needed to understand this thesis.

We will also introduce the notation used in the forthcoming chapters. A significant part

of this chapter was published in the article:

•[BGH07] D. Bera, F. Green, S. Homer. Small depth quantum circuits. SIGACT News,

38(2), 2007.

2.1 Background

A quantum circuit is similar to a classical Boolean circuit; both can be viewed as an acyclic

network of gates interconnected by wires. First we describe general classical Boolean

circuits and then introduce quantum circuits by pointing out the differences. In the most

general setting, a classical Boolean circuit has certain input gates and output gates. The

circuit is evaluated on a particular input; the input values (bits) are hardwired as the

10

output of the input gates. The circuit works by evaluating each gate in succession. The

output of a gate A could be connected by a wire to another gate B; the output of A serves

as the input to B. After all the output gates have generated some value, the output of the

circuit is defined as the collection of the values generated by all the output gates. The

circuits we consider in this thesis have acyclic graphs as their underlying topology i.e. if

the input is fixed, the output of every gate is also fixed. Though we do not consider them

here, circuits whose graph contains cycles are a major area of research. In these circuits,

the output of a gate at one instant acts as a feedback to the gate at a later instant; they are

handled very differently from conventional circuits.

For a classical Boolean circuit with n input gates and m output gates, it is said to

compute a Boolean function f : {0, 1}n → {0, 1}m if the output of the circuit if f (x)

whenever the input to the circuit is x ∈ {0, 1}n. In complexity theory, we are interested in

investigating the computational properties of a circuit computing a certain function e.g.

its size and depth. The size of a circuit is the number of gates in it. The depth of a circuit is

the number of the gates in the longest path from any output node to any connected input

node. Informally, our goal is create circuits with as few gates and as shallow as possible.

The common gates used to construct a Boolean circuit are the AND, OR and NOT

gates. Another gate that is sometime used is the parity gate computing the Boolean XOR

function. The NOT gate always takes one input but the other gates, depending on the

type of the circuit, can take a fixed or a variable number of inputs. Usually the classical

Boolean gates have one output but the output wire can be split into multiple wires to

produce multiple copies of the same output. The number of inputs of a gate is known

as its fanin and the number of outputs is known as its fanout. We say that the fanin

of a gate is bounded if it is bounded above by a constant irrespective of the number of

inputs to the circuit; otherwise, we say that the fanin of this gate is unbounded. Gates with

unbounded fanin are provably more powerful than the gates with constant fanin. Note

that for classical circuits, there is usually no restriction on fanout.

11

2.1.1 Motivation

For many of us studying the quantum computing models, quantum circuits are the most

natural and general formulation of quantum computation. They are general in the sense

that they are a universal model; any quantum computation can be efficiently simulated

by a quantum circuit [Yao93, NO02]. They are natural in that a quantum computation

(or quantum algorithm) can best be understood as a collection of qubits being acted on

by quantum operators represented as (defined by) a tensor product of quantum gates.

Although the quantum circuit model is quite different than the classical one, it has nev-

ertheless proven to be quite fruitful to look to classical circuit models for insight.

For classical circuits, those with small depth (e.g., polylog as in the class NC) have

been proposed as realistic models of parallel computation. Furthermore, shallow (e.g.,

constant) depth classical circuits present us with computational models for which we can

actually prove interesting lower bounds. What happens when we extend these concepts

to quantum circuits?

The answer is a bit surprising, and leads fairly quickly to interesting variants of the

fundamental problems of quantum computing. For example, consider the class AC0 of

constant-depth, polynomial-size classical circuits consisting of NOT together with un-

bounded fan-in and fan-out AND and OR gates. Some interesting functions can be com-

puted in this class (addition of n-bit numbers for example), and some cannot (e.g., par-

ity [FSS84]). It would be interesting to see what an analogous quantum complexity class

would look like. But if we try to translate the class AC0 into the quantum setting, we

are faced with an immediate problem. The unbounded-fanin “quantum AND gate,” the

generalised Toffoli gate (which also encompasses negation and hence OR as well) does

not allow for fanout in any way we may take for granted. The reason is the “no-cloning

theorem,” which says that it is in general not possible to make a copy of a quantum state.

One can, however, make copies of classical bits, which suggests the idea of introducing

a unitary operator to implement fanout of classical bits. (A similar operation is really

implicit in the AC0 model; we solder multiple outgoing wires to an AND gate, obtaining

12

copies of the output. While it is not entirely realistic to have an unbounded number of

wires fanning out of the gate even classically, this is a useful abstraction out of which the

definition of AC0 arises.)

We therefore seem to have two candidates for quantum analogs of AC0. One, which

just includes generalised Toffoli gates and single-qubit gates, is called QAC0. The other,

which includes fanout gates, is called QAC0
wf. The latter appears to be the more realistic

version, since it is straightforward to see that it includes AC0. However, we will point

out in later this chapter that QAC0
wf is much more powerful than AC0. There nevertheless

remains much that we do not understand. For example, it is unknown to this day if QAC0

is the same as QAC0
wf.

This gives an interesting theoretical framework in which quantum analogues of classi-

cal circuit models are provably more powerful. For our implementation-minded readers,

does all of this have any bearing on reality? It might. Realisable quantum computa-

tions will have very limited duration, due to short coherence times, which suggests that

highly parallelised quantum circuits (such as those we will use in Chapter 3) are desir-

able. Fanout gates as well as Toffoli gates might actually be feasible to build via ion

trap [CZ95] or bulk NMR techniques [GC97]. It may therefore be of more than mere

theoretical interest to explore their power, both intrinsic and relative to each other.

2.2 Quantum Circuit Model

Structurally, a quantum circuit differs from a classical Boolean circuit in two basic ways;

instead of bits, qubits flow1 through the wires and get transformed by quantum gates. Like

a bit, a qubit can be in the state 0 or 1; additionally a qubit can also be in a superposition

of 0 and 1 at the same time. Mathematically, a qubit is a vector in a two-dimensional

Hilbert space H; for the purpose of this thesis (and in general for quantum computing),

1Classically, a bit might represent the level of voltage. Similarly, a qubit might correspond to the spin of
an electron or the polarity of light. It should be kept in mind that due to the wave-particle duality nature of
the quantum carrying elements, a qubit might not physically flow through the wires.

13

H is same as a vector space defined over complex numbers with following inner product:

inner product of (x1, x2), (y1, y2) = x∗1y1 + x∗2y2

We follow Dirac’s bra-ket notation to represent a qubit by |q〉 and the two basis states

of a qubit will be denoted by |0〉 and |1〉. Qubits q and s are orthogonal if their inner

product, denoted by 〈q|s〉 is zero. The norm or length of a qubit is defined by

‖|q〉‖ =
√
〈q|q〉

The standard basis states are orthonormal. Unless explicitly mentioned, in this thesis, we

will be dealing with qubits of length 1.

Let H1, . . . ,Hn be n copies of H. By Bn we denote the 2n-dimensional Hilbert space

H1 ⊗ · · · ⊗Hn spanned by the usual set of standard basis states of the form |x1〉 ⊗ |x2〉 ⊗

|x3〉 ⊗ · · · (sometimes shortened to |x1, x2, x3, · · ·〉) each xi ∈ {0, 1}. A “state over a set of

n qubits” is a state in Bn, written as a superposition over these basis states.

It is easier to think of a classical circuit as a network of gates connected by wires along

which bits travel only along one direction; they enter a gate which subsequently outputs

a single bit. To understand the operations of a quantum circuit, consider this alternative

perspective of a classical circuit. Rearrange the gates of the circuit in layers and represent

the state of the circuit by the values in the wires in that layer. The gates between two layers

are now responsible for the collective change of state between these layers. A quantum

circuit can be similarly viewed as a series of layers of gates that change the state of the

wires between its layers.

For a quantum circuit, a general state over n qubits is usually represented by the

elements (also known as the amplitudes) of a 2n-dimensional vector in a suitable ba-

sis state. Unless otherwise specified, we will always use the standard basis for rep-

resenting any state. For example, a state |Ψ〉 over 2 qubits, in the standard basis of

14

|0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉 could be the following vector

1
4

−i

1√
2

1+i
10


and is usually written as

|Ψ〉 =
1
4
|0, 0〉+ (−i)|0, 1〉+

1√
2
|1, 0〉+

1 + i
10

|1, 1〉

Quantum mechanics enforces that the state of a group of qubits can be changed by

either applying a quantum gate or performing a measurement. Let Un denote the set of unitary

matrices that act on the states in Bn (Un is just a convenient notation for the group U(2n)

of 2n × 2n unitary matrices). An n-qubit quantum gate G corresponds to an element of

Un, that changes the state of n qubits when operated on. Thus, for example, a single-qubit

gate is an element of U1, acting on states in B1. Often we will write G|q1, . . .〉 to denote

the state of a group of qubits after a gate G is applied. Due to the properties of a unitary

transformation, a quantum gate preserves the norm of a state and is reversible. We will

use ‖|q〉‖ to denote the L2 norm of the vector corresponding to q, which we will also refer

to as the length of the state.

On the contrary, a measurement involves projecting the state of a quantum system

on a set of basis states; after measurement the measured qubits end up in one of the

basis states with probability equal to the length of the projected state along that basis

state. At the end of a computation in a quantum circuit, the group of output qubits are

usually measured in the standard orthonormal basis. This is a very simplistic view of

measurement in a quantum circuit and should be enough to understand the quantum

measurements we will consider in this thesis. In general, quantum measurements are

defined to be a collection of operators {Mm} where m represents the outcome of the

measurement, such that ∑m M†
m Mm = I; after applying the measurement operators to

a state |Ψ〉, the value m is observed with probability ‖Mm|Ψ〉‖. Please refer to [NC00]

15

for the details on quantum measurements. Observe that this differs significantly from

classical circuits because now the output of a circuit is not a fixed value but a probability

distribution over a set of possible output values.

Usually the initial input to a circuit is a (pure) state with unit length. Since any unitary

operator preserves length, as long as no measurement is made, all along the circuit the

qubits are in a state of unit length. We do not allow any intermediate measurement in the

circuit model we consider in this thesis. To give an example of a measurement, consider

the following state on 2 qubits: |Ψ〉 = a00|0, 0〉+ a01|0, 1〉+ a10|1, 0〉+ a1,1|1, 1〉. When it

is measured in the standard basis, we will observe the measured qubit to be |i, j〉 with

probability |aij|2.

2.2.1 Quantum Gates

Listed below are some of the important single qubit quantum gates (Figure 2.1). We also

show their representation in the standard basis in Figure 2.2.

X Y Z

H Sπ/8

Figure 2.1: Some important single qubit gates: Pauli X gate, Pauli Y gate, Pauli Z gate,
Hadamard gate, π/8 gate and phase gate

X =
[

1 0
0 1

]
Y =

[
0 -i
i 0

]
Z =

[
1 0
0 -1

]
H =

[
1√
2

1√
2

1√
2

− 1√
2

]
π/8 =

[
1 0
0 eiπ/4

]
S =

[
1 0
0 i

]
Figure 2.2: Matrix representations of the popular quantum gates

The action of any quantum transformation can be represented very conveniently using

the bra-ket notation. In this thesis we follow this notation. As an example, we show below

how we represent the action of 3 of the above gates in the bra-ket notation. For x = 0, 1,

16

Hadamard gate: |x〉 → (−1)x
√

2
|x〉+ 1√

2
|1− x〉

ß/8 gate: |x〉 → eixπ/4|x〉

Phase gate: |x〉 → eixπ/2|x〉

The H gate is very useful and it will appear in various places throughout this thesis.

One of its many useful properties is that it is its own inverse. Specifically, H† = H,

where U† = (UT)∗ is the Hermitian conjugate or adjoint of any matrix representation of

a unitary operator U. Before we move to the gates with larger fanin, we want to point

out another very useful gate, the two qubit CNOT gate, which performs the following

transformation on basis states: |x〉|y〉 → |x〉|x ⊕ y〉. Note that this gate can be used as a

NOT gate by setting y to 1.

Multi-qubit gates Let f : {0, 1}n −→ {0, 1} be a Boolean function of n inputs. Many of

the commonly used multi qubit gates take the form,

G|x1, ..., xn, b〉 = |x1, ..., xn, b⊕ f (x1, . . . , xn)〉 (2.1)

This is just an easy form of simulating any classical function in a reversible manner. For

such gates, the qubits whose value remains unchanged are referred to as the control qubits

(the first n qubits in Eq. 2.1 above) and the qubit whose value changes is called the target

qubit (the last qubit in Eq. 2.1).

If f (x1, . . . , xn) = ∧n
i=1xi, G is called a generalised Toffoli gate, or (in this thesis) simply

a Toffoli gate, and is written as T. If f (x1, . . . , xn) =
n⊕

i=1
xi, G is a parity gate, written P.

Observe that the CNOT gate is same as the Toffoli gate for 2 qubits. Generalising this,

define the classical Boolean function Modq : {0, 1}n −→ {0, 1} so that Modq(x1, . . . , xn) =

1 iff ∑n
i=1 xi 6≡ 0 (mod q). If f = Modq, we call G a MODq gate. Next, for any fixed t,

define the Boolean function s(x1, ..., xn) = 1 iff ∑n
i=1 xi ≥ t. If f = s, we call G a threshold

gate.

17

A Z gate is an extension of the single-qubit Pauli Z gate (|x〉 7→ (−1)x|x〉) to multiple

qubits. A Z gate does not any control qubits or target qubits.

|x1, · · · , xn〉
Z7→ (−1)x1x2···xn |x1, . . . , xn〉.

Similarly, a Z-fanout gate Zn applies the single-qubit Z gate to each of n target qubits if

the control qubit is set:

|c, t1, · · · , tn〉
Zn7→ (−1)c·(t1+···+tn)|c, t1, . . . , tn〉.

Z

Z

Z

Z2

Figure 2.3: 2-qubit CNOT gate and other multi-qubit gates: Toffoli, parity, fan out and
Z-fanout gate. The black dots represent the control qubits whose value does not change
when acting on any standard basis state. The fanout gate is described in Section 2.2.2.

A quantum circuit is constructed out of layers. Each layer L is a tensor product of

a certain fixed set of gates. A circuit is simply a (matrix) product of layers L1L2 · · · Ld.

(Observe that the “last” layer Ld is actually the one that is applied directly to the inputs,

and L1 is the output layer.) The number of layers d is called the depth of C. The size of

C is the number of gates in C. A circuit C over n qubits is then a unitary operator in

Un. Clearly, C computes a unitary operator U exactly if for all computational basis states,

C|x1, ..., xn〉 = U|x1, ..., xn〉.

Often we will talk about a collection of circuits constructed using a fixed finite set of

gates. For this purpose, we consider all gates of the same type but different fanin to

be a single member of this set e.g. Toffoli gates with different fanin. Unless otherwise

specified, all circuits should be understood to be elements of an infinite family of circuits

18

{Cn|n ≥ 0}, where Cn is a quantum circuit for n input qubits and there is a fixed finite

set of gates that can be used to construct Cn.

2.2.2 Fanout Gate

There is one other gate which will appear frequently in this thesis: the fanout gate. Fanout

means creating multiple copies of a value; in classical circuit this is achieved by simply

splitting a wire. The power of this trivial operation becomes apparent while designing

quantum circuits because quantum computing does not allow creating copies of qubits2.

To overcome this problem, a fanout gate, denote by F, can be used which unitarily

copies a qubit only if it is in a standard basis state. Its action on standard basis states is

given by

F|x, y1, y2, . . .〉 = |x, y1 ⊕ x, y2 ⊕ x, . . .〉

This gate is called a fanout gate because y1, . . . can be set to 0 to create multiple copies of

|x〉. Note that a CNOT gate is same as a fanout gate on 2 qubits.

Unlike in classical circuits, fanout gates bring a lot of additional power to quantum

circuits [HŠ03]. One of its most remarkable properties lies in its intimate relationship

with the parity gate. There is no obvious a priori relation between these operators, and

indeed we wouldn’t expect there to be any on the basis of our experience with classical

circuits. But as was observed by Moore [Moo99], F is conjugate to P via an (n + 1)-fold

tensor product of Hadamards applied to all the bits:

F = H⊗(n+1)PH⊗(n+1)

This is a consequence of the well-known fact when a CNOT gate is conjugated with

Hadamards, the input and target qubit bits are flipped (see Figure 2.4).

It is immediate from this fact that, if we allow fanout for free, then unbounded-fanin

quantum circuits can compute parity in constant depth and with polynomial size. Con-

trast this with the famous classical result of Furst, Saxe and Sipser [FSS84] that parity
2The basic idea of the no-cloning theorem is that creating copies of arbitrary quantum states is a non-unitary

operation.

19

H

H

H

H H

H

H H H

H

H

H

2

H

H

H

H
= = =

Figure 2.4: The parity and fanout gates are conjugates of each other by a layer of
Hadamard gates.

cannot be computed by constant depth, polynomial size circuits using unbounded fanin

AND and OR gates (besides NOT gates and implicitly using fanout).

2.2.3 Ancillæ

Sometimes circuits use additional inputs which are initialised to a fixed value. For clas-

sical circuits, it is understood that circuits always have access to as many values of 0 and

1 as needed. It is easy to generate a 0 from any input variable (e.g. 0 = x ⊕ x) and the

circuit can generate any number of 0 and 1 from a single 0 using NOT gates and fanout.

Thus workspace qubits are taken for granted while dealing with classical circuits.

However, due to the restriction of arbitrary fanout in quantum circuits, the number

of workspace qubits is an important physical resource. These extra ancillary qubits, ini-

tialised to some fixed constant and used during the computation, are called ancillæ. Using

ancillæ is considered expensive and we want to minimise their use and reuse them if pos-

sible. So a related question is what is the final state of the ancillæ. Ideally, we want to

return the ancillæ to their starting state at the end of a circuit computation so that they

can be reused if necessary in the future. A circuit is said to cleanly compute a function if

the ancillæ needs to be initialised to a particular state and the ancillæ should be returned

to that state at the end of the computation. In contrast to this, a circuit is said to robustly

compute a function if it works for any initial state of the ancillæ. Their advantage is that

several robust computing circuits can be composed together one after another because

the ancillæ is not required to be in the initial state at the end of a robust computation.

20

Unless explicitly stated, all the circuits we consider here perform clean computation.

2.2.4 Universal quantum gates

A set of gates is said to be universal if they can be used to compute an arbitrary Boolean

function (for classical circuits) or arbitrary operator (for quantum circuits). Some exam-

ples of universal sets of classical gates are {AND, NOT}, {NAND}.

We can similarly define universal quantum gates. There has been a lot of research on

creating different universal sets of quantum gates. Practical considerations often decide

which set of gates could be used in reality e.g. there might be hardware limitations

or requiring the gates to be fault tolerant. Also, from a theoretical point of view, each

universal set has its own characteristic property which maybe suitable for a particular

kind of analysis.

Back to the basic question, can we implement any quantum circuit using a fixed set

of gates? A fixed set of universal gates is required for practical reasons. By a result of

Barenco et al. [BBC+95], any unitary operator can be realised exactly with just CNOT and

single-qubit gates. But an arbitrary unitary operator may involve complex numbers with

arbitrary precision and it may not be possible to implement it using a fixed set of gates.

On the other hand, it might be possible to approximate any operator with a fixed set of

gates.

Definition 2.2.1 (Universal set) A set of gates is said to be (effectively) universal if for any

n > 0, any n-qubit unitary operator U and any error ε > 0, there is an n-qubit unitary operator

V that can be implemented using only gates from this set such that max
|Ψ〉

‖U|Ψ〉 −V|Ψ〉‖ < ε.

Indeed, the above paper also shows that Hadamard, π/8 and CNOT gate forms an

universal set. Another set of universal gates that is often used contains the Hadamard,

phase, CNOT and Toffoli gates. Unfortunately, the above definition does not say any-

thing about the number of gates from the universal set needed to simulate any arbitrary

operator. A simple counting argument shows that most n-qubit unitary operators require

21

exponentially many gates (exponential in n and 1/ε) from any universal set. An area of

ongoing research is designing universal sets that can be used to efficiently simulate some

particular group of operators.

If we instead want a simpler set of gates, then Shi [Shi02] and Aharonov [Aha03]

showed that the Hadamard and Toffoli gates are universal for a relaxed notion of univer-

sality. They showed that if any n-qubit operator U can be implemented using, say, t single-

qubit and two-qubit gates, then U can be approximated using poly(n, t, 1/ε) Hadamard

and Toffoli gates. Recall that the Toffoli gate is essentially a classical gate but when used

with the single qubit Hadamard gate, they can efficiently simulate any set of single and

two qubit gates. This is interesting because the Gottesman-Knill theorem [NC00] showed

that any quantum circuit using the CNOT, Hadamard and Pauli gates3 can be simulated

efficiently (polynomial steps in the number of qubits) on a classical computer.

2.3 Previous results

In this section we will briefly highlight some of the important results in quantum circuit

complexity known today.

The quantum Fourier transform (QFT) is one of the most widely used unitary trans-

formations in quantum circuits. It is one of the key components of many quantum algo-

rithms, like Shor’s [Sho97] quantum algorithm for factoring. An efficient implementation

of the QFT will improve a wide variety of quantum circuits and algorithms. Its classi-

cal counterpart is known as the discrete Fourier Transform (DFT). The m-dimensional DFT

maps (a0, . . . , am−1) ∈ Cm to (b0, . . . , bm−1) ∈ Cm where,

bx =
m−1

∑
y=0

e(2πi/m)xyay

The fast Fourier transform algorithm can compute the DFT in O(m log m) operations. The

m-dimensional quantum Fourier Transform can be seen as a unitary operation performing

3This set of gates is called as the Clifford group and circuits constructed only using gates from this group
are known as Stabilizer circuits.

22

the DFT on the amplitudes of a log m-qubit state, mapping ∑m−1
x=0 αx|x〉 to ∑m−1

x=0 βx|x〉

where,

βx =
1√
m

m−1

∑
y=0

e(2πi/m)xyαy

Høyer and Špalek showed that a constant depth circuit family is powerful enough to

approximate the QFT.

Theorem 2.3.1 [HŠ05] The QFT transformation can be approximated with polynomially small

error by a quantum circuit of constant depth using CNOT and a fixed family of single-qubit gates.

In the earlier section, we mentioned some surprising power of the fanout gate that

does not have any parallel in the classical circuit model. Next we will describe an ex-

ponential improvement in the quantum model over the classical model, using the parity

gate which is size and depth equivalent to the fanout gate.

Recall that a MODp gates computes a Boolean function that outputs 0 if and only if the

sum of its binary inputs is 0 (mod p). The following theorem of Razborov/Smolensky

characterises simulation of Modp gates by classical circuits.

Theorem 2.3.2 ([Raz87, Smo87]) If p and q are distinct primes, a depth k circuit made of OR,

AND, NOT and MODp gates cannot approximate MODq to within error o(1) if it has size

2o(n1/2k).

Green et al. showed that unlike in the classical case, for quantum gates a MOD2 gate

is constant depth and polynomial size equivalent to a MODp gate for any p using single

qubit and Toffoli gates [GHMP02]. This basically means all MOD gates are equivalent

to each other for polynomial size circuits and furthermore, since parity (a MOD2 gate) is

equivalent to fanout, constant depth circuits with fanout can compute any MOD function.

This is sharply in contrast with classical circuits (which trivially allow fanout) since they

cannot compute any MOD function in constant depth using only AND, OR, NOT gates.

Another example where quantum circuits display radical improvements over their

classical cousins are constant depth circuits made with bounded fanin gates. It is easy to

23

argue that such circuits cannot compute any useful function since no output can depend

on all the inputs (we provide a technical proof of this later [Theorem 4.3.1]). However,

Høyer and Špalek showed that if we also add unbounded fanout, then with high accuracy,

one can compute threshold functions with bounded fanin gates in constant depth!

Theorem 2.3.3 [HŠ05] Let {Fn} be a family of operators computed by constant depth circuits

built using single qubit gates, unbounded fanout gates and one of these cases:

1. constant fanin gates

2. unbounded fanin Toffoli gates

3. unbounded fanin quantum threshold gates

Then there is a family of operators {Gn} in either of the other cases that approximates {Fn} with

two-sided polynomially small error.

This theorem essentially says that fanout and single-qubit operations form a universal

set of quantum gates. There are a number of immediate corollaries that follow from The-

orem 2.3.3 when combined with some results on classical threshold circuits [SBKH93].

For example, iterated multiplication, division, and sorting of n integers can be done with

polynomial-size circuits with threshold gates. Hence these operations can also be approx-

imated by constant depth quantum circuits using bounded fanin gates and unbounded

fanout gates.

2.4 Other models: Quantum decision tree

There are several other models of quantum computing that we will not discuss in detail

in this thesis. However we will use some related results in Chapter 5. In this section, we

introduce the quantum decision tree model and quantum query complexity.

The decision tree model is one of the simplest models of computing. Here the goal

is to compute a Boolean function f : {0, 1}n → {0, 1} given an input x ∈ {0, 1}n. In the

24

classical model, the algorithm is allowed to adaptively query any bit of the input and

the cost of a computation is the number of such queries. We ignore other intermediate

computations and so (for binary input strings) the algorithm looks like a binary tree with

nodes labelled by xi-s.

The quantum model is conceptually similar but defined in a way to ensure that all

changes are unitary. The algorithm works on 3 registers I, B, W where I has log n qubits

and is used to write a query, B has one qubit and is used to store the answer to a query

and W is the workspace register with polynomially many qubits. The initial state of the

algorithm is |0〉I ⊗ |0〉B ⊗ |0〉W . The query steps are modelled as the application of the

unitary operator Ox: |i, b, w〉 → |i, b⊕ xi, w〉. The algorithm is allowed to perform inter-

mediate computations between the queries in the form of unitary operators independent

of the input. A k-query decision tree A is the unitary operator A = UkOUk−1O . . . U1OU0

and the output of the algorithm is the value obtained when the first qubit of A|0, 0, 0〉 is

measured in any given basis.

Most of the currently known results in quantum complexity theory are for query

complexity in the decision tree model [BW02]. The most famous result in this category

is Grover’s unordered search algorithm [Gro96]. The unordered search problem is as

follows: given an arbitrary n-bit string x, the goal is find any i such that xi = 1 or output

−1 if no solution exists. The algorithm is allowed to query any xi and the cost of the

algorithm is the number of such queries. Grover constructed a bounded error quantum

algorithm which takes O(
√

n/t) queries where t is the number of bits of x set to 1 (if there

are no results i.e. t = 0, then the algorithm returns “no result” also in O(
√

n) queries).

There are several extensions to the original algorithm. For example, if t is not known, then

there is an algorithm which can still find a solution using same number of queries. There

is also a counting version of the search algorithm; Brassard et. al. [BHT98] described a

quantum algorithm which uses the techniques of Grover and Fourier transform and it

can estimate t with very high probability in roughly O(
√

n) queries.

3 Universal Quantum Circuit

“Can physics be simulated by a universal computer? ... Now,

what kind of physics are we going to imitate? ... But the

physical world is quantum mechanical, and therefore the

proper problem is the simulation of quantum physics...”

– Richard P. Feynman

In 1982, Richard Feynman raised the question of simulation of all kinds of physical

processes by a computer [Fey82]. He argued that classical computers would not be able

to simulate the quantum-mechanical processes; so he proposed the idea of a quantum

model to capture the existing computations as well as probabilistic and quantum com-

putations. There are simply too many kinds of computation happening in real world

every moment, and logically there are ones that cannot even be solved1. Obviously, such

a general machine, also known as a universal machine, would be very complicated.

In this thesis we are concerned with the quantum circuit model of computing; so we

wonder if there can be such a machine in this model and if possible, how would it look?

We define and construct efficient depth-universal and almost-size-universal quantum cir-

cuits. Such circuits can be viewed as general-purpose simulators for central quantum

circuit classes and used to capture the computational power of the simulated class. This

chapter is based on the paper

•[BFGH09] D. Bera, S. Fenner, F. Green and S. Homer. Efficient Universal Quantum
1For example, halting problem. It is logically impossible to always decide if any well structured program

will ever halt [Tur36].

26

Circuits. Appeared in Proceedings of The 15th International Computing and Combinatorics

Conference, 2009.

3.1 Introduction

Probably the most talked about universal machine is the universal Turing machine [Her95].

Alan Turing conceptualised the idea of an all-purpose machine that, given a meaningful

but arbitrary sequence of instructions and any relevant data, could execute these instruc-

tions on these data. This machine, which he named universal computing machine [Tur36],

is the basis of the stored-program architecture modern computers follow.

Most of the models we work with have equivalent computing power and can simulate

each other; so, in a sense, the universal Turing machine ensures a universal machine for

all the models. However, what is not clear is how complicated these machines are and

how good are they at simulation. For example, it is a big challenge to come up with the

smallest universal Turing machine; currently the smallest one has 2 states and 5 symbols

and it is an open challenge to create one with 2 states and 3 symbols [Coo04].

Quantum computing is most naturally formulated using the quantum circuit model

[Yao93]. Many quantum algorithms are expressed in terms of (uniform) special-purpose

circuits which depend strongly on the problem being solved. However, the notion of

a universal quantum computer is more naturally captured by quantum Turing machines

[Deu85]. This being the case, it is desirable to have a notion of efficient universal quantum

circuits in the spirit of universal quantum Turing machines.

Like resource-bounded universal Turing machines, efficiently constructed universal

circuits characterise the hardest languages computed by circuits in a given circuit class.

The existence of a universal circuit family for a complexity class defined by resource

bounds (depth, size, gate width, etc.) provides an upper bound on the resources needed

to compute any circuit in that class. More precisely, the specific, efficient construction of

a universal circuit for a class of circuits with a fixed input length, yields a single circuit

27

which can be used to carry out the computation of every circuit in that class, basically

a chip or processor for that class of circuits. The more efficient the construction of the

universal circuit, the smaller and faster the processor for that class. For example, depth-

universal circuits are desirable because they can simulate any circuit within a constant

slow-down factor. Thus they are as time-efficient as possible.

Universal quantum circuits have been studied before in different contexts. Most of the

research on universal quantum circuit classes deals with finding universal sets of gates

which can be used to efficiently simulate any quantum computation ([NC00], [SR07]).

Our goal is quite different; we want to create a circuit which, like a computer, takes as

input both a program and data and runs the program on the data. Nielsen and Chuang

considered a similar problem in [NC97]; however they did not focus on the efficiency of

the universal circuit. They showed that it is not possible to have a generic universal circuit

that works for all circuits of a certain input length. We avoid this problem by considering

families of circuits with a certain depth or size and constructed from a fixed family of

gates.

In the case of quantum circuits there are particular issues relating to the requirements

that computations must be clean and reversible which come into play, and to an extent

complicate the classical methods. Still, much of our motivation for this work originates

with classical results due to Cook, Valiant, and others [CH85, Val76]. Cook and Hoover

considered depth universality and described a depth-universal uniform circuit family for

circuits of depth Ω(log n). Valiant studied size universality and showed how to construct

universal circuits of size O(s log s) to simulate any circuit of size s.

Definition 3.1.1 (Universal Quantum Circuits) Fix n > 0 and let C be a collection of quan-

tum circuits on n qubits. A quantum circuit U on n + m qubits is universal for C if, for every

circuit C ∈ C, there is a string x ∈ {0, 1}m (the encoding) such that for all strings y ∈ {0, 1}n

(the data),

U(|y〉 ⊗ |x〉) = C|y〉 ⊗ |x〉.

The circuit collections we are interested in are usually defined by bounding various

28

parameters such as the size (number of gates), depth (number of layers of gates acting

simultaneously on disjoint sets of qubits), or palette of allowed gates (e.g., Hadamard,

π/8, CNOT).

As in the classical case, we also want our universal circuits to be efficient in various

ways. For one, we restrict them to using the same gate family as the circuits they simu-

late. We may also want to restrict their size or the number m of qubits they use for the

encoding.

For depth we show how to construct universal circuits whose depth is the same order

as the circuits being simulated in Section 3.3. For size, there is a log factor blow-up in the

universal circuits constructed here which is nearly optimal for polynomial size circuits

(Section 3.4).

3.1.1 Other relevant work

The study of quantum circuit complexity was originated by Yao [Yao93]. The basic defi-

nitions and first results in this research area can be found in Nielsen and Chuang [NC00].

Most of the research on universal quantum circuit classes deals with finding small, natu-

ral, universal sets of gates which can be used in quantum circuits to efficiently simulate

any quantum computation. Our problem and point of view here is quite different. We

have the goal of constructing, for a natural class C of quantum circuits, a single family of

quantum circuits which can efficiently simulate all circuits on the class C. In this chapter

we consider classes C which have significant resource bounds (small or even constant

depth, or fixed size) and ask that the corresponding universal circuit family have similar

depth or size bounds.

Cook and Hoover [CH85] considered the problem of constructing general-purpose

classical (Boolean) circuits using gates with fanin two. They asked whether, given n, c, d,

there is a circuit U of size cO(1) and depth O(d) that can simulate any n-input circuit of size

c and depth d. Cook and Hoover constructed a depth-universal circuit for depth Ω(log n)

and polynomial size, but which takes as input a nonstandard encoding of the circuit,

29

and they also presented a circuit with depth O(log n log log n) to convert the standard

encoding of the circuit to the required encoding.

Valiant looked at a similar problem—trying to minimise the size of the universal cir-

cuit [Val76]. He considered classical circuits built from fanin 2 gates (but with unbounded

fanout) and embedded the circuit in a larger universal graph. Using switches at key ver-

tices of the universal graph, any graph (circuit) can be embedded in it. He managed

to create universal graphs for different types of circuits and showed how to construct

a O(c log c)-size and O(c)-depth universal circuit. He also showed that his constructions

have size within a constant multiplicative factor of the information theoretic lower bound.

For quantum circuits, Nielsen and Chuang (in [NC97]) considered the problem of

building generic universal circuits, or programmable universal gate arrays as they call them.

Their universal circuits work on two quantum registers, a data register and a program

register. They do not consider any size or depth bound on the circuits and show that sim-

ulating every possible unitary operation requires completely orthogonal programs in the

program register. Since there are infinitely many possible unitary operations, any univer-

sal circuit would require an infinite number of qubits in the program register. This shows

that it is not possible to have a generic universal circuit which works for all circuits of a

certain input length. However they showed that it is possible to construct an extremely

weak type of probabilistic universal circuit with size linear in the number of inputs to the

simulated circuit.

Sousa and Ramos considered a similar problem of creating a universal quantum circuit

to simulate any quantum gate [SR07]. They construct a basic building block which can be

used to implement any single-qubit or CNOT gate on n qubits by switching certain gates

on and off. They showed how to combine several of these building blocks to implement

any n-qubit quantum gate.

30

3.2 Building Blocks: Quantum Gates

In order to construct efficient universal circuit families, it appears necessary to resort to

the massive parallelism that fanout gates provide; note that the existing classical construc-

tions make abundant use of fanout which is a very natural operation for classical circuits.

It is an open question whether the same efficiency can be achieved without using fanout

gates.

Our construction requires us to use controlled versions of the gates used in the sim-

ulated circuit. For most of the commonly used basis sets of gates (e.g., Toffoli gate,

Hadamard gate, and phase gate S), the gates themselves are sufficient to construct their

controlled versions (e.g., a controlled Hadamard gate can be constructed using a Toffoli

gate and Hadamard and phase gates). Depth or size universality requires that the con-

trolled versions of the gates should be constructable using the gates themselves within

proper depth or size, as required.

Definition 3.2.1 (Closed under controlled operation) A set of quantum gates G = {G1, . . .}

is said to be closed under controlled operation if for each Gi ∈ G, the controlled version of the

gate C-Gi|c〉|t〉 −→ |c〉Gc
i |t〉 can be implemented in constant depth and size using the gates in G.

Here, |c〉 is a single qubit and Gi could be a single or a multi-qubit gate.

TH

≡

H H

≡

H

Z

Z

H

H

H

H

Z

Figure 3.1: Equivalence of Toffoli gate and Z gate (left) and F gate and z f anout gate
(right)

A Z gate can be constructed easily (in constant depth and size) from a single un-

bounded Toffoli gate (and vice versa) by conjugating the target qubit of the unbounded

31

Toffoli gate with H gates (see Figure 3.1). Similarly, a Zn gate can be constructed from

a single F gate (and vice versa) in constant depth (although not constant size) by conju-

gating each target with H gates. So, in our depth-universal circuit construction, we can

use either or both of these types of gates. Similarly for unbounded Toffoli versus Z gates.

Z gates and Z-fanout gates are convenient to work with because they only change the

phase, leaving the values of the qubits intact (they are represented by diagonal matrices

in the computational basis). This allows us to use a trick due to Høyer and Špalek [HŠ03]

and run all possible gates for a layer in parallel.

3.3 Depth-universal quantum circuits

Depth universal circuits are defined to have the same order of depth as the simulated

circuits. We are particularly concerned with the depth of universal circuits. In computa-

tions modelled by circuits, circuit depth corresponds to time as we envision each layer of

the circuit being carried out in one step of the computation by parallely applying all the

gates in that layer. So, for example, depth-universal circuits are desirable because they can

simulate any circuit within a constant slow-down factor. Thus they are as time-efficient

as possible. If instead we want to minimise the number of gates that need to be applied,

then size-universal circuits are a good candidate.

Definition 3.3.1 (Depth-Universal Quantum Circuits) Fix a family F of unitary quantum

gates. A family of quantum circuits {Un,d}n,d>0 is depth-universal over F if

1. Un,d is universal for n-qubit circuits with depth ≤ d using gates from F ,

2. Un,d only uses gates drawn from F ,

3. Un,d has depth O(d), and

4. the number of encoding qubits of Un,d is polynomial in n and d.

Cook and Hoover considered the problem of depth-universal classical circuit for cir-

cuits with only bounded-width gates [CH85]. As in their case, the following counting

32

argument shows that depth-universal quantum circuits, if they exist, must have depth

Ω(log n) and thus can only depth-efficiently simulate circuits with depth Ω(log n). For

simplicity, assume that we have a universal circuit U for depth-1 circuits on n qubits that

uses CNOT gates only; we will use a communication type argument which can be triv-

ially extended to any family of gates. Since any pair of the n qubits could potentially be

connected with a CNOT gate, that pair must be connected somehow (indirectly perhaps)

within the circuit U. Thus any data input qubit can potentially affect any of the other

n − 1 data output qubits. Since U only has constant-width gates, the number of qubits

affected by any given data input increases by only a constant factor per layer, and so U

must have Ω(log n) layers. So for the rest of this section, assume that the circuits being

simulated have depth Ω(log n).

The construction of Cook and Hoover does not trivially extend to classical circuits with

unbounded-width gates. However, in this section we For circuits with unbounded-width

gates, in this section we prove that depth-universal circuits exist for unbounded-width

circuits over each of the gate families

F = {H, π/8} ∪ {F | n ≥ 1},

F ′ = {H, π/8} ∪ {F | n ≥ 1} ∪ {T | n ≥ 1}.

We first give the proof for F then show how to modify it for F ′.

Theorem 3.3.2 Depth-universal quantum circuits exist over F and over F ′. Such circuits use

O(n2d) qubits and can be built log-space uniformly in n and d.

Our construction is quite different from the Cook and Hoover construction, mainly

due to the limited ability to do fanout in quantum circuits. It seems impossible to per-

form efficient simulation without using fanout and so both the circuit families we con-

sider consists of the fanout gate. Note that the results for the two circuit families are

independent, because it is not known whether n-qubit Toffoli gates can be implemented

exactly in constant depth using single-qubit gates and fanout gates, although they can be

approximated this way [HŠ03].

33

The depth-universal circuit U we construct simulates the input circuit C layer by layer,

where a layer consists of the collection of all its gates at a fixed depth. C is encoded in a

slightly altered form, however. First, all the fanout gates in C are replaced with Z-fanout

gates on the same qubits with H gates conjugating the targets. At worst, this may roughly

double the depth of C (adjacent H gates cancel). Each layer of the resulting circuit is then

separated into three adjacent layers: the first having only the H gates of the original layer,

the second only the π/8 gates, and the third only the Z-fanout gates. U then simulates

each layer of the modified C by a constant number of its own layers. We describe next

how these layers are constructed.

Simulating single-qubit gates. The circuit to simulate an n-qubit layer of single-qubit

gates of type G, say, consists of a layer of controlled-G gates where the control qubits are

fed from the encoding and the target qubits are the data qubits. Figure 3.2 shows a layer

of G gates, where G ∈ {H, π/8}, controlled using H, S, π/8, CNOT, and Toffoli gates To

simulate G gates on qubits i1, . . . , ik, say, set ci1 , . . . , cik to 1 and the rest of the c-qubits to

0.

dn

d1

cn

c1

d2

=

|0〉

=

c2

...
where G ∈ {H, π

8 } and

G

S† π
8

† S

π
8

G
Hπ

8

π
8

H H

G

Figure 3.2: Simulating a layer of single-qubit G gates with controlled G gates. The ancilla
in the implementation of the controlled π/8 gate is assumed part of the encoding. The
ancilla is reset to 0 at the end and hence can be reused for implementing all π/8 layers.

The gates used in Figure 3.2 that are not in {H, π/8} can be actually implemented

using the gates from this set. For example, we can implement S by π
8

2, and since π
8

8 = I,

we can implement S† = π
8

6 and π
8

† = π
8

7.

34

Simulating Z-fanout gates. The circuit to simulate a Z-fanout layer is shown in Fig-

ure 3.3. The top n qubits are the original data qubits. The rest are ancilla qubits. All the

...
...

...
...

...
...

...
...

.

. . .

. . .

.

. . .

. . .

...

Bn



B1



B2



B3



d1

dn

...

...

0

0

...

0

0

...

0

0

...

A1

A2

A3

An

Figure 3.3: Simulating a layer of Z-fanout gates.

qubits are arranged in n blocks A1, . . . , An of n qubits per block. The qubits in block Ai

are labelled bi1, . . . , bin.

Each Ai subcircuit looks like Figure 3.4. The qubits ci1, . . . , cin are encoding qubits.

The large gate between the two columns of Toffoli gates is a Z-fanout gate with its control

on the ith ancilla (corresponding to bii and cii) and targets on all the other ancillæ.

Here is the state evolution from |~d〉 = |d1 · · · dn〉, suppressing the cij qubits and ancillæ

internal to the Ai subcircuits in the ket labels. Note that after the first layer of fanout gates,

35

bin

bi2

bii

ci1

0

ci2

0

cii

0

cin

0

...
...

...
...

...

...
...

...

bi1

Z

Z

Z

Figure 3.4: Subcircuit Ai in the simulation of Z-fanout gates.

each qubit bij carries the value dj.

|~d,~0, . . . ,~0〉 7→ |~d, ~d, . . . , ~d〉

7→ (−1)∑i dicii(∑j 6=i djcij)|~d, ~d, . . . , ~d〉

7→ (−1)∑i dicii(∑j 6=i djcij)|~d,~0, . . . ,~0〉.

To simulate some Z-fanout gate G of C whose control is on the ith qubit, say, we do

this in block Bi by setting cii to 1 and setting cij to 1 for every j where the jth qubit is a

target of G. All the other c-qubits in Bi are set to 0. We can do this in separate blocks

for multiple Z-fanout gates on the same layer, because no two gates can share the same

control qubit. Any c-qubits in unused blocks are set to 0.

Simulating unbounded Toffoli gates. We can modify the construction above to accom-

modate unbounded Toffoli gates (gate family F ′), or equivalently Z gates, by breaking

each layer of C into four adjacent layers, the first three being as before, and the fourth

36

cii

...

...

...
...

...

bi1

bi2

bii

bin

1

ci1

1

ci2

1

cin

1

...
...

...

X

ZX

X

X

X

X

X

X

X

X

Figure 3.5: Subcircuit Ai for a layer of Z gates.

containing only Z gates. The top-level circuit to simulate a layer of Z gates looks just as

before (Figure 3.3), except now each Ai subcircuit looks a bit different and is shown in

Figure 3.5, where the central gate is a Z gate connecting the ancillæ.

As before, the qubits ci1, . . . , cin are encoding qubits. The XZX gates on cii multiply

the overall phase by (−1)cii . When the Z gate of Ai is applied, its jth contact point is in

the state bijcij. Note that bijcij = bij if cij = 1 and 1 otherwise. The Z gate then multiplies

the overall phase by (−1)∏j(bijcij) = (−1)∏j:cij=1 bij . The state thus evolves as given below:

|~d,~0, . . . ,~0〉 7→ |~d, ~d, . . . , ~d〉

7→ (−1)∑i cii+∏j:cij=1 bij |~d, ~d, . . . , ~d〉

7→ (−1)∑i cii+∏j:cij=1 bij |~d,~0, . . . ,~0〉

To simulate some Z gate G of C whose first qubit is i, say, we do this in block Bi by setting

cii to 1 and setting cij to 1 for every j where the jth qubit is part of G. All the other c-qubits

in Bi are set to 0. As before, we can do this in separate blocks for multiple gates on the

37

same layer, because no two gates can share the same first qubit. Any c-qubits in unused

blocks are set to 0, and it is easy to check that this makes the block have no net effect.

3.4 Size-universal quantum circuits

Similar to a depth-universal circuit, a size-universal circuit is a universal circuit whose

number of gates is of the same order as the number of gates in the circuit it is simulating.

Formally,

Definition 3.4.1 A family {Un,c} of universal circuits for n-qubit circuits of size ≤ c is size-

universal if SIZE(Un,c) = O(c).

A simple counting argument shows that it is not possible to obtain a completely size-

universal circuit for fanin-2 circuits. Consider all circuits with c fanin-2 gates where one

input of each gate is connected the first qubit. There are (n − 1)c possible circuits. Then

consider similar circuits where there is no gate with input as the first qubit and one

input of each gate is connected to the second qubit. Continuing this recursive counting

argument, we obtain that the number of possible fanin-2 circuits is Ω((n − 1)c+1). Since

the universal circuit must be connected to all the encoding bits, it must have Ω(c log n)

gates.

We use Valiant’s idea of universal graphs [Val76] to construct a universal family of

fanin-2 circuits that are very close to the aforementioned lower bound. As before, we

would like to simulate C by using the same set of gates used in C. Our construction

works for any circuit using unbounded Toffoli gates and any set of single-qubit and 2-

qubit gates closed under the controlled operation.

First we will define a universal directed acyclic graph with n special vertices (called

poles) in which we can embed any circuit with n gates (counting the inputs as gates too).

The embedding will map the wires in the circuit to paths in the graph.

Definition 3.4.2 (Edge-embedding [Val76]) An edge-embedding ρ of G = (V, E) into G′ =

38

(V ′, E′) maps V one-to-one to V ′ and maps each edge (i, j) ∈ E to a directed path ρ(i) ρ(j) in

G′ such that distinct edges are mapped to edge-disjoint paths.

The graph of any fanin-2 circuit of size n can be represented as a directed acyclic

graph with vertices {1, . . . , n} such that there is no edge from j to i for i < j and each

vertex has fanin and fanout 2. Let Γ2(n) be the set of all such graphs.

Definition 3.4.3 (Edge-universal graph [Val76]) A graph G′ is edge-universal for Γ2(n) if

it has distinct poles p1, . . . , pn such that any graph G ∈ Γ2(n) can be edge-embedded into G′

where each vertex i ∈ G is mapped to vertex ρ(i) = pi ∈ G′.

Then, Valiant shows how to construct a universal graph.

Theorem 3.4.4 ([Val76]) There is a constant k such that for all n there exists an acyclic graph G′

that is edge-universal for Γ2(n), and G′ has kn lg n vertices, each vertex having fanin and fanout

2.

It is fairly easy to construct a universal circuit using the universal graph. In fact, the

universal circuit for circuits with n inputs and c gates will be any edge-universal graph

for Γ2(n + c).

Consider any such edge-universal graph G′. Then G′ has c′ = k(n + c) log(n + c)

vertices for some k. These c′ vertices include fixed poles p1, . . . , pn, pn+1, . . . , pn+c and

non-pole vertices. Create a quantum circuit C′ with c′ gates (including the inputs and

outputs) where G′ describes how the gates connect to each other. For each of the vertices

p1, . . . , pn of G′, remove their incoming edges and replace the vertices by the input as

shown in Figure 3.6. Replace each of the vertices pn+1, . . . , pn+c with a subcircuit that

applies any of the single- or 2-qubit gates on the inputs, where the gate to apply is

controlled by the encoding. For example, Figure 3.8 shows the subcircuit at a pole vertex

in a universal circuit simulating CNOT and H gates; refer to figure 3.2 for the construction

of the controlled-H gate.

39

For a non-pole vertex, replace it with a subcircuit that swaps the incoming and out-

going wires (i.e., first input is connected to second output and second input is connected

to first output) or directly connects them (i.e., first input is connected to first output and

similarly for the second input). Again, the subcircuit is controlled by the encoding which

controls whether to swap or directly connect (see Figure 3.7). The edge disjointness prop-

erty guarantees that wires in the embedded circuit are mapped to paths in C′ which can

share a vertex but cannot share any edge.

≡
gate(vout1)
gate(vout2)xi

0

vout2

vout1
pi

vin1

vin2

Figure 3.6: The gate for a pole vertex pi is mapped to input xi.

cv

Figure 3.7: The gates at a non-pole vertex v. The encoding bit cv specifies if first output
qubit should be mapped to first input or second input qubit and similarly for second
output qubit.

cd
v

cg
v

H

Figure 3.8: Example of the gates at a pole vertex v simulating a circuit with CNOT and
H gates. The encoding bits cg

v specify which kind of gate is at vertex v, and the cd
v specify

which qubit the gate acts on (for H gate) or which is the control qubit (for CNOT gate).

To simulate any fanin-2 circuit C with c gates acting on n qubits, construct the edge-

universal graph G′ for Γ2(n + c). Embed the graph of C into G′ such that the input

nodes of C are mapped to the poles p1, . . . , pn in G′. In the encoding, set cg
v to denote

the type of g. If g is a single-qubit gate, set cd
v to denote which of the two input qubits

is connected to g; if g is a 2-qubit gate, set cd
v to denote the control qubit. Consider all

40

the non-pole vertices v. By the property of the edge embedding, every wire in the circuit

can be mapped to an edge disjoint path in G. Consider each wire in and its corresponding

path in G. Since the paths are all edge disjoint, the wire connections can be specified by

specifying how the 2-output wire are connected to the 2 input wires. Set cv to denote

whether the wires should be directly connected or swapped.

The size of the encoding is (n + c)(log |gates|+ 1) + (|Γ2(n + c)| − (n + c)). For poly-

nomial size circuits, it is O(c log c) and the construction gives us a universal circuit with

a logarithmic blow-up in size.

Theorem 3.4.5 There is a constant k and a family of universal circuits Un,c that can simulate

every circuit with c gates acting on n qubits such that SIZE(Un,c) = O((n + c) log(n + c)).

We can use a similar idea for circuits with unbounded fanin. First we decompose the

unbounded fanin gates using bounded fanin gates (fanin 2 in this case). This is doable for

most of the common unbounded fanin gates. For example, an unbounded Toffoli gate of

size f can be constructed using Θ(f) successive Toffoli gates of size 3, which can in turn

be implemented using Hadamard, phase, π/8 and CNOT gates [NC00]. So any circuit

of size c consisting of Hadamard, π/8 and unbounded Toffoli gates can be transformed

into an equivalent circuit with size at most O(cn) consisting of these single-qubit gates

and CNOT gates. The rest of the construction follows as before.

Corollary 3.4.6 There is a family of universal circuits Un,c that can simulate quantum circuits

of size c on n qubits and consisting of Hadamard, π/8, and unbounded Toffoli gates such that

SIZE(Un,c) = O(nc log(nc)).

3.5 Other results

Depth-universal classical circuits. The techniques of Section 3.3 can be easily adapted

to build depth-universal circuits for a variety of classical (Boolean) circuit classes with

unbounded gates, e.g., AC, ACC, and TC circuits. The key reason is that these big gates

41

are all “self-similar” in the sense that fixing some of the inputs can yield a smaller gate

of the same type.

Circuit encoding. We have been mostly concerned with the actual simulation of a quan-

tum circuit C by the universal circuit U. It is possible, however, to hide some complexity

of the simulation in U’s description of C itself. Usually, the description of a classical circuit

describes the underlying graph of the circuit and specifies the gates at each vertex. We can

similarly describe a quantum circuit by its graph structure. The description is extremely

compact with size proportional to the size of the circuit. For example, the standard en-

coding of fanin 2 graphs would be a list of 4-tuples, one for each gate, (v, g, in1, in2). Here

v is the gate number and g is the type of the gate. The 1st input of v is connected to the

in1 qubit and the 2nd input of v is connected to the in2 qubit.

However, we used a description that is more natural for quantum circuits and espe-

cially suitable for simulation. The description stores the grid structure of the circuit; the

rows of the grid correspond to the qubits, and the columns correspond to the different

layers of the circuit. We first convert the circuit to have only one kind of gate at each

layer; also we fix some ordering of the fixed finite set of gates and assume that layers in

the circuit always consist only of one of the finite number of different gates, and the gates

in each layer of gates always occur in the same order. (There can be layers with no gates.)

This can all be done with a constant increase in depth as the number of different gates

types is finite.

Then, for a layer of single qubit gates of type, say G, the grid encoding stores n

Boolean values (c1, · · · , cn) where ci denotes whether there is a G gate in that layer and

on ith qubit. For a layer of controlled-Z gates, the encoding contains n2 Boolean values

(c11, c12, · · · , cnn) where cii denotes if there is a controlled-Z gate in that layer with the

control on the ith qubit and cij denotes if there is a controlled-Z gate in that layer with

control on the ith qubit and target on the jth qubit. For a layer of generalised Z gates,

it contains n2 Boolean values (c11, c12, · · · , cnn) where cii denotes if there is a generalised

42

Z gate in that layer with the first qubit on the ith qubit and cij denotes if there is a

generalised Z gate in that layer on qubit j whose first qubit is on the ith qubit. This

description is not unique for any given circuit and its size is O(nd), where n is the number

of qubits and d is the depth of the circuit. However, a graph-based description can be

easily converted to this grid-based description in polynomial time.

3.6 Summary

In this chapter we showed how to construct universal circuit families with the desired

property that they require (roughly) no more resource (depth or size) than the circuit they

are simulating. Designing such quantum circuits is a challenge because the simulated

circuits could perform operations involving one or both of the phase and states of the

qubits which it is not immediately clear how to simulate. Furthermore, the universal

circuit in itself is constrained by clean computation, lack of arbitrary copying of qubits

and other such requirements of a quantum circuit.

Still, a number of natural, interesting open problems remain.

Fanout gates are used in our construction of a depth-universal circuit family. Is the

fanout gate necessary in our construction? We believe it is. In fact, we do not know how to

simulate depth-d circuits over {H, π/8, CNOT} universally in depth O(d) without using

fanout gates, even assuming that the circuits being simulated have depth Ω(log n). The

shallowest universal circuits with bounded-width gates we know of have a lg n blow-up

factor in the depth, just by replacing the fanout gates with log-depth circuits of CNOT

gates.

Our results apply to circuits with very specific gate sets. How much can these gate

sets be generalised? Are similar results possible for any countable set of gates containing

Hadamard, unbounded Toffoli, and fanout gates?

We showed how to construct a universal circuit with a logarithmic blow-up in size.

The construction is within a constant factor of the minimum possible size for polynomial-

43

size, bounded-fanin circuits. However for constant-size circuits, we believe the lower

bound can be tightened to match the proven upper bound. For unbounded-fanin circuits,

we construct a universal circuit with size O(nc log nc) which is significantly larger than

the bounded fanin lower bound of Ω(c log n). We think that a better lower bound is

possible for the unbounded-fanin case.

4 Quantum Circuit Lower Bound

“I refuse to answer that question on the grounds that I don’t

know the answer.”
– Zaphod Beeblebrox (H2G2 by Douglas Adams)

Our intelligence is of course no match for that of a Galactic ex-President, but knowl-

edge about what we cannot do often carries significant insight about what we can. Com-

puter science and logic, rather mathematics in general, is noteworthy for its openness

towards results revealing its limitations. In the previous chapter we saw evidence that

the quantum circuit model is powerful enough to let us create a single circuit with lim-

ited depth (or size) that can simulate all circuits of the same depth (or size). There are

many examples of quantum circuits, even structurally very simple ones with constant

or logarithmic depth, that possess more power than similarly resource bounded classical

circuits. But can such circuits compute arbitrarily hard functions? In this chapter, we

investigate their limitations. Our main contribution here is a new technique for proving

lower bounds of quantum circuits. This chapter is based on the following report:

•[Ber08] D. Bera. A New Lower Bound Technique for Quantum Circuits without

Ancillæ. Boston University, Computer Science technical report 2008-15 (2008).

4.1 Introduction

There are many models of computing used in computer science, e.g. Turing machines,

circuits, decision trees to name a few. Each of the models have their own advantages. The

45

circuit model is particularly useful for proving lower bounds. Unlike a Turing machine, a

circuit computing a function is easy to write down and is closely linked to the algebraic

and combinatorial properties of the function. This makes it tempting to try to bound the

power of the circuit, when limited to a certain depth or size or both.

There is a considerable interest in low depth quantum circuits. The recent develop-

ments in physical realisation of qubits and quantum gates suggest that the early quantum

circuits will be of limited size and depth, if built using the classical like model of a net-

work of gates. For example it has been shown that the quantum Fourier transform can

be implemented in low depth and size [CW00]. Note as well that the quantum Fourier

transform plays an important role in providing quantum speedups for many problems.

Many of the currently known upper bounds in quantum circuit complexity require

the fanout gate [HŠ03], which interestingly enough, was found to be depth-3 equivalent

to the parity gate [Moo99]. On one hand this makes the upper bounds stronger since a

fanout gate seems to be something that could be physically implementable [Fen03b]. On

the other hand, this begs the question whether something as simple as the fanout gate

could be implemented in constant depth using the typical set of universal gates. Since

fanout is equivalent to parity, this is a quantum analogue of the classical “PARITY ∈ AC0”

question [Bea94]. We address a limited form of this question in this chapter.

Apart from a resolution of the question of fanout gates with constant depth circuits,

we are also interested in lower bound techniques for quantum circuits. Today there are

several lower bound techniques for classical circuits e.g. using algebraic representation of

the gates, randomly fixing inputs to the gates or information theoretic arguments [Pud93].

However, similar to other models for quantum computation, even to achieve more mod-

est results than what is known for classical circuits, new techniques are needed. Also,

different techniques reveal important insight about the structure which enriches our un-

derstanding of the model. To this effect, we describe a new technique to analyse quantum

circuits without any ancillæ made of Toffoli gates and any single qubit gates.

46

4.2 Motivation and related work

In this chapter we solely focus on quantum circuits made with arbitrary fanin Toffoli

gates and any set of single qubit gates. Our motivation for choosing this set of gates is

two-fold. First, there are several (effectively) universal set of quantum gates consisting

of a particular set of single qubit gates along with the Toffoli gate i.e. any quantum

gate can be approximated arbitrarily closely using this set of gates [NC00]. Furthermore,

any constant fanin gate can be effectively replaced by a constant depth and constant size

circuit made of single qubit and CNOT gates; since a CNOT gate is the same as a Toffoli

gate for 2 qubits, this means the forthcoming results also hold true for quantum circuits

with arbitrary fanin Toffoli gates and any set of bounded fanin gates.

The second motivation is in tune with our quest in understanding what the quantum

model brings to the plate. The Toffoli gate is very similar to the classical AND gate.

So structurally the only difference is the presence of the single qubit quantum gates.

Informally, the single qubit gates manipulate and share information locally (i.e. with a

constant number of qubits at any time) and the unbounded classical gates act globally to

share these changes.

In the analysis of such circuits we find it necessary to grapple with another likely

limitation of real quantum computers. It is evident that they will be limited not only in

their run-time duration but also by the number of qubits used in the computation, due

to the difficulty in controlling the interactions of multiple qubits. It will be necessary

to identify computations which use as few ancillæ as possible. Thus we consider here

the number of ancillæ used by a circuit as an additional computational resource, and

in addition to the above requirements, we also require that our circuits use no ancilla.

Currently it is not known if such circuits are necessarily weaker than circuits with ancillæ.

Earlier in Chapter 2, we defined that a cleanly computing circuit returns the ancillæ

to their initial states. In this chapter, we use “clean computation” in a more general

sense. For quantum circuits that compute a Boolean function, usually there is a fixed

47

qubit whose measurement output is considered as the output value of the circuit. Such a

circuit is said to cleanly compute that function, if all the qubits, excluding the measured

qubit, are returned to their initial states. This basically extends the requirement from

ancillæ to every qubit that they should be reusable if possible.

Unlike some other models, we do not require clean computation. This is okay since

we are interested in lower bounds in this chapter; a lower bound for parity when clean

computation is not required also gives a lower bound for parity when clean computation

is required. We hope that these simplifications will lead to better understanding of the

major underlying differences like entanglement and superposition.

Our technique is based on the usual observation about AND gates: even though an

AND gate might act on a large number of inputs, for most input assignments the result

is simply zero. Different manifestations of this observation have led to a number of

techniques in the past [RW04].

The random restriction approach [Has86] notes that setting only one input of an AND

gate to 0 is sufficient to replace the gate by a constant. It then uses this idea to randomly

set several of the input variables and kill most of the gates of the circuit.

The algebraic techniques [Gre99, Bei93] represent the inputs as variables and the gates

as polynomial functions on these variables. The main idea here revolves around approx-

imating AND or OR by a low-degree polynomial function. The polynomials are then

composed gate-by-gate and a low-degree polynomial is obtained for the whole circuit.

The quantum formula model is a restricted version of the quantum circuit model.

Quantum formulæ are defined like Boolean formulæ, i.e. there is at most one path from

any input to the output. For a quantum formula, this means that only one of the output

qubits of any gate can be connected to the output qubit of the circuit. Rowchoudhury and

Vatan looked at the quantum formula lower bound problem and gave an almost-quadratic

lower bound of Ω(n2/ log2 n) for the problem of element distinctness on n inputs [RV01].

For quantum circuits, Fang et al. in [FFG+06] looked at the same problem as ours:

a lower bound for parity using unbounded fanin Toffoli and other bounded fanin gates.

48

Their approach is similar to the random restriction method; they eliminate Toffoli gates by

carefully setting input variables (however, they set the input selectively, unlike randomly

as in the random restriction method). For a comprehensive understanding of the different

lower bound techniques for quantum circuits, we briefly survey their method in Section

4.4.1. We then describe our approach in detail in Section 4.4.2.

4.3 Bounded fanin circuits

An oft used technique in circuit complexity is the communication argument that the out-

put gate of a circuit must be ultimately connected to all the inputs that its corresponding

function non-trivially depends on. This is also true for quantum circuits but the proof is

not so obvious since the intermediate quantum states might be entangled. An application

of this claim is that any quantum circuit with bounded fanin gates require depth at least

log n to compute any function that is dependent on all input qubits e.g. parity, Toffoli or

fanout. This was first proved in [FFG+06]; here we present a slightly different argument

that will be helpful in understanding the later results in this chapter.

Theorem 4.3.1 For any circuit from a family of quantum circuits made of bounded fanin gates

and of depth d, the output of measurement of a single qubit can depend on at most 2O(d) inputs.

Proof. Consider a circuit of depth d with n inputs qubits and a ancillæ. For simplicity

assume it is made of single qubit and 2-qubit gates. Also assume at the end of the circuit,

the measurement of the first qubit in some fixed basis is output as the circuit output (the

theorem is true as long as any constant number of output qubits are measured).

Since the gates are of fanin at most 2, at depth d, the state of the first qubit during

measurement should depend at most on a fixed set of 2d input qubits. However, it is

possible that the quantum gates may have entangled all the input qubits. We claim that

the measurement output of the first qubit does not depend on any such entanglement.

Here is an explicit proof of this fact.

49

For any quantum circuit with single and 2-qubit gates, there is an equivalent directed

acyclic graph where single qubit gates correspond to vertices with fanin and fanout 1 and

2-qubit gates correspond to vertices with fanin and fanout 2. Let the vertex for the last

gate on the first qubit be denoted by u (the measurement qubit). Then the vertices can

be partitioned into two disjoint subsets U and V such that U is the smallest subset that

consists of u and other vertices from which u can be reached; observe that there is no

edge from V to U and |U| ≤ 2d.

Since there is no edge from V to U, this means in the circuit, the gates in U do

not depend on any gates from V. So, the circuit of depth d can be transformed to an

equivalent depth 2d circuit where the gates in V are pushed past layer d i.e. if V has a

gate g in layer i, then the new circuit has g in layer d + i. The transformed circuit then

has all gates from U in the first d layers working only on 2d qubits, followed by d more

layers consisting on gates from V working on all but the first qubit (since U contains

u and u is the last gate on first qubit, there is no outgoing edge from u). Formally,

C = (I(1) ⊗V(n+a−1))(U(2d) ⊗ I(n+a−2d))) (the superscript denotes the size of the subspace

the operator).

Since later gates cannot affect the measurement of the output of u, and the gates up to

and including u depend only on 2d gates, the measurement of the output of u can depend

on at most 2d inputs. �

Note that this argument works with any numbers of ancillæ. A careful analysis of the

dependency of the output qubit gives us the exact depth required to compute parity and

fanout.

Corollary 4.3.2 [FFG+06, Th. 3.2] Any quantum circuit on n inputs and any number of ancillæ

must have depth at least log n to exactly compute parity and depth at least log n − 2 to exactly

compute fanout.

50

4.4 Unbounded fanin circuits

Next we move on to circuits with no ancillæ and composed of unbounded Toffoli gates

and any set of single qubit gates. Both the techniques covered here are inspired by ob-

servations for classical circuits. We first survey an earlier approach by Fang et al. in

[FFG+06].

4.4.1 Earlier technique

The crucial observation behind this technique is that the output of a classical AND or OR

gate can be fixed by fixing only one input i.e. the gate can be effectively killed by fixing

one input. Thus, if we consider a constant depth classical circuit made of NOT gates and

unbounded fanin AND and OR gates but without any fanout, then its output can be fixed

by fixing a few of its inputs.

A similar argument works for quantum circuits but not surprisingly, the method be-

comes very complicated since the intermediate states in the circuit can be a superposition

of the basis states and also entanglement can create undesired dependencies between

qubits. The technique employs two tricks to its advantage. First, it assumes that the

circuit is composed of unbounded Z gates instead of Toffoli gates. Z gates, as described

earlier, flip the phase of a basis state if all the qubits are 1; recall that a Z gates is con-

stant depth and constant size equivalent to a Toffoli gate, so this replacement does not

change the order of the size or depth of the circuit. Secondly, say a circuit C of depth d

is composed of levels L1, . . . , Ld such that C|Ψ〉 = L1 · L2 . . . Ld|Ψ〉 and each Li is a tensor

product of Z gates and single qubit gates. Without loss of generality, assume that the nth

qubit is measured as the output of C. Then, we can start killing Z gates backwards from

level Ld to L1: fixing the state of a set of qubits in each level as we go backward so that

the output qubit is always in the state |0〉. It can be shown that the set of qubits whose

states needs to be fixed in level Li consists of at most 2i qubits. Therefore, for the full

circuit of d levels, there exists a state |Ψ2d〉 involving only 2d qubits such that no matter

51

what the other n − 2d qubits are set to, after C is applied, measurement of the nth qubit

will always output 0. With a careful analysis, [FFG+06] showed the following:

Theorem 4.4.1 (Lemma 4.2 [FFG+06]) Consider any quantum circuit C with depth d, with n

inputs and 0 ancillæ, and whose output is determined by measuring a particular qubit after C is

applied to the input. If C is built is unbounded Toffoli gates and bounded width gates, then the

output qubit can be fixed to |0〉 by fixing the state of 2d/2 of the n input qubits.

They were able to extend their technique to include sublinear number of ancillæ,

specifically the above result hold if C has a ancillæ as long as n > (a + 1)2d/2.

4.4.2 Our technique

Our approach is inspired by one of the algebraic approaches by Smolensky [Smo87] where

classical AND gates are approximated as:

∀δ, ∃polynomial Â(X), Pr
X∈Dn

[
AND(X) = Â(X)

]
> 1− δ

where Dn is any distribution on n-bit strings and Â(x) is a carefully constructed low-

degree polynomial with degree dependent on δ. The crucial observation is that, for quan-

tum circuits without any ancillæ, the reversibility property of the circuit ensures that the

output distribution after any gate is same as the input distribution. Thus, if the input

distribution is chosen uniformly at random, we can approximate AND by the simple

degree-0 polynomial Â(X) = 0; note that though inspired by the technique of Smolensky,

we do not need the whole machinery of his technique for our case. Since the states of a

quantum circuit can be a superposition of basis states, instead of actually bounding the

probability of approximating the AND gate, we bound the distance between the states

obtained by applying the Toffoli gate and by applying the approximation. Thus we can

approximate the original circuit by another circuit whose output does not depend on all

input qubits.

52

Setup Consider a circuit on n qubits (no ancillæ) where the initial state is one of the 2n

standard basis states {|00 . . . 0〉, |00 . . . 1〉, · · · , |11 . . . 1〉}. Each of the possible initial states

{|x〉 : x ∈ {0, 1}n} corresponds to the classical input x to the circuit. Henceforth any

intermediate state of the circuit, denoted by |Ψ(x)〉, should be understood as the inter-

mediate state when the input state is |x〉. Similarly, {|Ψ(x)〉} will denote the distribution

of intermediate states when the distribution of input states is {|x〉}.

Consider an intermediate state of the circuit, |Ψ(x)〉. We will analyse the effect of

applying a (t + 1)-qubit Toffoli gate T to this state. Without loss of generality, let us

assume that T = {1, . . . , t} form the set of control qubits of T and its target qubit is qubit

t + 1. We will use q = n − (t + 1) to denote the number of qubits not involved with T

and fx(j) = 〈j|Ψ(x)〉 to denote the amplitude of |j〉 in |Ψ(x)〉. We will use the notation

i · j to denote concatenation of strings.

First note that, for all x

Ψ(x) = ∑
k∈{0,1}n

fx(k)|k〉

= ∑
j∈{0,1}q

∑
i∈{0,1}t+1

fx(i · j)|i〉|j〉

= ∑
j∈{0,1}q

[
fx(1t · 0 · j)|1t · 0 · j〉+ fx(1t · 1 · j)|1t · 1 · j〉+ ∑

i 6=1t·0
i 6=1t·1

fx(i · j)|i · j〉
]

After T is applied, the amplitudes of all but two of the basis states remain unchanged

and the amplitudes of the remaining two basis states are swapped. We get the following

set of states for all x.

T |Ψ(x)〉 = ∑
j∈{0,1}q

[
fx(1t · 0 · j)T |1t · 0 · j〉+ fx(1t · 1 · j)T |1t · 1 · j〉+

∑
i 6=1t·0
i 6=1t·1

fx(i · j)T |i · j〉
]

= ∑
j∈{0,1}q

[
fx(1t · 0 · j)|1t · 1 · j〉+ fx(1t · 1 · j)|1t · 0 · j〉+ ∑

i 6=1t·0
i 6=1t·1

fx(i · j)|i · j〉
]

Here is a technical lemma regarding the amplitudes that will be useful later.

53

Lemma 4.4.2 For any y1 6= y2 ∈ {0, 1}n,

∑
x
| fx(y1)− fx(y2)|2 = 2

Proof. In this proof ∑x (and similarly ∑y) will denote ∑x∈{0,1}n .

Let C = ∑x |Ψ(x)〉〈x| = ∑x,y fx(y)|y〉〈x| denote the operator that transforms |x〉 to

|Ψ(x)〉. Since |Ψ(x)〉 is the intermediate state of the circuit when the initial state is |x〉,

C is a unitary operator. Therefore, C† = ∑xy fx(y)∗|x〉〈y| is also unitary and hence,

{C†|y〉 | y ∈ {0, 1}n} forms an orthonormal basis.

Therefore, for y1 6= y2 ‖C†|y1〉 − C†|y2〉‖2 = 2.

Since ‖C†|y1〉 − C†|y2〉‖2 = ‖∑x(fx(y1)∗ − fx(y2)∗)|x〉‖2 = ∑x | fx(y1)− fx(y2)|2, this

completes the proof. �

Approximating a Toffoli gate Our strategy is to remove T (or replace it by the Identity

gate), if t is large enough, and show that the expected error is reasonably low.

Lemma 4.4.3 For a Toffoli gate T with t control qubits, acting on a state |Ψ(x)〉,

Pr
x

[‖T |Ψ(x)〉 − |Ψ(x)〉‖ < ε] > 1− 2
2tε2

For proving this we need to define what we mean by approximation error. Consider

a distribution over an ensemble of states Σ = {|Ψ1〉, . . .}.

Definition 4.4.4 For a state |Ψ〉 and a gate T , define the expected error in removing T as

Ex(∆2
T) = ∑

i
Pr(|Ψi〉)∆2

T

where Pr(|Ψi〉) is the probability of choosing the state |Ψi〉 from Σ and ∆T = ‖T|Ψ〉 − |Ψ〉‖.

In our specific case, we have a distribution on 2n states {|Ψ(x)〉}. Since quantum gates

are unitary and thereby reversible, this means that {|Ψ(x)〉} is identically distributed as

the input to the circuit {|x〉}, which we chose uniformly at random.

Next we need an estimation of the expected error Ex(∆2
T).

54

Lemma 4.4.5 Ex(∆2
T) = 2/2t

Proof. Notice that,

T |Ψ(x)〉 − |Ψ(x)〉 = ∑
j∈{0,1}q

[
fx(1t · 0 · j)− fx(1t · 1 · j)

]
|1t · 1 · j〉+

[
fx(1t · 1 · j)− fx(1t · 0 · j)

]
|1t · 0 · j〉

So, taking the difference and summing over all x gives us,

‖T |Ψ(x)〉 − |Ψ(x)〉‖2 = ∑
j∈{0,1}q

2| fx(1t · 0 · j)− fx(1t · 1 · j)|2

∑
x
‖T |Ψ(x)〉 − |Ψ(x)〉‖2 = ∑

x
∑

j∈{0,1}q

2| fx(1t · 0 · j)− fx(1t · 1 · j)|2

= 2 ∑
j∈{0,1}q

∑
x
| fx(1t · 0 · j)− fx(1t · 1 · j)|2

= 2 ∑
j∈{0,1}q

2 = 2q+2 = 2n−t+1 (Using lemma 4.4.2)

Therefore, ∑x ∆2
T = 2 · 2n/2t and since the distribution of {|Ψ(x)〉} is uniform, this proves

the lemma. �

Now we are ready to prove lemma 4.4.3.

Proof of Lemma 4.4.3 Using the Markov inequality we get,

Pr
x
[∆2

T < ε2] ≥ 1− Ex(∆2
T)

ε2

The result follows after we replace the expected error from lemma 4.4.5,

Pr
x
[∆T < ε] = Pr

x
[∆2

T < ε2] > 1− 2
2tε2

�

4.4.3 Approximating a circuit

Lemma 4.4.3 gives us a bound on the probability of error when one Toffoli gate is re-

moved from the circuit. We can do a similar estimation when several gates are removed.

55

The crucial fact to note here is that the states after each gate |Ψ(x)〉 have a one-to-one

correspondence with the initial states |x〉 i.e. the {|x〉} and {|Ψ(x)〉} after each gate are

identically distributed. The rest is a simple application of the union bound and using the

fact that errors from quantum operations are additive.

Lemma 4.4.6 Consider a circuit with C = CkTk · · ·C1T1C0 with k Toffoli gates {T1, . . .} that

are removed; Ci-s denote the intermediate gates that are not removed. Let ti denote the number of

control qubits Ti has. Then the total average error when all the k Toffoli gates are removed is upper

bounded by the the sum of the average error for each gate, i.e.

Pr
x

[
‖CkTkCk−1 · · ·C1T1C0|Ψ(x)〉 − Ck · · ·C0|Ψ(x)〉‖ < ε

]
> 1− 2 · k2

ε2 (1/2t1 + . . . + 1/2tk)

Proof. We will give a sketch of the proof for two consecutive gates. The general case

where k Toffoli gates are removed and there are other intermediate gates is similar.

Say we have two Toffoli gates T1 and T2 with t1 and t2 control qubits respectively

applied in succession to the state |Ψ(x)〉. From lemma 4.4.3 we know,

Pr
x

[
‖T1|x〉 − |x〉‖ ≥ ε

]
<

2
2t1 ε2

Pr
x

[
‖T2T1|x〉 − T1|x〉‖ ≥ ε

]
<

2
2t2 ε2

Due to additive nature of errors from quantum gates, ‖T2T1|x〉 − |x〉‖ ≤ ‖T2|Ψ(x)〉 −

|Ψ(x)〉‖+ ‖T1|Ψ(x)〉 − |x〉‖. By union bound,

Pr
x

[
‖T1|Ψ(x)〉 − |Ψ(x)〉‖ ≥ ε or ‖T2T1|Ψ(x)〉 − T1|Ψ(x)〉‖ ≥ ε

]
<

2
ε2 (1/2t1 + 1/2t2)

Pr
x

[
‖T1|Ψ(x)〉 − |Ψ(x)〉‖ < ε and ‖T2T1|Ψ(x)〉 − T1|Ψ(x)〉‖ < ε

]
> 1− 2

ε2 (1/2t1 + 1/2t2)

Pr
x

[
‖T2T1|Ψ(x)〉 − |Ψ(x)〉‖ < 2ε

]
> 1− 2

ε2 (1/2t1 + 1/2t2)

Replacing 2ε by ε proves the two gate case. �

To approximate a circuit of depth d and on n inputs without any ancillæ, we start

from the input level of the circuit, remove large gates, move to the next higher level and

then repeat the same. At each level we remove Toffoli gates with t or more control qubits;

56

t = t(n, d) can be a fixed parameter per circuit family to control the error. This gives us

our main theorem characterising such circuits.

Theorem 4.4.7 Let C be a quantum circuit with n qubits, no ancillæ depth d, and using un-

bounded fanin Toffoli gates and bounded fanin gates. For any t < n, let St be the number of gates

with fanin at least t + 1. Then, there exists another quantum circuit C′ on n qubits, no ancillæ,

with depth at most d and using the same set of gates such that C′ only uses gates with fanin at

most t and

Pr
x∈{0,1}n

[
‖C|x〉 − C′|x〉‖ < ε

]
> 1− 2S3

t
ε22t

Approximating a layer We can get a slightly better error bound by observing that in any

given layer, the gates, especially the Toffoli gates that are removed, operate on disjoint sets

of qubits. That is, if all the k gates removed in lemma 4.4.6 are of the same layer then the

error is less than just the sum of the errors. We are presenting this after the main theorem

since it is easier to understand how to approximate a layer once the general idea is clear.

Consider a layer of gates in a circuit C: let T1, . . . , Tk denote k Toffoli gates in L that

will be removed and let ti denote the number of control qubits of Ti. Let T0 denote the

combined unitary gate for the rest of the qubits. To keep the notation simple, we will let

T0 operate also on untouched qubits in this layer so that T0 can be applied to t0 = n−∑i ti

qubits. Let L denote the unitary operator for this layer: L = Tk ⊗ . . . T1 ⊗ T0.

As before, denote the error in approximating the layer as ∆L = ‖L|Ψ(x)〉 − |Ψ(x)〉‖.

The expected error for this layer L is defined similarly as before: Ex(∆2
L) = ∑x

(1
2n

)
∆2

L.

Lemma 4.4.8 The expected error for a layer with k Toffoli gates, where the ith gate has ti control

qubits, is

Ex(∆2
L) = 2

(
1−

k

∏
i=1

(
1− 1

2ti

))

Proof. We will follow the lines of lemma 4.4.5. To keep the notation simple, let T1 act on

qubits 1, . . . , (t1 + 1), T2 act on qubits (t1 + 2), . . . and so on; T0 acts on the last q qubits.

57

Then, we can write

|Ψ(x)〉 = ∑
i0,i1,...

fx(i1 · i2 . . . i0)|i1 ⊗ i2 ⊗ . . . ik ⊗ i0〉

where i0 ∈ {0, 1}q and ij ∈ {0, 1}tj for j = 1 . . . k represent the basis states of the set of

qubits each Toffoli gate acts on.

When any of the Toffoli gates of L is applied on one of the basis states, the amplitude

of the state changes if and only if the all its control qubits are in the state |1〉. In fact, as

shown earlier, the amplitudes of such states with target qubit in the states |0〉 and |1〉 are

swapped i.e. the amplitudes undergo a permutation. So we can write the state after L is

applied as

L|Ψ(x)〉 = ∑
i0,i1,...

fx(i′1 · i′2 . . . i′0)|i1 ⊗ i2 ⊗ . . . ik ⊗ i0〉

where, for j = 1 . . . k, i′j 6= ij if and only if ij is one of the two values 11 . . . 10 and 11 . . . 11

(in which case i′j is the same as ij with the last bit flipped).

The number of possible states |i1 · i2 . . . i0〉 whose amplitude is thus permuted is

2t0
k

∏
j=1

2tj+1 − 2t0
k

∏
j=1

(2tj+1 − 2) (4.1)

Doing a similar analysis as in lemma 4.4.5,

∑
x
‖L|Ψ(x)〉 − |Ψ(x)〉‖ =

2 ∑
i0,ii ,...

∑
x
| fx

ĩ1 · 0︸︷︷︸
i1

· ĩ2 · 0︸︷︷︸
i2

. . . ĩk · 0︸︷︷︸
ik

. . . · i0

− fx

ĩ1 · 1︸︷︷︸
i1

· ĩ2 · 1︸︷︷︸
i2

. . . ĩk · 1︸︷︷︸
ik

·i0

 |2

for each choice of i1, i2, . . . such that at least some ij has ĩj = 11 . . . 1. From lemma 4.4.2,

each term in the above sum is 2 and the number of possible values of i0, i1, . . . is given by

equation 4.1. Since the distribution of the input |x〉 (and hence |Ψ(x)〉) is uniform, we get

58

the required expression for the expected error.

Ex(∆2
L) =

1
2n 2

[
2t0

k

∏
j=1

2tj+1 − 2t0
k

∏
j=1

(2tj+1 − 2)

]

=
2

∏k
j=1 2tj+1

[
k

∏
j=1

2tj+1 −
k

∏
j=1

(2tj+1 − 2)

]

=
2

∏k
j=1 2tj

[
k

∏
j=1

2tj −
k

∏
j=1

(2tj − 1)

]

= 2

(
1−

k

∏
i=1

(
1− 1

2ti

))

�

We can now approximate a circuit layer by layer, giving us a modified version of

Theorem 4.4.7. Assume we remove all Toffoli gates with t or more control qubits. Let

E(i) = 2− 2
(

1− 1
2t

)i

denote an upper bound for the expected error for any layer where

i Toffoli gates are removed.

Corollary 4.4.9 Let C be a quantum circuit with n qubits, no ancillæ and has depth d and uses

unbounded fanin Toffoli gates and bounded fanin gates. For any t < n, let di be the number of

Toffoli gates with fanin at least t + 1 in layer i (count the output layer as layer 1). Then, there

exists another quantum circuit C′ on n qubits, no ancillæ, with depth at most d and using the

same set of gates such that C′ only uses gates with fanin at most t and

Pr
x

[
‖C|x〉 − C′|x〉‖ < ε

]
> 1− d2

ε2

d

∑
i=1

E(di)

4.5 Application: Lower bound for parity

We will use the technique above to give another proof that constant depth quantum

circuits without ancillæ cannot compute parity using only unbounded fanin Toffoli gates

and single qubit gates. As mentioned earlier, this was first proved in [FFG+06], where

they were also able to allow sublinear number of ancillæ.

59

We first need a technical lemma which shows that if two families of quantum states are

close in terms of Euclidean distance, then the distribution of their measurement outcomes

are also close. A general proof of this requires the concept of distance measures for

quantum states (e.g. trace distance), which are beyond the scope of this thesis 1; here we

state and prove a simpler version of the lemma that is immediately useful to us.

Lemma 4.5.1 Consider two pure states over n qubits, |Ψ〉 = |0〉 ⊗ |Ψ0〉 and |Φ〉 = |0〉 ⊗ |Φ0〉+

|1〉 ⊗ |Φ1〉 (|Φ0〉 and |Φ1〉 may be unnormalised) where the latter is a close approximation of the

former in the sense that ‖|Ψ〉 − |Φ〉‖ < ε for some small ε.

Let p0 and q0 denote the probability of measuring 0 in the first qubit of |Ψ〉 and |Φ〉 respectively

(use any set of measurement operators that distinguish between a 0 and 1 in the first qubit). Then,

|p0 − q0| ≤ ε2.

Proof. p0 is obviously 1 and since q0 = ‖|Φ0〉‖2, so we will only have to prove that

‖|Φ0〉‖2 > 1− ε2.

ε2 > ‖|Ψ〉 − |Φ〉‖2

= ‖|0〉 ⊗ (|Ψ0〉 − |Φ0〉) + |1〉 ⊗ |Φ1〉‖2

= ‖|Ψ0〉 − |Φ0〉‖2 + ‖|Φ1〉‖2

= ‖|Ψ0〉‖2 + ‖|Φ0〉‖2 + ‖|Φ1〉‖2 − 〈Ψ0|Φ0〉 − 〈Φ0|Ψ0〉

= 2− 2Re(〈Ψ0|Φ0〉)

≥ 2− 2|〈Ψ0|Φ0〉|

≥ 2− 2‖|Ψ0〉‖ · ‖|Φ0〉‖ (by Cauchy-Schwarz inequality)

= 2− 2‖|Φ0〉‖

‖|Φ0〉‖2 > (1− ε2/2)2 > 1− ε2

1The general statement is if |Ψ〉 and |Φ〉 have an Euclidean distance at most ε, then for any set of mea-
surement operators, the respective probabilities of obtaining a particular outcome differ by at most 2ε. For
this and other details on distance measures in quantum computing, see [NC00, KSV02].

60

�

The following theorem shows that no constant depth quantum circuit (of the kind we

consider here) can compute parity. In fact, we prove that parity cannot be computed even

when the depth is arbitrarily close to, but strictly less than, log n. This is close to the

upper bound since parity can be trivially computed (uncleanly) in depth at most log n.

Theorem 4.5.2 No quantum circuit of depth d can compute parity exactly using only single qubit

gates and Toffoli gates any without any ancillæ when d = O(log n)1−c for any c > 0.

Proof. Assume on the contrary, that there is a circuit C which can compute parity and is

of the type mentioned in the theorem; let d denote its depth and n its number of inputs.

We will use Theorem 4.4.7 on C to obtain an approximate circuit C′ and then argue that

such a C cannot exist. We will use ⊕(x) to denote the parity of n-bit x and δ to denote

the term 2S3
t

ε22t appearing in the theorem.

Note that C is a circuit with an exact output i.e. measuring the output qubit of C|x〉

gives ⊕(x) for all x. Now, using the above mentioned theorem, we can obtain an ap-

proximate circuit C′ such that the for at least (1− δ) fractions of all 2n possible inputs x,

‖C|x〉 − C′|x〉‖ < ε. For all such x, lemma 4.5.1 tells us that the measurement outcome of

C′|x〉 will be ⊕(x) with probability at least (1− ε2). After C′ is applied on any input, and

the output state measured in the standard basis, the output qubit will contain the correct

value with probability at least (1− ε2)(1− δ).

All gates in C′ will have fanin at most t; so if td−1 < n, then no qubit at the final layer,

especially the measurement qubit, can be connected to all n input qubits. We will choose

a suitable t < n1/(d−1) and an ε such that (1 − ε2)(1 − δ) > 1/2. It is well known that,

information theoretically it is not possible to predict the parity of n bits with probability

more than 1/2 even if only 1 bit is ignored. Since the output qubit in the modified circuit

will not be connected to at least one qubit, this will imply that no such C can exist and

the theorem will be proved.

61

To finish the proof we only have to find suitable values of t and ε and estimate St.

There are at most n/t large Toffoli gates in each layer. Thus at most St = nd/t Toffoli

gates are removed in C′. Though using this value of S gives us our desired result, we will

do a more careful counting in the interest of rigour.

Define a gate to be large if it has fanin more than t. We will modify C to create

C′ by removing gates starting from the output layer to the input layer. Start from the

output layer; if the output qubit is connected to a large Toffoli gate, remove this gate.

Now consider the next layer in this modified circuit; at most t qubits in the layer could

be connected to the output qubit. Consider the gates acting on these qubits and if any

of them are large, remove them. Continuing like this, we will remove at most 1 + t +

t2 + . . . + td−1 = td−1
t−1 < 2n

t large Toffoli gates and obtain circuit C′. Choose St = 2n/t.

However, the modified circuit might still have large Toffoli gates; but since none of them

is on the path to the output qubit, in the next step also remove those gates and obtain

another circuit C′′ all of whose gates are of fanin at most t. Using the above arguments,

measuring the output qubit will give the same value as that of C with probability at least

(1− ε)(1− δ). On the other hand, using a communication argument as in Theorem 4.3.1,

the measurement output of C′ is exactly the same as that of C′′. So, we obtain a modified

circuit C′′ which does not use any large gate and whose output matches that of C with

probability at least (1− ε)(1− 2·8n3

ε22tt3).

For constant depth circuits, d would be a constant. Choosing t = 3 lg n < n1/(d−1) and

ε = 1/4, we have,

(1− ε2)(1− δ) =
15
16
(
1− 29

lg3 n

)
> 1/2

for large enough n.

To allow for larger depth, consider any d < (log n)1−c for any constant c > 0. Let

n = 2m. Then, d < m1−c = m/mc and n1/d > 2mc
. Choose t = n1/2d > 2

mc
2 (note that

t < n1/(d−1)). Since log n = m ∈ o
(
(
√

2)mc
)

, we get n3 ∈ o(2t). Therefore, n3

t32t ∈ o(1). We

can choose any small ε e.g. 1/4 and that will give us (1− ε)(1− δ) > 3/4(1−o(1)) > 1/2.

62

�

Different lower bounds for parity exploit a different property of this function. Ac-

cordingly, a particular technique works also for other functions with similar properties.

Apart from the parity function, our technique may be useful against any function f with

the following property:

f cannot be approximated for a reasonably large fraction of its inputs by any function g that

does not depend on at least one of its input bits.

The only other known quantum circuit lower bound technique, by Fang et al, relates

the minimum depth required to the minimum sensitivity of a Boolean function, denoted

by smin(f). smin(f) = m if for all inputs to f , there are at least m bit positions flipping

whom will flip the output of f 2. They show that any clean quantum circuit whose output

is exactly f (x) must have depth at least 1.44 log(smin(f))− 1.

4.6 Summary

In this chapter we looked at quantum circuits without ancillæ made of any set of bounded

fanin gates and unbounded fanin Toffoli gates. It has been shown earlier that this set of

gates is powerful enough to compute a large class of functions. If we leave out the

unbounded fanin gates, the circuits we can construct are provably not as versatile; they

cannot compute any non-trivial function that depends on all input bits. The Toffoli gate

being essentially a classical gate, we wanted to investigate how much power does it add

to constant fanin quantum circuits. We showed that we can remove Toffoli gates of up to

a certain fanin while still giving approximately the correct output.

The obvious open question is how to use this technique for circuits with ancillæ.

Fang et al. [FFG+06] showed how to get a similar lower bound for quantum circuits with

a sublinear number of ancillæ. However we believe that the lower bound is true for

2For x ∈ {0, 1}n, let xi denote x with its ith bit flipped. Then formally, smin(f) = minx |{i | f (x) 6= f (xi)}|.
This is different than the usual notion of sensitivity of f [Nis89]: s(f) = maxx |{i | f (x) 6= f (xi)}|. We will
revisit this notion in Chapter 5.

63

unbounded number of ancillæ. While it is tempting to use the technique discussed here

for circuits with ancillæ, it is not immediately clear what constitutes a large gate. This is

because, with ancillæ, the states of the qubits can be copied and lemma 4.4.5 does not

hold any more.

For classical circuits, the question whether constant depth unbounded fanin AND,

OR, NOT circuits can compute parity was open for a long time before it was proved to

be impossible using several different but sophisticated methods. However, if we restrict

the classical circuits to not use any fanout, simple versions of these techniques can prove

the lower bound. Both our technique and the earlier technique for dealing with constant

depth quantum circuits without ancillæ (without any ancillæ, there cannot be any fanout)

are based on ideas similar to the classical circuit techniques but are quite complicated

otherwise. Extending them to the general case seems difficult but we are still hopeful.

We would like to end this chapter with a conjecture that is the quantum analogue of the

classical parity problem.

Conjecture 4.6.1 No quantum circuit on n inputs and of depth o(log n) can compute parity

using bounded fanin gates and unbounded fanin Toffoli gates.

5 Detecting Input Sensitivity of Gates

“Good afternoon, gentlemen. I am a Hal 9000 computer. . . . I

am completely operational, and all my circuits are functioning

perfectly.”

– Broken H.A.L. 9000 in “2001: A Space Odyssey”

Faults appear everywhere, disregarding our approval. It is no surprise that the wires,

gates, chips that make up a hardware circuit are subject to high degree of a faults, given

their small size and complex manufacturing process. One usual way of diagnosing faulty

components is to summon them to a lie-detector test. Surprisingly (and thankfully),

hardware components are not smart enough to cheat, so the odd player can be easily

detected and benched; well ... most of them.

In the last two chapters we have almost pitched two complex quantum gates against

each other; the Toffoli gate (computing the AND function) and the fanout gate (equiva-

lently, the parity gate computing the Parity function), with some evidence that the latter

is more complicated than the former. It is usually easier to find any outlier if the rules of

a game are strict. Does that mean in our case, and very very informally, that it is easier

to detect faults in gates that compute harder functions? The original motivation behind

this chapter, based on the following report, was to compare the hardness of verifying

particular kind of faulty classical and quantum Boolean gates computing the AND and

the Parity function and whether quantum parallelism can buy us any improvement.

•[BH09] D. Bera, S. Homer. On Finding Sensitivity of Quantum and Classical Gates.

65

Boston University, Computer Science technical report 2009-019 (2009).

5.1 Introduction

Like all hardware, quantum gates and circuits are prone to faults. In fact, implementa-

tions of quantum gates are extremely sensitive to various physical factors and often have

errors and faults of various kinds. There has been extensive research on fault-tolerant

quantum computing and detecting/correcting errors in a quantum computation [Sho96].

Our motivation is in a similar spirit but in a tangential direction. We are interested in ex-

ploiting quantum parallelism to identify certain types of errors in specific gates and circuits

more efficiently than is possible using classical techniques. Our focus is not on arbitrary

errors or arbitrary gates, but rather on a certain type of error for several specific, simple

quantum operations. However, the problem we tackle has a close resemblance to the

fault models used for the fault testing of classical Boolean circuits. We elaborate on this

in section 5.3.

We will consider n-bit Boolean gates with one output. Usually G depends on all n of

its inputs. However for this chapter consider gates which may be independent of some of

these inputs, for example, if the connection from some input to the gates output is broken.

We would like to determine which inputs it depends on or at least if there is some faulty

input which it does not depend on at all. Here G could be a simple Boolean gate like AND

or OR, or some complicated Boolean circuit with one output; we are merely interested in

the input-output behaviour of the gate.

Assume we are given a few samples of a gate which we want to test1. How easy or

hard it is to find out whether G is faulty or not (and if possible, which inputs are not

connected)? We want to investigate this question by considering classical and quantum

algorithms which are allowed to query copies of the faulty gates. We measure the number

1Yes, it is usually unreasonable to assume multiple exact copies of the same faulty gate; faults are not so
well-behaved to be consistent across gates. But in our theoretical study on the properties of the fault and the
gates, we will assume that our faulty gates are identically faulty. Moreover, section 5.3 tries to explain some
cases where this might be possible.

66

of queries to the faulty gates needed to determine the faulty input(s). Notice that this

problem is similar to algebraic query complexity, where, instead of using a bit of the

input, the nodes of a decision tree are labelled by the output of an algebraic function of

the input. Using similar ideas we extend existing quantum query results to obtain upper

and lower bounds for detecting faults in AND and other similar gates.

We claim that quantum algorithms can diagnose faulty gates and determine their

faulty inputs more efficiently than classical ones. We will illustrate this for several com-

mon and central types of gates, the Parity gate and the AND gate among them. For the

quantum case, we will construct quantum circuits which will be given the usual quantum

analogue of these gates. The output of the checking circuits will indicate one or all the

faults of the gate in question. Since a classical circuit usually has a single output whereas

a quantum circuit has multiple outputs, for the classical case we show the lower bound

for a simpler version of the problem: Detecting whether there is any faulty input.

5.2 Problem statement

We first define what we mean by a faulty classical gate in this chapter. The faulty quantum

gates used in this chapter will be their reversible extensions 2.

Definition 5.2.1 (Faulty gate) Consider a gate G computing a Boolean function f : {0, 1}n →

{0, 1}. We say that the gate has at least s faults if there exists a set of “faulty” inputs

S ⊆ {1, . . . , n} of size s such that

∀(x1, . . . , xn) ∈ {0, 1}n, ∀(x′1, . . . , x′n) ∈ {0, 1}n, f (x1, . . . , xn) = f (x′1, . . . , x′n) whenever

∀i 6∈ S , xi = x′i (the value of f depends only on the non-faulty inputs irrespective of the inputs

from S).

We need to be careful in dealing with such faulty gates since the functions computed

by the faulty gate and the correct gate might be of a completely different nature. Certain

2A reversible way to compute a function f by a quantum gate is |x1, . . . , xn, y〉 →
|x1, . . . , xn, y⊕ f (x1, . . . , xn)〉

67

functions do not have a natural restriction when defined only on a subset of its inputs;

e.g., the function f (x1, x2, x3) = x1 ⊕ x2x3 has no obvious unique restriction to only the

first and the second inputs. On the other hand, for the function f (x1, x2, x3) = x1 ∨ x2 ∨ x3,

a natural way to define its faulty version could be f (x1, x2, x3) = x1 ∨ x2 (assuming the

third input is faulty). In reality the faulty function in both the cases could be defined in

a non-trivial way (e.g. depending on the actual hardware implementation). A Boolean

function is called as a symmetric function if the output depends only on the number of

ones in the input (not the specific positions of the ones). One way to define faulty versions

of a gate computing a symmetric function could be to assume that if some input wires

are not connected, then the gate computes the natural restriction of the function on the

rest of its inputs.

For a given gate, consider the largest possible set of faulty inputs; in the rest of this

chapter, we will denote the maximal set by S and its size by s. Note that, by our definition,

any subset of S is a valid set of faulty inputs to the gate. We will use e to denote an

elementary vector. Let ei denote the i-th elementary n-bit string (only the i-th bit is set to

1, other n − 1 bits are set to 0) and fi = ei (bit-wise complement). To allow our quantum

circuits to directly output the faulty inputs in an easy manner, we will interchangeably

use another representation of S using elementary vectors: {ei | i ∈ S} (when represented

using elementary vectors, ei ∈ S should be interpreted to mean that the i-th input is

faulty). We will use σ ∈ {0, 1}n to denote the characteristic vector of S : σi = 1 if and only

if ei ∈ S . We will use the following notation in this chapter: ∃lx indicates l distinct values

of x.

Our goal is to construct oracle circuits using these faulty gates to detect faults. The

cost of the detection is measured by the number of faulty gates queried. The detecting

circuits can output different kind of information:

1. A single bit Boolean output denoting if there is any fault or not (whether S ?= ∅).

2. An n-bit output representing any of the faulty inputs (output any elementary vector

68

e ∈ S).

3. The output which indicates the maximal set of faulty inputs (that is, the n-bit binary

string σ).

Note that, 1 can be reduced to 2 and 2 can be reduced to 3. Since classical gates have

only one output, a classical circuit with n-bit output will inevitably require n gates. Thus,

we show lower bounds for classical circuits of type 1. The quantum circuits we construct

are of type 2 or 3.

The output can be deterministic or probabilistic; we cover both cases here. The two

functions we will extensively deal with in this chapter are the parity function

⊕(x1, . . . , xn) = x1 ⊕ . . . ⊕ xn, for which we consider deterministic detecting circuits and

the AND function AND(x1, . . . , xn) = x1 ∧ . . . ∧ xn, for which we consider probabilistic

detecting circuits.

5.2.1 Relation to sensitivity

Our definition of faulty inputs has a close similarity to the sensitivity of Boolean functions

[Nis89, BW02]. Let x denote an n-bit Boolean string and xi is obtained from x by flipping

xi.

Definition 5.2.2 (Sensitivity) An n-bit Boolean function f is sensitive to the i-th input bit on

input x if f (x) 6= f (xi). The sensitivity of f on x, sx(f), is the number of bits to which f is

sensitive on x.

f is sensitive to i if there is some x such that f is sensitive to i on x. The sensitivity of f is

s(f) = maxx sx(f).

The insensitivity of f , denoted by s(f), is the maximum number of i such that f is not sensitive

to i.

So, f is insensitive to the i-th input if f is insensitive to i on x for all x. If there is a

gate G f computing f where then f is insensitive to the i-th input, we say that the i-th

69

input to G is faulty. From this perspective, in this chapter we are trying to determine the

input insensitivity of f using one or more copies of G f . Note that for any n-bit function

f , s(f) = n− s(f), so determining the insensitivity also determines the sensitivity of f .

Suppose we are allowed to query an n bit Boolean gate G f to determine the input

sensitivity of the Boolean function f . Obviously we need Ω(n) queries. The hardest case

is when we have no à priori knowledge about f ; it can be one of the 22n
possible functions.

We can determine if f depends on any particular bit by querying f on all 2n inputs; we

believe that this is a tight upper bound.

However, we can do better if we know the possible ways f might behave when it is not

reading all its inputs. Suppose f is insensitive to the input bits in the subset s ⊆ {1, . . . , n}.

For certain functions, we might have information how f might behave given such an s

e.g. if f is supposed to compute the AND function, then we might be told that f actually

computes the AND of the inputs in s. In such cases, f belongs to a set of 2n possible

functions, one for each possible s. We consider two such functions here, the AND and

the Parity function and show that it is possible to determine the sensitivity using O(n)

queries. Furthermore, we show that for some functions we can use quantum techniques

to determine the sensitivity more efficiently than is possible using classical algorithms.

5.2.2 Organisation

The rest of this chapter is organised in the following manner. In the following section, we

present some related work. We discuss our results on Parity gates in Section 5.4 and our

results on AND gates in Section 5.6. For both the gates we present a quantum algorithm

to detect faults and prove that it is optimal. We also prove that the quantum algorithm is

provably better than any classical algorithm for detecting faults.

The construction and lower bounds for the AND gate will use techniques from query

complexity. The proofs for the quantum case require extending a few quantum query

complexity results to work with generalised oracles, which we discuss first in section 5.5

and then describe the actual quantum upper bound in Subsection 5.6.1 and matching

70

lower bounds in Subsection 5.6.2.

5.3 Related work

Boolean circuit testing is a well-established discipline within semiconductor circuit de-

sign. Over time circuits have increased in complexity and decreased in size, and the

testing regimes have gotten more difficult and expensive. As they become really small

quantum effects start to appear and need to be addressed. Recently testing methods have

been suggested which use quantum circuits designed to find and analyse faults in cir-

cuits which compute classical Boolean functions. Exploiting the advantages of quantum

techniques, these quantum circuits can be tested more easily and efficiently than their

classical counterparts [CTK08].

Real world hardware circuits can fail in a multitude of ways. To deal with the variety

of faults, the circuit testing research community has created different logical fault models.

One of the most widely used logical fault models to represent faulty interconnections is

the stuck-at model. In this model, one or more wires is assumed to be stuck at a fixed logic

value, either 0 or 1 (respectively known as stuck-at-0 and stuck-at-1 model) 3. The function

computed by the corresponding gate then does not depend on the input carried by the

faulty wire. This model captures several physical defects, e.g. a short-circuit between the

wire and the ground, a disconnected wire or some internal fault which always sets the

wire to a constant value.

Our problem is similar to the stuck-at fault model; we are dealing with circuits in

which some wire may not be connected to its gate. This is similar to the situation where

the wire maybe assumed to be stuck at some fixed value. However, our approach differs

from the standard technique of detecting such faults (see e.g. [PBL05]); instead of gener-

ating a test set of input vectors whose output is then matched with the expected outputs,

we design a circuit/algorithm using one or more faulty gates and expect to obtain infor-

3http://www.pld.ttu.ee/diagnostika/theory/fault.html

71

mation about the faulty inputs.

There is yet another difference with the classical case. An open wire in a classical

reversible circuit can be modelled using multiple stuck-at faults. It has been shown that

multiple stuck-at faults are functionally identical to single stuck-at faults for classical

reversible circuits [PHM04]. Though the technique described in [CTK08] can detect stuck-

at faults in quantum Boolean circuits, it cannot detect open wires. This is one piece of

evidence that classical fault models might not directly work for quantum circuits.

Arvind et al. looked at a similar problem in [ASV98] where they studied program

checking (as defined by Blum) using AC0 circuits as checkers. Like us, they allowed

their checkers to make queries to the program and defined the cost of checking as the

number of queries. Note that they considered programs and not fixed input gates and

they studied deterministic and randomised checkers for P-complete and NC1-complete

problems.

5.4 Parity gate

For this section, we will consider faulty parity gates defined by the function

⊕S (x1, . . . , xn) =
⊕

i 6∈S xi, where S is the set of faulty inputs. It will be useful to adopt

a convention that ⊕{1,2...,n}(x1, . . . , xn) = 0. The corresponding quantum gate U is the

canonical way to reversibly compute the parity function:

U|x1, . . . , xn, y〉 = |x1, . . . , xn, y⊕
(⊕
S(x1, . . . , xn)

)
〉

There is an obvious O(n) algorithm to find all the faults of a parity gate: Query the

gate on e1, . . . , en. The ith input is faulty if the output for ei is 0. In contrast, we will

present a quantum circuit which will output the all the faults of such a quantum parity

gate using only one query. We will also show that this is significantly better than what

classical circuits can do; a classical circuit requires Ω(n) queries even to detect if there is

a faulty input or not. We will also show that even a bounded error algorithm cannot do

any better than the trivial algorithm presented above.

72

5.4.1 Quantum detection circuit

Quantum parity gates could be checked by a depth 3, linear size quantum circuit using

only one parity gate.

Figure 5.1: Circuit to check a faulty parity gate. a′i is 1 if i ∈ S , 0 otherwise.

The circuit to check a parity gate is given in Figure 5.1. A parity gate with Hadamard

gates on all inputs on both the sides was shown equivalent to a quantum fanout gate

where the target qubit of the parity gate becomes the control qubit of the fanout gate

[Moo99]. Hence, if input ai is not faulty, |a′i〉 = |0〉. The qubits in the faulty input will be

unaffected; for these qubits, |a′i〉 = |1〉. Thus, the output of the circuit will be exactly σ,

the characteristic vector of the fault set.

Theorem 5.4.1 For a (possibly) faulty quantum parity gate
⊕

on n inputs, there is a quantum

circuit on n inputs, with linear size, having depth 3, and making one call to the faulty gate, whose

output qubit i measures 1 if the i-th input is faulty and 0 otherwise.

5.4.2 Classical deterministic lower bound

Here we show that even detecting if a given parity gate is faulty or not, requires n queries

classically. Consider the decision tree of a detecting circuit, C, which makes k queries. We

will construct two parity gates GS and GT with fault sets S 6= ∅ and T = ∅ respectively

and show that for C to distinguish between GS and GT, k ≥ n.

We will construct S inductively based on the decision tree queries. Let Sj be the fault

73

set we construct after the j-th query by the decision tree (so S = Sk). We start with

S0 = {1, . . . , n} (all inputs are faulty). Now consider the j + 1-th query. Say C queries

G∗(x1, . . . , xn) (∗ denotes either T or S). Let b = ⊕ixi; note that, GT(x1, . . . , xn) = b and

GS(x1, . . . , xn) =
⊕

i 6∈S xi.

Case 1: GSj(x1, . . . , xn) = b. Set Sj+1 = Sj. So, both GT and GSj+1 are consistent after

1, . . . , j + 1-th queries.

Case 2: GSj(x1, . . . , xn) = b. Then, ∃c ∈ Sj, xc = 1. Set Sj+1 = Sj \ {c}. Again, both GT

and GSj+1 are consistent after 1, . . . , j + 1-th queries.

So, after k queries, |Sk| ≥ n− k. If k < n, then C cannot distinguish between GS and GT.

Theorem 5.4.2 Consider any classical Boolean circuit C which can also make queries to a (pos-

sibly) faulty
⊕

gate on n-inputs. Then there are two such gates
⊕

1 and
⊕

2 which C cannot

distinguish without making n queries.

5.4.3 Classical probabilistic lower bound

We showed how to construct a quantum checker that deterministically finds all faults of

a parity gate using only 1 query. We claimed that this is order of magnitude better than

what a classical checker can do and as evidence, argued that any deterministic classical

checker using less than n queries is incapable of finding all the faults of a parity gate.

However it is conceivable that a probabilistic classical checker might be able to perform

better than a classical checker. In this section, we negate this possibility; we show that

any probabilistic checker requires Ω(n) queries even with two-sided error.

For the lower bound, we relate the fault detection of a parity gate to a property testing

problem discussed by Buhrman et al. in [BFNR08].

Let y · i denote the inner product of two vectors y, i ∈ F n
2 and for any A ⊆ {0, 1}n, let

PA = {x : ∃y ∈ A, ∀i ∈ {0, 1}n, xi = y · i} denote the set of strings which represent all

possible oracle replies for any string in A. Then PA has an ε-tester with q queries if there

74

exists a query algorithm M which on input a 2n-bit x, makes at most q queries to obtain

individual bits of x, such that

1. The tester accept any input with the property: If x ∈ PA, then Pr(M accepts) ≥ 2/3

2. The tester rejects all inputs that are far from the property:

∀z ∈ PA, if |{i : xi 6= zi}| ≥ ε2n, then Pr(M rejects) ≤ 1/3

Theorem 5.4.3 (Lemma 3,[BFNR08]) For most A ⊆ {0, 1}n, any ε-tester (for ε ≤ 1/2) for

PA requires Ω(n) queries.

Consider a set of faulty gates and let A denote the set of their characteristic vectors.

Note that, for any faulty parity gate with characteristic vector σ ∈ F n
2 , the output of the

gate on input i ∈ F n
2 is given by the inner product σ · i; so, querying the gate q times is

equivalent to asking q bits of 2n-bit x where xi = σ · i. Also note that, for any σ, σ′, there

are exactly 2n/2 different i such that σ · i 6= σ′i . Since any classical algorithm to detect

all faults should be able to classify if a given faulty gate belongs to A or not, we get the

following lower bound as a corollary to the theorem above.

Corollary 5.4.4 Any bounded error classical algorithm for detecting all faults of a faulty parity

gate requires Ω(n) queries.

5.5 Algebraic query complexity

The problem of detecting faulty inputs of gates by querying the gates can be approached

from the algebraic query complexity perspective. Usually the nodes of a decision tree is

labelled by xi, the i-th bit of the input x. Generalising it, the detection algorithms can be

modelled as decision trees whose nodes are labelled by g(x, i) where g is a fixed Boolean

function that takes as input x, the input to the decision tree and i, a value depending on

the node.

To relate detecting faulty inputs with algebraic decision trees, consider the problem

of detecting faults in a parity gate ⊕S . Any algorithm for such a problem can be viewed

75

as a decision tree whose input is σ, the characteristic vector for S , and whose nodes are

labelled by g(σ, i) = ⊕k(σk · ik). Similarly, the nodes in the decision tree for an AND gate

ANDS are labelled by
∧

k(σk ∨ ik).

Some of the quantum query complexity results can be shown to also work for quan-

tum algebraic decision trees. For example, Grover’s unordered search [Gro96] algorithm

can be extended to include algebraic functions at the nodes.

5.5.1 Generalised unordered search

We need a technical result, showing that it is possible to create a unitary transformation

which transforms a particular pure state into another pure state. We include the proof for

completeness.

Lemma 5.5.1 Given any two pure states over n qubits, |x〉 and |y〉 where |x〉 6= |y〉, there is a

unitary transformation U such that U|x〉 = |y〉 and U|y〉 = |x〉.

Proof. Let |b1〉 = 1√
2
|x〉 − 1√

2
|y〉 and |b2〉 = 1√

2
|x〉+ 1√

2
|y〉. Note that |b1〉 and |b2〉 are

orthonormal vectors. Extend them to form a complete orthonormal basis for the N = 2n

dimensional Hilbert space {|b1〉, |b2〉, . . . , |bN〉}. Observe that, |x〉 = 1√
2
|b1〉+ 1√

2
|b2〉 and

|y〉 = − 1√
2
|b1〉+ 1√

2
|b2〉.

Then U can be defined as the reflection about the hyperplane orthogonal to |b1〉 :

U = −|b1〉〈b1|+ ∑N
i=2 |bi〉〈bi|. �

Now we show how to construct a circuit to perform unordered search with generalised

oracle gates. The proof closely follows the steps of the original proof by Grover [Gro96].

Theorem 5.5.2 (Unordered search with generalized oracle) Let g : {0, 1}n × Y → {0, 1}

be a Boolean function, where the second input to g is from a subset Y ⊆ {0, 1}k for some k.

Let x be an n-bit binary input, x = x1, . . . , xn, and Ox be an oracle gate to compute g, so g:

Ox|i, b〉 = |i, b⊕ g(x, i)〉.

76

Then there is a quantum oracle circuit C, with O(
√
|Y|) oracle gates, such that the measure-

ment of the output qubit of C|0n, w〉 (w denotes the oracle workspace qubits) is any î ∈ Y such

that g(x, î) = 1 with constant probability.

Given:

• A subset of k bit binary strings Y ⊆ {0, 1}k

• n-bit binary input x ∈ {0, 1}n

• A function g : {0, 1}n × Y → {0, 1} and an oracle gate to compute g: Ox|i, b〉 =

|i, b⊕ g(x, i)〉

Output: The result of the measurement is any î ∈ Y with probability O(1) such that

g(x, î) = 1.

Proof. As usual, the oracle gate O can be transformed, using one extra ancilla, to change

the phase of the register instead of changing the state: Ox|i〉 = (−1)g(x,i)|i〉. The ancilla

can be reused for all the oracle calls, so we will not explicitly mention it while describing

the circuit.

Let |Ψ〉 = ∑y∈Y |y〉. We need a unitary operation H′ to create a uniform superposition

of all elements in Y: H′|0n〉 = |Ψ〉 and H′|Ψ〉 = |0n〉. We know there is gate which

performs this operation from lemma 5.5.1. Note that, this gate does not query the oracle

gate and so is not counted towards the cost of the circuit.

The circuit performs the following actions in order:

1. Start with |0n〉.

2. Apply H′ to get |Ψ〉.

3. Repeat the following in order t number of times.

• Apply the oracle gate.

• Apply H′.

77

• Perform Π = 2|0〉〈0| − I which negates the phase of every basis state except

|0〉. This operation again does not incur any cost.

• Apply H′.

Let G = (H′(2|0〉〈0| − I)H′) O = (2|Ψ〉〈Ψ|− I)O. Let Y′ = {i ∈ Y | g(x, i) = 1} denote

the solution space and Y′′ = Y \Y′. Let |α〉 = 1√
|Y′|

∑i∈Y′ |i〉 and |β〉 = 1√
|Y′′|

∑i∈Y′′ |i〉.

The rest of the proof follows as in the original proof [Gro96]. |Ψ〉 is in the space

spanned by |α〉 and |β〉. O performs a reflection about |β〉 and (2|Ψ〉〈Ψ| − I) performs

a reflection about |Ψ〉, both in the same plane. Thus in effect, G rotates any state in this

space towards |α〉. The final measurement gives us a uniformly chosen element of Y′ with

probability close to 1 after O(
√

|Y|
|Y′|) queries to the oracle gate. �

There are several subtleties in using the unbounded search technique e.g. for a deter-

ministic running time, the number of solutions should to be known beforehand. There are

many variations of the original technique to deal with such issues. All these techniques

also work with the generalised oracle.

5.5.2 Lower bound for generalised query complexity

Ambainis developed a lower bound technique for quantum decision trees known as the

adversary method [Amb00]. Aaronson later developed a lower bound technique for ran-

domised decision trees using similar ideas [Aar06]. Upon careful examination of the

proof, we observe that the main theorems of both the techniques can be extended to work

with generalised decision trees. We omit the proofs here which are simple modifications

of the original proofs.

Theorem 5.5.3 [Amb00, Th. 2] Let g : {0, 1}n × Z → {0, 1} be a Boolean function, where

Z ⊆ {0, 1}k for some k. Let Ox be an oracle gate to compute g: Ox|i, b〉 = |i, b⊕ g(x, i)〉. Let

f (x1, . . . , xn) be a function and X, Y ⊆ {0, 1}n be two sets of inputs such that f (x) 6= f (y) if

x ∈ X, y ∈ Y. Let R ⊆ X ×Y such that

78

1. ∀x ∈ X, ∃my ∈ Y, (x, y) ∈ R

2. ∀y ∈ Y, ∃m′
x ∈ X, (x, y) ∈ R

3. ∀x ∈ X, z ∈ Z, there exists at most l different y ∈ Y such that (x, y) ∈ R and g(x, z) 6=

g(y, z)

4. ∀y ∈ Y, z ∈ Z, there exists at most l′ different x ∈ X such that (x, y) ∈ R and g(x, z) 6=

g(y, z)

Then, any oracle quantum circuit computing f uses Ω(
√

mm′
ll′) queries to Ox.

Theorem 5.5.4 [Aar06, Th. 5] For an n-bit Boolean function F, let A denote the set of inputs

{x | F(x) = 0} and B denote the set of inputs which evaluate to 1. Let g : {0, 1}n × 1, . . . , n →

{0, 1} be a Boolean function used for the nodes in the decision tree. Let R(A, B) ≥ 0 be a real-

valued function, and for A ∈ A, B ∈ B and i (representing the queries that F can make to the

input) let,

θ(A, i) =
∑B∗∈B:g(A,i) 6=g(B∗,i) R(A, B∗)

∑B∗∈B R(A, B∗)

θ(B, i) =
∑A∗∈A:g(A∗,i) 6=g(B,i) R(A∗, B)

∑A∗∈A R(A∗, B)

where the denominators are all non-zero. Then the number of randomised queries needed to evalu-

ate F with at least 9/10 probability is Ω(1/vmin), where

vmin = max
A∈A,B∈B,i

R(A,B)>0,g(A,i) 6=g(B,i)

min{θ(A, i), θ(B, i)}

5.6 AND gate

We next consider faulty gates computing the AND function ANDS (x1, . . . , xn) =
∧

i 6∈S xi.

As before, we adopt the convention that AND{1,2,...,n} = 0. The corresponding quantum

gate is basically the unbounded Toffoli gate

U|x1, . . . , xn, y〉 = |x1, . . . , xn, y⊕
(

ANDS (x1, . . . , xn)
)
〉

79

Unlike Parity gate, for this gate, we will show our results for probabilistic algorithms.

We will present a O(
√

n)-query quantum algorithm to output one of the faults. We

will also prove that our quantum detection algorithm makes optimum (up to a constant)

number of calls to the faulty gate. We will then show a lower bound of Ω(n) for classically

detecting whether any input of an AND gate is faulty with high probability. Similar to

the parity gate, this bound is tight for a classical algorithm: The ith input is faulty if the

output of the gate on input fi is 1.

5.6.1 Quantum detection algorithm

We can use the generalised unordered search from theorem 5.5.2 to detect a faulty input

for a Toffoli gate with high probability.

Given ANDS , think of x as σ, the characteristic vector of S and take Y = { f1, . . . , fn}.

The action of querying the Toffoli gate can be written as

TS |y1, . . . , yn, b〉 = |y1, . . . , yn, b⊕
∧
i 6∈S

yi〉 = |y1, . . . , yn, b⊕
∧

i:σi=0

yi〉

which we will use as the oracle gate to compute g(σ, y) =
∧

i:σi=0 yi for y ∈ Y.

By theorem 5.5.2, we can construct an oracle quantum circuit that uses O(
√

n) queries

to TS and outputs any f j such that ∧i 6∈S (f j)i = 1 i.e. j ∈ S. Thus the position of the 0 in

the output will indicate the position of a faulty input.

Theorem 5.6.1 For a (possibly) faulty Toffoli gate on n inputs, there is a quantum circuit on n

inputs, making O(
√

n) calls to the faulty gate, whose output qubit indicates one of the faulty

inputs with high probability.

Faults in other quantum Boolean gates

Observe that our technique for determining faults in a Toffoli gate can be also used to

determine faults for other quantum Boolean gates.

80

Parity: Though we described a quantum detection circuit for a Parity gate, the above

technique can be also be used to detect faults. Instead of the Parity function, we will

use its complement, an equivalent function
⊕′(x1, . . . , xn) = 1 ⊕ (

⊕
(x1, . . . , xn)). The

quantum analogue of this gate is the parity gate followed by an X gate on the target

qubit, so the faulty lines are preserved in the modified gate.

Take Y = {e1, . . . , en}. The action of the faulty gate can be described as, for y ∈ Y,

⊕
S

|y1, . . . , yn, b〉 = |y1, . . . , yn, b⊕
(⊕

i 6∈S

yi

)
〉

which is an oracle gate for g(σ, ei) = 1 iff i ∈ S.

After O(
√

n) queries, with high probability the output of the circuit is some ei such

that g(σ, ei) = 1 i.e. i ∈ S.

5.6.2 Lower bounds

We show tight lower bounds for bounded error detection of faults for both the quantum

Toffoli gate and the classical AND gate using the generalised lower bound techniques

mentioned in Section 5.5.2.

Let X = {00 . . . 0} denote a set of gates with no faults and Y = {e1, . . . , en} denote a

set of gates with exactly one faulty input. Take R = X ×Y. Let Z = { f1, . . . , fn}. Observe

that, we can assume all queries are from { fi}. For other queries, the output is always 0 or

1 irrespective of the input. Then the Toffoli gate acts as an oracle gate for the following

function: g(σ, fi) =
∧

σj=0(fi)j = 1 iff i is the only faulty input. For any gate t ∈ X ∪Y, let

σt denote the characteristic vector of the fault set of that gate.

For x = 00 . . . 0, there are n elements in Y such that (x, y) ∈ R. On the other hand for

any ei ∈ Y, there is exactly one x ∈ X such that (x, y) ∈ R. Then in Theorem 5.5.3, m = n,

m′ = 1. To compute l, observe that for any fi, ei is the only gate such that g(00 . . . 0, fi) 6=

g(σei , fi) so l = 1. On the other hand, for any ei ∈ Y, g(00 . . . 0, f) 6= g(σei , f) only if f = fi;

so l′ = 1. Substituting these values in the theorem, we get the following lower bound for

any circuit that can distinguish between X and Y:

81

Corollary 5.6.2 Any quantum oracle circuit that can detect if an n-input Toffoli gate has one or

no faulty input lines with high probability, makes Ω(
√

n) queries to the gate.

For the classical AND gate, we will use Theorem 5.5.4. Using A = X,B = Y and

using the same relation R as above, we can use similar counting arguments to obtain the

following lower bound for randomised fault detection of AND gates.

Corollary 5.6.3 Any randomised algorithm which detects if an AND gate on n inputs has exactly

one or no faulty inputs with high probability requires Ω(n) calls to the faulty gate.

5.6.3 Path query model for directed graphs

We would like to point out an interesting correspondence of the fault detection problem

with the following graph problem which is of independent interest FINDPATH: Assume

we are given a directed acyclic graph G = (V, E) on n vertices where there is a self-loop on

every vertex. One of the vertices v∗ ∈ V is secretly marked and our goal is to find it. We

are allowed to ask if there is a path from any vertex to v∗.4

It turns out that this problem is related to finding faults of an AND gate. The similarity

will be evident if we consider another related problem FINDSUBSET: Given a set S of n

elements, to find a hidden subset s ⊆ S. We are allowed to query, for any subset x,

is x ⊆ s? Observe that FINDSUBSET is a special case of FINDPATH with G as the n-

dimensional hypercube. The vertices of G are labelled by subsets of S and there is a

directed edge between from x to y if y is x and exactly one new element. Then, a path

exists from x to s in G if and only if x ⊆ y.

Next we show that FINDSUBSET is equivalent to finding faults in an AND gate. A

FINDSUBSET for S = {1, . . . , n} and hidden subset s is equivalent to a faulty n-bit gate

ANDs (the ith input is faulty iff i ∈ s). A subset query x ⊆ s is the same as ANDs(x)

4Here is a tongue-in-cheek application of this problem. Say, King Arthur wants to promote tourism in his
kingdom but does not want to reveal the location of his legendary castle of Camelot[Wika]. Feel free to time
travel but keep a foot in 21st century, for his tourism ministry has created an elaborate underground subway
by which anyone can travel from any place to any other place, including the castle, yet not know the route or
the geographical location. Everybody is otherwise tourist friendly, so maps are readily available showing all
the cities in the kingdom. FINDPATH deals with the problem of finding the city with the castle of Camelot!

82

where x is the complement of the characteristic vector for x (xi = 0 iff i ∈ x). This

equivalence will be used in the lower bound proof below.

For the general problem of FINDPATH, the marked vertex v∗ can be found using O(n)

path-queries by a simple algorithm described next. The algorithm first finds any vertex

v that has a path to v∗. It then creates a traversal tree for C rooted at v. Finding v∗

then amounts to travelling down the tree along any branch that reaches v∗; v∗ is the last

vertex on that branch to have a path to v∗. The worst case query complexity is also Ω(n)

- consider a star graph and mark one of the n − 1 edge vertices; any algorithm which is

given the graph and asks fewer than n− 2 queries cannot reliably determine which vertex

is marked.

5.7 Conclusion

In this chapter, we considered a fault model where inputs to a Boolean gate might not

be connected to the internal gate hardware. We noticed that the Parity gate, which we

believe is harder than the AND gate in a complexity theoretic sense, can be diagnosed

more efficiently for such faults. We also showed that it is more efficient to detect faults in

quantum gates computing these functions than the classical gates.

For both the Boolean functions considered here, Parity and AND, a classical circuit

can detect faults in the corresponding classical gates using n queries. For AND, query the

gate on f1, . . . , fn successively; if the output on fi is 1, then the i-th input is faulty. For a

Parity gate, query the gate on e1, . . . , en; the output on ei is 0 if and only if the i-th input is

faulty. But it is not clear if there is any non-trivial upper bound to the number of queries

for any general Boolean function.

Similarly, we do not know if there is a general lower bound for classical circuits, for

either deterministic or probabilistic detection. For example, detecting the faulty input in

a Majority gate5 with only one fault can be done in dlog2 ne queries. Consider the case

5 MAJn(x1, . . . , xn) = 1 iff ∑i xi ≥ n/2

83

that n is odd (the other case is similar). Observe the output of the gate on bn/2c 0’s and

dn/2e 1’s. If the output is 1, then the fault is within the inputs which were set to 0 and

vice versa. This strategy can be used to binary search for the faulty input. We believe the

bound is tight.

Quantum techniques might turn out to be more efficient in determining the sensitivity

of a function. Consider the query complexity of distinguishing between s(f) = 0 and

s(f) = 1, given only black box access to f . Whereas s(f) = 0 implies f is a constant

function, s(f) = 1 can be shown to imply that f is balanced (exactly half of the inputs

evaluate to 0). While any classical deterministic algorithm must make Ω(2n) queries to

f , using the well known Deutsch-Jozsa algorithm [DJ92], there is quantum algorithm

to distinguish between these two cases using one query to f . However, the technique

cannot be generalised to other values of s(f). The query complexity of s(f) is somewhere

between Ω(n) and O(2n); it would be interesting to close the gap. In addition to it, it

would be worthwhile to investigate what additional properties of f would make it easier

to determine s(f) 6.

We also considered a graph problem which bears an interesting relation to finding

faults of an AND gate. As we showed earlier, the deterministic query complexity for the

finding a marked vertex using path queries is Θ(n); however we also showed that for a

hypercube with m vertices, the query complexity is much lower, Θ(log m). We would like

to ask what, if any, is the relation of the path-query complexity to any structural property

of the graph.

There are a several other natural extensions of the topics discussed here which may

be worth pursuing. One is to use the techniques examined here to find defects in more

complicated circuits, specifically circuits involving several gates and different types of

gates. Some of the techniques discussed here are fairly general and might be applicable

for other gates as well, e.g. the quantum circuit construction for the faulty Toffoli gate. A

second extension is to try to find automatic fault correction strategies for faulty gates and

6E.g., can we relate the query complexity of s(f) to s(f) itself ?

84

circuits. Such strategies often go hand in hand with fault detection in the classical case.

We leave the exploration of these ideas for future research.

6 The Last Chapter

“ · · · It is wrong to think that the task of physics is to find out

how nature is · · · (Niels Bohr)

Us: How are you, Nature?

Nature: Don’t ask, I have a terrible headache.”
– Frederic Green

In this concluding chapter we take a break from formulating and answering questions

and instead summarise the main ideas of this thesis. We also discuss some potential

future directions and mention some relevant research areas that were out of scope for

discussions in the previous chapters.

6.1 Quantum complexity classes

As mentioned earlier, in complexity theory, problems are classified among classes based on

their resource usage1. The goal is to study the basic properties of the classes instead of

the individual problems and organise them in a hierarchical manner. Apropos classical

and quantum circuits, the functions computed by them can be similarly classified among

circuit classes. Some of the results we described earlier can be understood in terms of

the quantum circuit classes. In Table 6.1 below, we list the quantum classes and compare

them with their classical counterparts. The classification is for polynomial size circuits

1Strictly speaking, a particular problem does not use any resource, but an algorithm for that problem
does. For classification, usually the worst-case and sometimes the average-case usage is considered.

86

and based on the depth of the circuits (the superscript k denotes circuits with depth

O(logk n)) and the types of the gates used therein. Note that fanout is usually taken for

granted in a classical circuit, so there is no version of a classical circuit class with fanout

gates.

NCk: NOT gates and bounded
fanin AND,OR gates

QNCk: single qubit and CNOT gates
QNCk

wf: single qubit, CNOT and fanout gates
ACk: NOT gates and unbounded
fanin AND,OR gates

QACk: single qubit and Toffoli gates
QACk

wf: single qubit, Toffoli and fanout gates
ACCk[q]: ACk + MODq gates,
ACC[q] = ACC0[q]

QACCk[q]: QACk + MODq gates, QACC[q] =
QACC0[q]

ACCk: ∪qACCk[q], ACC = ACC0 QACCk: ∪qQACCk[q], QACC = QACC0

TCk: ACk + unbounded fanin
threshold gates

QTCk: QACk + arbitrary fanin threshold
gates
QTCk

wf: QACk
wf + arbitrary fanin threshold

gates

Table 6.1: Circuit classes based on the types of the constituent gates

For the classical classes, all we know is NCk ⊆ ACk ⊆ ACCk ⊆ TCk ⊆ NCk+1 for any

k ≥ 0 and specifically NC0 ⊂ AC0 ⊂ ACC[2] ([FSS84]). Also, the Razborov/Smolensky

Theorem [Raz87, Smo87] says that for any relatively prime q, p, ACC[q] 6= ACC[p], and

hence ACC[q] 6⊆ AC0. Nothing much is known about the rest of a huge number of classes.

The number of classes for quantum circuits is even larger. Surprisingly and happily,

however, many of them are either the same or are very close, unlike the corresponding

classical classes. Since the parity gate and the fanout gate are constant depth-equivalent,

it is immediate that QAC0
wf = QACCwf[2] = QACC[2]. It is also immediate that for all k,

QACk
wf = QACCk

wf[2] = QACCk[2]. Since it is possible to fanout n copies in log n depth

using CNOT (via divide and conquer), we also have QACk ⊆ QACk
wf ⊆ QACk+1. We

do not know yet if AC0 ⊂ QAC0 (the former uses fanout) but for all k, NCk ⊆ QNCk
wf,

ACk ⊆ QACk
wf and so on. In chapter 3, we explicitly showed how to construct a single

circuit for each k that can simulate all circuits in QACk
wf and QACCk

wf.

Even more interestingly, although the classical ACC[m] classes could be incompa-

rable as we mentioned above, for quantum classes the opposite turns out to be true:

87

QACC[m] = QACC[2] for all m [GHMP02]. This is exactly the opposite of what we ex-

pect from Razborov/Smolensky: ACC[p] 6= ACC[2] for any prime power p. Regarding

constant-depth bounded fanin circuits, even though they cannot compute much on their

own, it turns out that they are very powerful with fanout: Each of the classes QNC0
wf,

QAC0
wf, or QTC0

wf can simulate any of the other two with two-sided polynomially small

error [HŠ05], so they roughly possess the same power.

6.2 Analysis of quantum circuits

The quantum circuits that are2 used in quantum computers may or may not be more

complicated than the kinds we considered in the thesis. However, other than showing ex-

plicit constructions, another another major goal of this thesis was to analyse these circuits

relative to our understanding of classical circuits and try to quantify their efficiencies

and deficiencies. We mentioned earlier that QAC0 is probably weaker than its classical

counterpart AC0 due to the lack of unbounded fanout but other than that we did not

emphasise the weakness of a quantum circuit relative to a classical circuit in this thesis.

In the previous chapters we mostly discussed unbounded fanin circuits with single

qubit gates and multi-qubit Toffoli and/or parity gates with or without fanout gates.

Structurally, there are two ways such a circuit is different than an unbounded fanin clas-

sical circuit. One is the usage of the single qubit gates which are the primary sources of

entanglement and creates superposition. Observe that the Toffoli gate, the parity gate and

the fanout gate are basically classical gates. The other is the restriction of fanout.

Here we would like to point out an interesting resemblance between quantum and

classical circuits. Quantum circuits without any ancillæ and fanout behave very much

like classical bounded fanin circuits. Without unbounded fanout, the unbounded fanin

gates are not capable of quickly mixing up information to generate a complex output.

The number of gates in a circuit with no fanout gate is bounded by the product of the

2Read: will be

88

depth and the total number of qubits (inputs and ancillæ), so unlike the classical circuits,

the number of ancillæ qubits in a quantum circuit is an important resource. It would be

interesting to come up with explicit functions which cannot be computed with up to a

limited number of ancillæ but can be computed with lots of ancillæ. We would also like to

conjecture that for any particular function, a minimum number of gates are required for

any quantum circuit to compute it irrespective of the number of ancillæ. The issue of the

necessity of ancillæ in quantum computations is a murky one. It is generally accepted that

a limited number (polynomially many relative to the number of inputs) are allowed. This

seems reasonable as it allows polynomial extra space in which to carry out a computation.

However, it is possible to approximate any unitary operator with a small set of universal

gates without ancillæ (although one needs circuits of exponential depth and size in order

to do so [NC00]). Nielsen addressed this question partly in [Nie06], where he related

the minimum size required to exactly implement a specified n-qubit quantum operator

without using ancillæ to the length of the minimal geodesic between the operator and the

identity operator (length of the geodesic is defined appropriately).

The size of any quantum circuit is upper bounded by the product of its depth and

the number of its qubits, including ancillæ. Thus, any bound on the amount of ancillæ

required to compute a particular function will also contain insight about the size require-

ments of that function. A systematic investigation into the absolute necessity of ancillæ

for efficient quantum circuits would be an excellent future research direction.

In chapter 2 we surveyed some existing results which show the surprising power pro-

vided by allowing fanout gates in constant depth quantum circuits. In the later chapter,

we took different approaches to answer the problem of whether, in the presence of single

qubit gates, these gates are strictly more powerful than (unbounded) Toffoli gates and are

necessary for simulating stronger classes. We seek to fill a gap in our understanding of

the relative power of Toffoli and fanout gates in quantum circuits, partly because fanout is

a trivial operation for classical circuits. Roughly speaking, we know that given fanout, we

can do fanin, where by fanin we mean the characteristic property of the quantum gates,

89

for example the Toffoli gate, in which one output qubit of the gate depends on the values

of (unbounded) many inputs qubits. But can fanout do more? Are generalised Toffoli

gates and fanout gates equivalent in power, up to polynomial size and constant depth;

i.e., are QAC0 and QAC0
wf equal? We believe they are not, and thus that fanout gates are

strictly more powerful. The main result of chapter 4 was that one cannot compute parity

(and hence fanout) with QAC0 circuits without using any ancillæ and gave evidence that

QAC0 and QAC0
wf may be different.

Polynomial representation A very common technique for analysing classical Boolean

formulæ, Boolean circuits and arithmetic circuits is by representing them as polynomials.

Unfortunately, there has been no known successful representation of quantum circuits

using polynomials to date. One of the difficulty seems to be the presence of amplitudes.

The amplitudes contain global information about which states are entangled and how.

Conceptually a quantum gate can change the value of the states or amplitudes or both

making it difficult for any polynomial to accurately describe the state of only the relevant

group of qubits.

Our approach in chapter 4 was motivated by this idea but ended up being insufficient

to analyse circuits even with 1 ancilla. There have been some recent attempts in this

direction. In [DHH+05], Dawson et. al. represented the probability that of observing, say,

0 in the measurement qubit for a particular input as a polynomial over Z2. They used that

to give another proof that BQP (class of bounded-error problems which could be solved by

polynomial size quantum circuits) is contained in the class PP (class of problems solved

by probabilistic classical algorithms). They used the sum-over-paths approach which can

be viewed as the discrete version of the path integral method of standard continuous-time

quantum mechanics. This representation does not directly expose the depth of a circuit in

a suitable way to allow it to be used directly to answer the questions we discussed in this

thesis. However, we believe this approach can be used to analyse circuits with respect to

their size.

90

6.3 Quantum query complexity

In chapter 5, we discussed a specific kind of faulty gates where some of the inputs might

not be connected to the gate’s output. Our goal was to detect the faulty inputs by us-

ing the faulty gate on as few inputs as possible. We considered classical gates comput-

ing specific symmetric Boolean functions and also considered quantum gates computing

the same. We showed how our fault detection problem is related to determining input

sensitivity of Boolean functions. There are several versions of sensitivity e.g. average

sensitivity, block sensitivity, which are important complexity measures of functions. The

complexity of estimating these values given query access to the function is an interesting

research direction which might shed light on the complexity of the sensitivity function

itself.

In chapter 5 we also showed how to relate quantum query complexity to quantum

circuits. We extended two widely used query complexity results by allowing general

algebraic functions for the query steps instead of querying the bits of the input. These

results are of independent interest. Algebraic query complexity for quantum circuits

would be an interesting area of research. In an algebraic decision tree, we are essentially

trying to compute one function with the help of another function. This can help us in

understanding the hardness of a function relative to another function e.g. how hard is it

to simulate a Toffoli gate using parity gates.

In this thesis we analysed certain types of quantum circuits with an aim to understand

what gives them their power beyond classical circuits and in general. We mostly looked

at circuits with simple structures that can act as building blocks for complicated circuits.

Our focus was both explicit construction and mathematical analysis as and when neces-

sitated. We hope this study will be helpful in understanding complex quantum circuits

and quantum computing in general.

91

ajo nityah sasvato ’yam purano na hanyate hanyamane sarire

He is unborn, eternal, undying, primeval and does not end when the body is slain.

– Srimat Bhagavad Gita 2.20

Bibliography

[Aar06] Scott Aaronson. Lower bounds for local search by quantum arguments. Siam

Journal on Computing, 35(4):804–824, 2006.

[ADH97] Leonard M. Adleman, Jonathan DeMarrais, and Ming-Deh A. Huang. Quan-

tum computability. Siam Journal on Computing, 26(5):1524–1540, 1997.

[Aha99] Dorit Aharonov. Noisy Quantum Computation. PhD thesis, Hebrew University,

1999.

[Aha03] Dorit Aharonov. A simple proof that Toffoli and Hadamard are quantum

universal. arxiv:quant-ph/0301040, 2003.

[Amb00] Andris Ambainis. Quantum lower bounds by quantum arguments. In Pro-

ceedings of The 32nd Annual ACM Symposium on Theory of Computing, pages

636–643. ACM, 2000.

[ASV98] V. Arvind, K.V. Subrahmanyam, and N.V. Vinodchandran. The Query Qom-

plexity of Program Checking by Constant-Depth Circuits, volume 1741/1999 of

Lecture Notes in Computer Science, pages 123–132. Springer Berlin / Heidel-

berg, 1998.

[BBC+95] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. Divincenzo,

Norman Margolus, Peter W. Shor, Tycho Sleator, John A. Smolin, and Harald

Weinfurter. Elementary gates for quantum computation. Physical Review A,

A52(5):3457–3487, 1995.

93

[Bea94] Paul Beame. A switching lemma primer. Technical Report UW-CSE-95-07-01,

University of Washington, Computer Science, 1994.

[Bei93] Richard Beigel. The polynomial method in circuit complexity. In In Proceedings

of the 8th IEEE Structure in Complexity Theory Conference, pages 82–95. IEEE

Computer Society Press, 1993.

[Ber08] Debajyoti Bera. A new lower bound technique for quantum circuits without

ancillæ. Technical Report 15, Boston University, Computer Science, 2008.

[BFGH09] Debajyoti Bera, Stephen Fenner, Frederic Green, and Steven Homer. Efficient

universal quantum circuits. In Proceedings of The 15th International Computing

and Combinatorics Conference, Lecture Notes in Computer Science. Springer,

July 2009.

[BFNR08] Harry Buhrman, Lance Fortnow, Ilan Newman, and Hein Röhrig. Quantum

property testing. Siam Journal on Computing, 37(5):1387–1400, 2008.

[BGH07] Debajyoti Bera, Frederic Green, and Steven Homer. Small depth quantum

circuits. SIGACT News, 38(2):35–50, 2007.

[BH09] Debajyoti Bera and Steven Homer. On finding sensitivity of quantum and

classical gates. Technical Report 19, Boston University, Computer Science,

2009.

[BHT98] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum counting. In Pro-

ceedings of 25th ICALP: Lecture Notes in Computer Science, volume 1443, pages

820–831. Springer-Verlag, 1998.

[BvDR08] Dave Bacon, Wim van Dam, and Alexander Russell. Analyzing alge-

braic quantum circuits using exponential sums. http://www.cs.ucsb.edu/

∼vandam/LeastAction.pdf, 2008.

http://www.cs.ucsb.edu/~vandam/LeastAction.pdf
http://www.cs.ucsb.edu/~vandam/LeastAction.pdf

94

[BW02] Harry Buhrman and Ronald De Wolf. Complexity measures and decision tree

complexity: A survey. Theoretical Computer Science, 288(1):21–43, 2002.

[CH85] Stephen A. Cook and H. James Hoover. A depth-universal circuit. Siam Journal

on Computing, 14(4):833–839, 1985.

[CKW00] Valerie Coffman, Joydip Kundu, and William K. Wootters. Distributed entan-

glement. Physical Review A, 61:052306, 2000.

[Coo04] Matthew Cook. Universality in elementary cellular automata. Complex Sys-

tems, 15:1–40, 2004.

[Cop94] D. Coppersmith. An approximate fourier transform useful in quantum fac-

toring. Technical Report RC19642, IBM, 1994.

[CTK08] Yao-Hsin Chou, I-Ming Tsai, and Sy-Yen Kuo. Quantum Boolean circuits are

1-testable. IEEE Transactions on Nanotechnology, 7(4):484–492, July 2008.

[CW00] Richard Cleve and John Watrous. Fast parallel circuits for the quantum fourier

transform. In Proceedings of the 41st Annual Symposium on Foundations of Com-

puter Science, pages 526–536, 2000.

[CZ95] J. I. Cirac and P. Zoller. Quantum computations with cold trapped ions. Phys-

ical Review Letters, 74:4091–4094, May 1995.

[Deu85] David Deutsch. Quantum theory, the Church-Turing principle and the uni-

versal quantum computer. In Proceedings of the Royal Society of London Ser. A,

volume A400, pages 97–117, 1985.

[DHH+05] Christopher M. Dawson, Henry L. Haselgrove, Andrew P. Hines, Duncan

Mortimer, Michael A. Nielsen, and Tobias J. Osborne. Quantum computing

and polynomial equations over the finite field Z2. Quantum Information and

Computation, 5(2):102–112, 2005.

95

[DJ92] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum

computation. Royal Society of London Proceedings Series A, 439:553–558, October

1992.

[Fen03a] Stephen A. Fenner. A physics-free introduction to the quantum computation

model, Computational Complexity Column. Bulletin of the EATCS, 79:69–85,

2003.

[Fen03b] Steven A. Fenner. Implementing the fanout gate by a Hamiltonian.

arxiv:quant-ph/0309163, 2003.

[Fey82] Richard Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6):467–488, June 1982.

[FFG+06] Maosen Fang, Stephen Fenner, Frederic Green, Steven Homer, and Yong

Zhang. Quantum lower bounds for fanout. Quantum Information and Com-

putation, 6(1):46–57, 2006.

[FGHP98] Stephen Fenner, Frederic Green, Steven Homer, and Randall Pruim. Quantum

NP is hard for ph. In Proceedings of 6th Italian Conference on Theoretical Computer

Science, pages 241–252. World Scientific, 1998.

[FR99] Lance Fortnow and John Rogers. Complexity limitations on quantum com-

putation. Journal of Computer and System Sciences, 59(2):240–252, 1999.

[FSS84] Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the

polynomial-time hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

[GC97] Neil A. Gershenfeld and Isaac L. Chuang. Bulk spin-resonance quantum

computation. Science, 275(5298):350–356, January 1997.

[GHMP02] Frederic Green, Steven Homer, Cristopher Moore, and Christopher Pollett.

Counting, fanout, and the complexity of quantum ACC. Quantum Information

and Computation, 2(1):35–65, 2002.

96

[Gre99] Frederic Green. Circuits. Unpublished notes, 1999.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search. In

STOC ’96: Proceedings of the twenty-eighth annual ACM Symposium on Theory of

Computing, pages 212–219. ACM, 1996.

[Gro01] Lov K. Grover. From Schrödinger’s equation to the quantum search algo-

rithm. American Journal of Physics, 69:769–777, 2001.

[Has86] Johan Hastad. Almost optimal lower bounds for small depth circuits. In

Proceedings of the 18th annual ACM Symposium on Theory of Computing, pages

6–20, 1986.

[Her95] Rolf Herken, editor. The Universa Turing Machine: A Half-Century Survey.

Springer, 1995.

[HŠ03] Peter Høyer and Robert Špalek. Quantum circuits with unbounded fan-out.

In STACS ’03: Proceedings of the 20th Annual Symposium on Theoretical Aspects

of Computer Science, pages 234–246, London, UK, 2003. Springer-Verlag.

[HŠ05] Peter Høyer and Robert Špalek. Quantum fan-out is powerful. Theory of

Computing, 1(1):81–103, 2005.

[KSV02] A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computa-

tion. American Mathematical Society, Boston, MA, USA, 2002.

[MN01] Cristopher Moore and Martin Nilsson. Parallel quantum computation and

quantum codes. Siam Journal on Computing, 31(3):799–815, 2001.

[Moo99] Christopher Moore. Quantum circuits: Fanout, parity, and counting.

arxiv:quant-ph/9903046, 1999.

[NC97] Michael A. Nielsen and Isaac L. Chuang. Programmable quantum gate arrays.

Physical Review Letters, 79(2):321–324, 1997.

97

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information. Cambridge University Press, October 2000.

[Nie06] Michael A. Nielsen. A geometric approach to quantum circuit lower bounds.

Quantum Information and Computation, 6(3):213–262, 2006.

[Nis89] Noam Nisan. CREW PRAMs and decision trees. In Proceedings of the twenty-

first annual ACM Symposium on Theory of Computing, pages 327–335. ACM,

1989.

[NO02] Harumichi Nishimura and Masanao Ozawa. Computational complexity of

uniform quantum circuit families and quantum Turing machines. Theoretical

Computer Science, 276(1-2):147–181, 2002.

[PBL05] M. Perkowski, J. Biamonte, and M. Lukac. Test generation and fault localiza-

tion for quantum circuits. In Proceedings of the 35th International Symposium on

Multiple-Valued Logic, pages 62–68, May 2005.

[PHM04] Ketan N. Patel, John P. Hayes, and Igor L. Markov. Fault testing for reversible

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 23:410–416, 2004.

[PP00] S. Parker and M. B. Plenio. Efficient factorization with a single pure qubit

and logn mixed qubits. Physical Review Letters, 85(14):3049–3052, Oct 2000.

[Pud93] P. Pudlák. Fundamentals of Computation Theory, chapter AC0 circuit complex-

ity, pages 106 – 120. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 1993.

[Raz87] Alexander Razborov. Lower bounds for the size of circuits of bounded depth

with basis {&,⊕}. Mathematical Notes, 41(4):333–338, 1987.

[RV01] Vwani P. Roychowdhury and Farrokh Vatan. Quantum formulas: A lower

bound and simulation. Siam Journal on Computing, 31(2):460–476, 2001.

98

[RW04] Steven Rudich and Avi Wigderson, editors. Computational Complexity Theory,

volume 10 of IAS/Park City Mathematical Series. American Mathematical Soci-

ety and Institute of Advanced Study, 2004.

[SBKH93] K.-Y. Siu, J. Bruck, T. Kailath, and T. Hofmeister. Depth efficient neural net-

works for division and related problems. IEEE Transactions on Information

Theory, 39(3):946–956, May 1993.

[Shi02] Y. Shi. Both Toffoli and controlled-NOT need little help to do universal quan-

tum computation. Quantum Information and Computation, 3(1):84–92, 2002.

arXiv:quant-ph/0205115.

[Shi03] Yaoyun Shi. Both toffoli and controlled-NOT need little help to do univer-

sal quantum computation. Quantum Information and Computation, 3(1):84–92,

2003.

[Sho96] P.W. Shor. Fault-tolerant quantum computation. In Symposium on Foundations

of Computer Science, volume 0, pages 56–65, Los Alamitos, CA, USA, 1996.

IEEE Computer Society.

[Sho97] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. Siam Journal on Computing, 26:1484–

1509, 1997.

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for

Boolean circuit complexity. In Proceedings of the 19th annual ACM Symposium

on Theory of Computing, pages 77–82, 1987.

[SR07] Paulo B. M. Sousa and Rubens V. Ramos. Universal quantum circuit for n-

qubit quantum gate: A programmable quantum gate. Quantum Information

and Computation, 7(3):228–242, 2007.

99

[Tur36] Alan M. Turing. On computable numbers, with an application to the Entschei-

dungsproblem. Proceedings of the London Mathematical Society, 2(42):230–265,

1936.

[Val76] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the

8th ACM Symposium on the Theory of Computing, pages 196–203, 1976.

[vEB90] Peter van Emde Boas. Machine models and simulations. Handbook of theoretical

computer science (vol. A): algorithms and complexity, pages 1–66, 1990.

[Vol99] Heribert Vollmer. Introduction to Circuit Complexity. Springer-Verlag, 1999.

[Š02] R. Špalek. Quantum circuits with unbounded fan-out. Master’s thesis, Faculty

of Sciences, Vrije Universiteit, Amsterdam, 2002.

[Wika] Wikipedia. Camelot. http://en.wikipedia.org/wiki/Camelot.

[Wikb] Wikipedia. Schrödinger’s cat. http://en.wikipedia.org/wiki/Schrödinger’s cat.

[Yao77] Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure

of complexity. In Proceedings of the 18th Annual Symposium on Foundations of

Computer Science, pages 222–227, 1977.

[Yao93] Andrew C. Yao. Quantum circuit complexity. In Proceedings of the 34th IEEE

Symposium on Foundations of Computer Science, pages 352–361, 1993.

http://en.wikipedia.org/wiki/Camelot
http://en.wikipedia.org/wiki/Schr%F6dinger's%5Fcat

Curriculum Vitae

Debajyoti Bera

Local address:

111 Cummington Street MCS138, Computer Science Department, Boston, MA 02215, USA

Permanent address:

84B/9 Dumdum Cossipore Road, Kolkata, West Bengal, India - 700074

Email address: dbera@cs.bu.edu

Education

Ph.D. Computer Science, Boston University, USA (expected August 2009).

B.Tech Computer Science, Indian Inst. of Technology, Kanpur, India (2002).

Publications

D. Bera, S. Fenner, F. Green and S. Homer. Efficient Universal Quantum Circuits. Ap-

peared in Proceedings of COCOON, 2009.

D. Bera, F. Green, S. Homer. Small depth quantum circuits. SIGACT News, 38(2), 2007.

Work Experience

Internship at ITA Software, Cambridge, USA in summer 2009.

Internship at VMware Inc., Palo Alto, USA in summer 2006.

101

Developer at Adobe Systems Incorporated, India in 2002.

Internship at GMD IPSI, Darmstadt, Germany in summer 2001.

Mentor for Google Summer of Code for the Beagle project, 2007.

Awards

Best teaching fellow for Computer Sc. Dept. awarded by CAS, Boston Univ. (2006).

Selected for NTSE scholarship, a national merit scholarship by NCERT, India (1996).

	Acknowledgements
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Quantum Computing
	Outline and main contributions
	Universal Quantum Circuit
	Lower Bounds
	Detection of Faulty Gates
	Future Direction

	Quantum Circuit Complexity
	Background
	Motivation

	Quantum Circuit Model
	Quantum Gates
	Fanout Gate
	Ancillæ
	Universal quantum gates

	Previous results
	Other models: Quantum decision tree

	Universal Quantum Circuit
	Introduction
	Other relevant work

	Building Blocks: Quantum Gates
	Depth-universal quantum circuits
	Size-universal quantum circuits
	Other results
	Summary

	Quantum Circuit Lower Bound
	Introduction
	Motivation and related work
	Bounded fanin circuits
	Unbounded fanin circuits
	Earlier technique
	Our technique
	Approximating a circuit

	Application: Lower bound for parity
	Summary

	Detecting Input Sensitivity of Gates
	Introduction
	Problem statement
	Relation to sensitivity
	Organisation

	Related work
	Parity gate
	Quantum detection circuit
	Classical deterministic lower bound
	Classical probabilistic lower bound

	Algebraic query complexity
	Generalised unordered search
	Lower bound for generalised query complexity

	AND gate
	Quantum detection algorithm
	Lower bounds
	Path query model for directed graphs

	Conclusion

	The Last Chapter
	Quantum complexity classes
	Analysis of quantum circuits
	Quantum query complexity

	Bibliography
	Curriculum Vitae

