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ABSTRACT
Shortest path querying is a fundamental graph problem which is com-
putationally quite challenging when operating over massive scale
graphs. Recent results have addressed the problem of computing
either exact or good approximate shortest path distances efficiently.
Some of these techniques also return the path corresponding to the
estimated shortest path distance fast.

However, none of these techniques work very well when we have
additional constraints on the labels associated with edges that consti-
tute the path. In this paper, we develop SkIt index structure, which
supports a wide range of label constraints on paths, and returns an
accurate estimation of the shortest path that satisfies the constraints.
We conduct experiments over graphs such as social networks, and
knowledge graphs that contain millions of nodes/edges, and show
that SkIt index is fast, accurate in the estimated distance and has a
high recall for paths that satisfy the constraints.

Categories and Subject Descriptors
E.1 [Data]: Data Structures—Graphs and Networks; H.2.4 [Database
Management]: Systems—Query Processing
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1. INTRODUCTION
Finding shortest paths between two given nodes in a graph is a

problem of fundamental importance in computer science. It has a
variety of applications ranging from network-routing [4] to its use as
a data mining primitive [2]. Computing shortest paths in an online
manner for each query pair over massive graphs is computationally
challenging. This has given rise to recent research in efficiently
estimating and computing the shortest path distances by preprocess-
ing the graph. Some of these methods can be extended to generate
corresponding shortest paths themselves efficiently.

As the modelling of networks gets richer, we have graphs that
have certain properties associated with nodes and edges in the form
of labels. For instance, in a large knowledge graph such as Yago, the
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relationship between two entities has one of a possible canonical-
ized relationship identifiers, such as “hasNeighbor”, “happenedIn”,
“influences”, etc. Even in social networks, it has become common
to have edge-labels like “Friend”, “Colleague”, “Family”, and so
on, to distinguish the nature of relationship between people. If we
consider general RDF databases that form the substrate for Semantic
Web efforts, all relationships are named – i.e., contain labels.

As a natural consequence, many modern practical uses of shortest
path computation demand certain constraints to be placed on the
labels over edges that are involved in the path. Current solutions,
which do not explicitly consider these labels during the distance/path
computation, have to resort to enumerating of all paths in increasing
order of their length until the path that satisfies the constraint is
found, if at all it exists.

1.1 Contribution
In this paper, we consider how to answer these label constrained

shortest path queries efficiently by augmenting the landmark-based
path-sketches [5]. The resulting index, called SkIt (Sketches aug-
mented with Inverted indexes), enables an efficient estimation algo-
rithm for edge-label constrained shortest paths between two given
nodes of an entirely disk-resident graph. In this poster, we demon-
strate how SkIt can efficiently support the following forms of con-
straints on the edge-labels:
Label white-listing: The set of edge-labels on the qualifying paths
should be a subset of the specified white-list of edge-labels.
Label black-listing: As opposed to above, user specifies the set of
labels that must not appear on the qualifying paths.
However, it is worth noting that the proposed solution can also
handle regular expression-like richer label constraints on paths.

In order to empirically establish the efficiency of SkIt, we im-
plement it within RDF-3X database, the same framework that was
used in path-sketches [5]. We compare the performance of SkIt
against standard TreeSketch that approximately enumerates the
paths in increasing order of their distance. We also compare with
the path query performance in Neo4J [1] – a high-performance,
industry-standard graph data management system. As a baseline, we
also implement the standard Dijkstra’s algorithm which can trivially
support all forms of label constraints as it explores the graph. Our
evaluation using multiple large-scale labeled graphs show that the
use of SkIt makes complex label-constrained shortest path discovery
highly scalable.

1.2 Problem Statement
Let G = (V,E,Σ) denote a directed graph with vertex set V ,

edge set E, edge label set Σ. A path p from vertex u to v is
an alternate-sequence of (distinct) vertices and edges i.e., p =
(u, e1, v1, ..., vi1, ei, vi, ..., en, v).
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DEFINITION 1 (LCSP). Given an edge-labeled directed graph,
G = (V,E,Σ), a source vertex s, a target vertex t and an edge-
label constraint set C ⊂ Σ, a label-constrained shortest path,
LCSP (s, t, C) is given by the shortest path p between s and t such
that L(p) ⊆ C, where L(p) are the edge labels involved in the path
p. In case of black-listed label set C̄, the edge-label constraint set
is given simply by C = Σ \ C̄. 2

From the definition above, it is clear that the edge-label white-
listing and black-listing can be treated uniformly. It is also quite
straightforward to see that, in practice, the value of |C| is smaller in
case of white-listing than in the edge-label black-listing setting.

1.3 Problem Difficulty
While the introduction of constraints on the edge-labels poses

no problems to the Dijkstra’s algorithm and its adaptations (such
as its bidirectional variant and A∗-search), it is well-known that
these algorithms do not scale for graphs with millions of nodes and
hundreds of millions of edges. At the same time, to the best of our
knowledge, none of the existing fast shortest-path approximation
techniques have a way of incorporating edge-labels within them.
The simple alternative of considering all possible edge-label con-
straints and build separate shortest-path oracle is not suitable when
we have a large number of edge-labels on account of 2|Σ| combina-
tions to deal with. Thus there is a clear need for a data structure that
can support LCSP queries in a scalable manner, even on graphs that
do not have favorable structural properties such as near-planarity.

The rest of the presentation is structured as follows: in the follow-
ing section, we briefly describe the landmark-based shortest path
estimation approach and the notion of path-sketches, which form
the basis for our work. In Section 3 we describe how path-sketches
are augmented with edge-labels to result in SkIt structure, and how
to answer a LCSP query over it. Following this, in Section 4 we
describe our experiment setup including datasets and queries, and
present the results. Finally, we conclude in Section 5.

2. PATH-SKETCHES
One of the most popular shortest path estimation techniques over

directed, unweighted graphs (such as those we consider here), is
the landmark-based shortest path oracles [7]. Although there are
many different variants, the underlying idea is as follows: We first
select a set of special nodes, L, which we call landmarks, and
compute shortest path distances to/from each of the landmarks to all
other nodes in the graph. We associate a vector of these distances
along with the corresponding landmark with every node, and call
this a shortest-path distance sketch of the graph. After this pre-
computation, we can estimate the shortest path between any two
nodes u and v using triangle inequality as follows:

δ̂(u, v) = min
l∈L

δ(u, l) + δ(l, v),

where δ(x, y) denotes the directed shortest distance between x
and y. One variant of this method [3], proposed to use set-based
landmark selection, where we sample landmark sets of exponentially
increasing sizes S1, . . . , Sr with r = log(n). For each such set,
every vertex v maintains two sketch entries: the distance to the
closest landmark node in the set corresponding to the forward path
from the node to a landmark set, and the distance from a landmark
node from which v is at shortest distance corresponding to the
backward path from a landmark to the node. The sketch for a vertex
v is:

sf (v) = {(fi, δ (v, fi)) | i = 1 . . . r}
bf (v) = {(bi, δ (bi, v)) | i = 1 . . . r}
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Figure 1: Labeled Path-sketch

where fi = arg minx∈Si δ(v, x) and bi = arg minx∈Si δ(x, v).
Denoting the landmark nodes that appear in the forward and back-
ward sketches of a node v as Lf (v) and Lb(v), respectively, we can
write the shortest path distance estimator between two nodes u and
v as,

δ̂(u, v) = min
x∈Lf (u)∩Lb(w)

δ(u, x) + δ(x, v).

Note that these distance sketches maintain only the shortest distance
between landmark nodes and regular nodes in the graph. Therefore,
in order to reconstruct the actual path that corresponds to the esti-
mated distance between the two nodes, additional accesses to the
graph are required. This requirement is lifted by path-sketches [5]
where the sketch also contains the shortest path between the land-
mark node and a regular node. That is, the path-sketch entries are of
the form

sf (v) = {(fi, δ (v, fi) , p (v, fi)) | i = 1 . . . r}
bf (v) = {(bi, δ (bi, v) , p (bi, v)) | i = 1 . . . r}

More significantly, based on this additional information, it is possi-
ble to improve the accuracy of the shortest path distance estimation
significantly through the use of a series of improvements culminat-
ing in a bounded path computation algorithm called TreeSketch over
the tree resulting from the union of paths stored in the sketches. For
every node in the tree, TreeSketch performs a k-hop BFS (typically
k = 1) to see if it is possible to reach the target with a shorter
distance. Although TreeSketch requires additional accesses to the
underlying graph, it has been shown to be relatively inexpensive
even when the graph is entirely disk-resident [5], and can generate
almost accurate distance estimates.

3. SKIT INDEX
As a first step towards extending path-sketches to support the

edge-label constraints on the paths, we first augment the path infor-
mation with the edge-label information. This fairly straightforward
extension is illustrated using the example graph in Figure 1, along
with the associated sketch. In this figure, the green nodes represent
the query vertices s and t in the graph, and the red nodes indicate
the landmarks that are common between the two query nodes. The
thick solid edges are the paths stored in the forward path-sketches
of s, while the thick dashed edges are the paths of the backward
path-sketches of t.

With path-sketches thus augmented, we can proceed to estimate
the LCSP as follows: load forward/backward sketches for s and t
query nodes from disk, reject all sketches containing paths which
do not satisfy the specified edge-label constraints, and similarly
reject total distance estimations if the corresponding path violates
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the constraints. Further, one observes that since the labels are stored
in the order of their occurrence in the path, it is possible to include
edge-label order constraints as well easily.

However, this simplistic approach may result in not finding any
path between two nodes since we are pruning out candidate paths.
For instance, consider the backward path-sketch starting from l3 to t,
whose edge-label set is {a1, a2}. If the user specifiedC = {a1, a3}
then rejecting the path-sketch entirely would result in not finding the
LCSP between s and t, although TreeSketch allows for it. On the
other hand, retaining all the sketches which violate the constraints
also is not desirable as it adds needless exploration steps.

We tradeoff these two aspects by truncating the paths from sketches
to a prefix (suffix for backward paths) that satisfies the edge-label
constraints. For instance, considering the same example, we will
truncate the sketch 〈l3, a2, v6, a1, t〉 to 〈v6, a1, t〉. Using TreeSketch,
we can now find the LCSP between the query vertices.

Speeding up TreeSketch with Label Inverted Index.
During the execution of TreeSketch, for every node we perform a

k-hop exploration of the graph in order to find a shorter connection
between the forward and backward sketch trees. However, this may
lead to many wasted accesses to the graph since they may violate
label constraints.

We utilize a compact inverted list structure that, for each node,
maintains the list of nodes directly reachable, as well as the list of
nodes of that reach the current node, via an edge-label. In other
words, each node will have a forward edge-label and a backward
edge-label inverted list. This can be seen as an effective organization
of the edge-labeled adjacency list of the graph so as to efficiently
decide if a specific node can be expanded or not.

Constrained TreeSketch Algorithm.
Next we briefly describe the Edge-label Constrained TreeSketch

algorithm, presented in Algorithm 1, as an extension of TreeSketch [5].
In its first step, the algorithm loads all the path-sketches for the two
given pair of vertices s and t, retaining the prefix (or the suffix)
that satisfies the edge-label constraint. This results in a edge-label
constrained sketch tree, which we denote as TC

s and TC
t . Then, a

bidirectional BFS is initiated from s and t. As each node is visited,
its neighbors which satisfy the label constraints are loaded using its
inverted index list. This local BFS step can proceed upto k-hops –
in the algorithm listing we present the situation when k = 2. Note
that if we perform 2-hop BFS from nodes in TC

s and TC
t we can

discover shortcuts upto 3-hops.

4. EXPERIMENTAL EVALUATION
We implemented all methods within the original RDF-3X-based

implementation made available to us by the authors of path-sketches [5].
Due to lack of space, we will not give details of the RDF-3X graph
database system, instead direct the interested reader to [6]. Us-
ing the highly compressed triple storage within RDF-3X, we store
graphs edgewise with each edge represented as a triple 〈s, label, t〉.
Path-sketches are also stored in triple format in a separate RDF-3X
database as follows: 〈vi〉〈t〉〈lij : pij〉 for forward sketches and
〈vi〉〈f〉〈lij : pij〉 for backward sketch, where vi is the source node,
lij is the landmark for the node from landmark set Sj , and pij is the
path between vi and lij augmented with edge-labels.

Experimental Setup.
We made use of two systems in our experiments: a server-class

machine, termed SYSTEM-S, with Intel Xeon CPU E5-2640 @
2.50GHz with 64GB RAM running OpenSUSE Linux, and a desk-

Algorithm 1: Edge-label Constrained TreeSketch (s, t, C)

Input: s, t ∈ V , C ⊂ Σ
Result: Q, priority queue of paths from s to t respecting C

1 CTs ← tree of paths from s that respect C
2 CTt ← tree of paths to t that respect C
3 Q← ∅
4 µ←∞
5 NBFS ← ∅, NRBFS ← ∅
6 foreach u ∈ BFS(CTs, s) and v ∈ BFS(CTt, t) do
7 NBFS ← NBFS ∪ {u}
8 pv→t ← path from v to t ∈ CTt

9 foreach x ∈ NBFS do
10 if v ∈ upto2HopSuccessors(x,C) then
11 p← ps→x ◦ px→v ◦ pv→t

12 Q← Q ∪ {p}
13 µ← min{µ, | p |}

14 NRBFS ← NRBFS ∪ {v}
15 ps→u ← path from s to u ∈ CTs

16 foreach x ∈ NRBFS do
17 if x ∈ upto2HopSuccessors(u,C) then
18 p← ps→u ◦ pu→x ◦ px→t

19 Q← Q ∪ {p}
20 µ← min{µ, | p |}

21 if dist(s, u) + dist(v, d) ≥ µ then
22 return

DataSet |V | |E| |Σ| |Lf | |Lb|

Orkut 3,072,441 117,185,083 324 39.4 31.4
socLive 4,847,571 68,993,773 315 40.1 38.5
Yago 14,395,591 30,717,443 96 1.47 5.92

Table 1: Dataset Characteristics

top, termed SYSTEM-D, with Intel i3 CPU 550 @ 3.2GHz with 4GB
RAM running Linux Mint. The algorithms are evaluated on three
datasets: (a) Orkut1, (b) socLive2, and (c) Yago3. Both Orkut and
socLive are social networks recorded without any edge-label infor-
mation. We synthetically labeled the edges on these two networks
with edge-labels following exponential distribution with exponent
0.5. On the other hand, Yago is a large entity-relationship network
with every edge labeled using one of 96 labels. The relevant statis-
tics of these three networks are given in Table 1. The table also lists
average number of forward and backward landmark sets, denoted as
|Lf | and |Lb| respectively, for each node that are stored in the path-
sketches. These numbers show that the total number of sketches for
each node we need to read, is fairly small for all datasets.

In addition to RDF-3X based implementations, we also evaluated
the performance of constrained shortest path queries over Neo4J [1]
a state-of-the-art graph data management system.

We have performed experiments on two types of queries:
(1) Positive label restrictions: Given a set of edge-labels C ⊂ Σ,
the path label set L(p) ⊂ C, this query set is constructed as follows:
first we select paths from a tree that is a union of BFS trees started
simultaneously with 100 nodes, chosen at random with degree more
than average-degree, as root nodes. We repeated this process 3
times, and from from the resulting collection of queries, for each
path length at most 50 queries are selected, with different source
and target pairs;
(2) Negative label restrictions: Given a set of edge-labels C ⊂
Σ, the path label set L(p) * C, this query set is constructed by
selecting a source node, a target node and constraint set uniformly

1http://snap.stanford.edu/data/com-Orkut.html
2http://snap.stanford.edu/data/soc-LiveJournal1.html
3http://www.mpi-inf.mpg.de/yago-naga/yago/
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Dataset Path-sketch SkIt Neo4J (load)

Orkut 17323 28650 8765
socLive 21647 29568 5236
Yago 11529 23148 104

Table 2: Index Construction Time (in seconds)

Dataset Query SkIt-1hop SkIt-2hop TreeSketch

ε τ ε τ ε τ

Orkut
+ve
-ve

0.0073
0.1197

0.163
0.147

0.0045
0.0437

0.1227
0.0568

0.0112
0.1325

0.088
0.136

socLive
+ve
-ve

0.00
0.0390

0.082
0.0042

0.00
0.0051

0.056
0

0.0076
0.0392

0.024
0.0084

Yago +ve 0.0108 0.0759 0.0106 0.0629 0.0111 0.0724

Table 3: Effectiveness of SkIt in Estimating LCSP

at random, with constraint set size varying from 1 to 3. For each
constraint set size we generated 100 queries.

Evaluation Metrics.

• Approximation error (ε): If the shortest path that satisfies
the given constraints has length lc and the estimated con-
strained path length has length l̂c, then we report |l

c−l̂c|
lc

.

• False negative ratio (τ ): The fraction of queries which fail
to return any path that satisfies the given constraint, although
at least one such path exists.

• Query execution time: We compare the performance of
our SKIT-based LCSP estimation technique against the per-
formance of traditional Dijkstra’s algorithm and standard
TreeSketch algorithm. Note that for TreeSketch algorithm,
we need to traverse through the heap of paths until a path that
satisfies the given constraints is found.

Finally, we also compare query execution time against the con-
strained shortest path function available in Neo4J (http://www.
neo4j.org) – an open-source, enterprise-grade, high-performance
graph management system.

4.1 Results
We computed all indexes over the SERVER-S machine, and the

time taken to construct them are reported in Table 2. The construc-
tion time reported for SkIt index are much higher than the time
taken for path-sketches since we include the time taken to compute
the edge-label inverted indexes in a separate round. In comparison,
Neo4J loads the data extremely fast – most likely because it stages
data load entirely within memory and schedules disk-writes lazily.
On the other hand, all the results we report are over databases and
indexes stored entirely on disk.

Average approximation error and false negative ratio are reported
in Table 3. The average approximation error for SkIt-1hop and SkIt-
2hop is always less than that for TreeSketch. This is particularly
noticeable in social network datasets where we see an order of
improvement in approximation error of LCSP over TreeSketch. The
false-negative ratio of SkIt is slightly inferior to TreeSketch, due
to relatively aggressive pruning of sketches. We have reported
only average running for negative queries over Yago, since even
Dijkstra’s algorithm failed to return any paths for many choices of
negative label restrictions we tried.

Figure 2 shows average query execution time over SYSTEM-D as
well as SYSTEM-S in logarithmic scale. Neo4j, being largely an in-
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Figure 2: Running Time recorded on different machines

memory graph database performs significantly better on SYSTEM-S
as compared to SYSTEM-D. Moreover, it ran out of memory for
negative queries over Yago on System-D. Nevertheless, SkIt-1hop
outperforms it by almost an order of magnitude over large graphs
over both SYSTEM-S as well as SYSTEM-D. This is particularly
surprising considering that the SkIt index entirely resides on disk
with minimal memory footprint.

5. CONCLUSION
In this paper, we have presented SkIt index for effective and effi-

cient estimation of edge-label constrained shortest paths. Through
experiments on large-scale graphs we demonstrate that SkIt out-
performs its competitors for both white-listing and black-listing of
edge-labels. In continuation of this work, we plan to support even
richer set of label constraints, and also reduce the size of SkIt index.
Acknowledgements This work is supported by the Max Planck
Society (MPG) and the Dept. of Science and Technology (DST),
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