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Abstract—Given a set of query locations and a set of query
keywords, a Trajectory Cover (CT) query over a repository of
mobile trajectories returns a minimal set of trajectories that
maximally covers the query keywords and are also spatially
close to the query locations. Processing CT queries over mobile
trajectories requires substantially different algorithms than
those for location range queries. The main contributions of
this work are three-fold. First, we introduce a notion of
Trajectory Cover that enables mobile users to get most relevant
trajectories of their interest to plan their route of travel.
Second, we show that CT search is an NP-hard problem and we
present a greedy algorithm that combines spatial proximity and
keyword proximity with an efficient filter. We use the promising
value filter to select better candidate trajectories for inclusion in
the CT and prune out non-promising trajectories in the Greedy
search process. We also develop a lower bound and upper
bound mechanism to efficiently compute the promising value
of each trajectory, allowing our promising value based greedy
algorithm to scale to large trajectory databases. Finally, we
conduct a performance study to demonstrate that our greedy
algorithm is efficient in evaluating trajectory cover queries.

I. INTRODUCTION

Technical advances in location-acquisition devices have

resulted into generation of huge volume of trajectory data. In

such datasets, a trajectory is a sequence of places, each place

having an associated text description. Popular examples are

community based resources such as bikely.com1, location-

based social networks like Geolife2, social networks like

Flickr3 and Foursquare4, where people upload their travel

routes, download and search for other user’s travel routes.

People also write blogs to share life experiences and build

connections among each other using human location history.

One of the most interesting types of queries is to find

the routes that have all their travel locations in a given

region and contain a given set of keywords. Such trajectory

queries can be used for providing mobile services like

helping people to plan their travel by knowing the travel

experiences of others, recommending relevant routes to the

mobile users on the basis of their preferences etc. However,

retrieving routes that match both the spatial locations and

1http://www.bikely.com/
2http://research.microsoft.com/en-us/projects/geolife/default.aspx
3http://www.flickr.com
4https://foursquare.com/

textual descriptions from the trajectory dataset demands

different query processing algorithms than location based

range queries.

The existing research on querying spatial-textual data

mainly focuses on spatial web object retrieval with or

without any text description. For example, a location aware

top-k text retrieval query returns a list of k spatial web

objects ranked according to a ranking function that combines

their distances to the query location and the relevance of

their textual description to the query keywords [1]. Recent

work on trajectory retrieval can be classified into two

categories: spatial relevance without keyword coverage and

spatial relevance with keyword relevance. For example, [2]

studies a k-nearest neighbor trajectory query which returns

the k-nearest mobile object trajectories to a given set of

query points based on the minimum distance from the query

points to a trajectory. [3] considers both a set of points and a

set of keywords in a query, and returns the top-k trajectories

based on a rank formula combining textual relevancy with

spatial relevancy scores. We observe that existing work

solves the spatial-textual matching of trajectories by treating

each trajectory as independent entity and thus focusing on

searching individual trajectory that maximizes the textual

similarity and minimizes the spatial distance with respect to

the query. This approach fails to provide good results when

the number of query keywords and the set of query locations

are not small since the top-k matching trajectories tend to

be sub-optimal in terms of keyword coverage and spatial

proximity. For example, if there is a query for Chinese

restaurant, Starbuck coffee, dry clean store as activities

and there are many trajectories with only Starbuck coffee

activity near the set of query locations, earlier approaches

would only return those trajectories with Starbuck coffee.

We argue that finding a smallest subset of trajectories with

maximal coverage of the query activities and the maximum

spatial vicinity to the set of query locations will provide

higher quality of spatial-textual trajectory query services by

delivering what users really desire to find.

In this paper, we define a new query type called Tra-

jectory Cover (CT ) query. A CT query consists of a set

of points and a set of keywords, and returns a minimal

set of trajectories that are textually relevant to the query



keywords with maximum coverage and are spatially close to

the query location points with minimum spatial proximity.

This type of queries will be most relevant in scenarios where

a user wants to find the routes in which she can do all the

query activities at/near to the query locations. In addition

to introducing trajectory cover queries, we also develop an

efficient approach to processing CT queries. First, we show

that the trajectory cover problem is NP hard. We propose

and implement a heuristic-based Greedy algorithm with a

novel filter to efficiently retrieve a trajectory cover for each

given query. The filter is based on the concept of promising

value, which helps to identify candidate trajectories that

are highly relevant to finding the CT. To speed up the

computation of promising value for each trajectory, we

develop the lower bound and upper bound mechanism to

filter out irrelevant trajectories that do not contribute to the

CT and minimize unnecessary computation of non-relevant

trajectories. To highlight our greedy algorithm with dual

goals of maximization of both textual and spatial relevance,

we also implement two baseline approaches, one focuses

on maximal keyword coverage coined as Keyword-based

approach (KA) and the other focuses on maximal spatial

relevance, coined as Location-based approach (LA). We

demonstrate the effectiveness of the Greedy approach using

real world trajectory datasets. To the best of our knowledge

no existing work has studied trajectory cover queries.

The rest of the paper is organized as follows. In section

2, we give problem overview and proof of NP-hardness

for trajectory cover query. Section 3 presents our proposed

algorithm. Experimental setup and results are described in

section 4. Section 5 discusses related work. Finally we

conclude the paper in section 6 with some directions for

future work.

II. OVERVIEW

In this section we first introduce the basic concepts and

definitions involved in the trajectory cover query model.

Then we give a brief overview of our solution approach.

A. Basic Concepts and Definitions

Let D be a dataset in which each data object is an

activity trajectory. Each activity trajectory t ∈ D is defined

as a sequence of places with keyword based annotations.

Formally, t = p1, ..., pi, ..., pn and pi =< li, ki > where

li denotes the geometric coordinate position of the place pi
and ki denotes the set of keywords that describe the place pi
in terms of activities done at that location. For presentation

convenience, when p = (l, k), we use p.l to denote the geo-

spatial location of p and p.k to denote the set of keywords

associated to the place p.

Figure 1 shows some examples of trajectories, i.e. D =
{t1, t2, t3, t4}, where trajectory places and query points are

represented by circles and triangles, respectively. Consider

place p11 of trajectory t1. We have p11.l = (15, 14) and p11.k
= {r}.

Figure 1: Example

A user query q over a repository of activity trajectories

is defined in terms of two components: a set of keywords

K and a set of query locations L, i.e. q = (L,K). In our

running example of Figure 1, the user query q = (L,K) has

q.L = {q1, q2, q3, q4} and q.K = {a, b, c, d, r, w}. For query

q, we say that a place pj in trajectory t is a valid place with

respect to the query q if t.pj .k contains at least one query

keyword, i.e., q.K ∩ t.pj .k 6= φ. For example, in Figure 1,

t1.p11 is a valid place whereas t1.p13 is not. For presentation

convenience, in the remaining of the paper, when places are

used in our definitions or algorithms, we refer to only valid

places unless mentioned explicitly otherwise.

Definition 1: (Trajectory Query Distance (TQD)) The

trajectory query distance TQD(q, t) of a trajectory t from

a user query q is defined as follows:

TQD(q, t) =
∑
i

min
j

Dist(q.li, t.pj),

∃k′ ∈ q.K, k′ ∈ t.pj .k,

Dist(·, ·) is the euclidean distance between two locations,

and each trajectory place t.pj considered in Dist() function

is at the minimum distance from some query point q.li.

In Figure 1, the distance of a query point q1 from

trajectory t3 is about 6.70, because the place p31 ∈ t3 is

the valid nearest place out of all the valid places in t3 with

respect to q1. Similarly for q2, q3 and q4, we have p31, p32
and p33 places at a distance of about 2.82, 3.61 and 2.24,

respectively. Thus, TQD(q, t3) = 6.70 + 2.82 + 3.61 + 2.24

= 15.37.

Definition 2: (Trajectory Set Query Distance (TSQD))

The trajectory set query distance TSQD(q,G) of a set of

trajectories G from a user query q is defined as follows:

TSQD(q,G) =
∑

ti∈G

TQD(q, ti).

Consider the trajectory set G = {t1, t4} in our running

example of Figure 1, TSQD(q,G) = (TQD(q, t1) +
TQD(q, t4)) = (15.54 + 38.3) = 53.84.

Definition 3: (Trajectory Query Keywords (TQK))



Trajectory Query Keywords of a trajectory t is the set of

keywords obtained by taking the union of query keywords

at the nearest places of the trajectory from the query points.

TQK(t, q) =
⋃

i (t.pj .k ∩ q.K),
∀m, j 6= m,Dist(q.li, t.pj) ≤ Dist(q.li, t.pm).

For example, TQK of trajectory t1 is {a, r, w}, as

p11, p12, p14 locations are the nearest trajectory places from

query points and have keywords {a, r, w} associated to

them. It may be noted that TQK(t, q) would always be

subset of trajectory keywords t.K.

Definition 4: (Trajectory Set Query Keywords

(TSQK)) Trajectory Set Query Keywords of a set of

trajectories G with respect to query q is defined as the set

of query keywords covered by trajectories in set G, i.e.,

TSQK(q,G) =
⋃

TQK(t, q), ∀t ∈ G
A set G of trajectories is said to cover a user query q with

respect to keywords, if and only if q.K ⊆ TSQK(q,G). In

our running example of Figure 1, the set G = {t1, t3} covers

the query keywords of q.

Definition 5: (Trajectory Cover (CT)) Let D denote a

database of trajectories and q = (L,K) denote a query over

D where L denotes the set of location points and K denotes

a set of keywords being queried. A trajectory cover of q
over D is a minimal subset of activity trajectories, say G,

that covers the maximum number of query keywords in q.K
and have the smallest trajectory set query distance (TSQD)

with respect to all the query points q.L, i.e., CT (q,D) =
{G | G ⊆ D, ∄G′ ⊂ D, |G′| < |G| ∧ TSQD(G′, q) <
TSQD(G, q) ∧ |TSK(G′, q)| > |TSK(G, q)|}.
In our running example of Figure 1, for query q = (L,K),
q.L = {q1, q2, q3, q4} and q.K = {a, b, c, d, r, w}, we have

G = {t2}, since G covers all the query keywords q.K and

have TSQD value as 22.12.

Lemma 1: Given a trajectory dataset D and a query q,

finding the trajectory cover of q is an NP-hard problem.

Proof: This lemma says that the problem of finding a

minimal subset CT (q,D) ⊆ D for a given user query q over

the trajectory dataset D is NP-hard. One way to prove the

lemma is by reduction from the weighted set cover problem

[4]: An instance of the weighted set cover problem consists

of a universe U = {1, 2, ..., n} of n elements and a family

of sets S = {S1, S2, ..., Sm}, where Si ⊆ U and each Si is

associated with a positive cost CSi
. The decision problem is

to decide if we can determine a set F of subsets of S such

that ∪Si∈FSi = U and such that its cost
∑

CSi
, Si ∈ F is

minimized.

To reduce weighted set cover problem to the trajectory

cover problem, we observe that U = q.K, each Si corre-

sponds to a set of keywords associated with a trajectory ti,
and the weight of Si is TQD(q, ti). Now, it is easy to show

that there exists a solution to the weighted set cover problem

if and only if there exists a solution to query CT (q,D).
Given that the trajectory cover problem is NP-hard, in

this paper we solve this discrete optimization problem by

developing a Greedy algorithm. Our goal is to develop an

efficient Greedy algorithm that can find the best approximate

trajectory cover(s) for each query. Note that by our trajectory

cover definition, there may exist more than one trajectory

covers for a given query.

B. Solution Overview

There are several ways to approach the problem of finding

trajectory covers of a given query. Given that the trajectory

cover is defined based on a minimal subset of D that have

both maximal keyword coverage and the maximal spatial

relevance, we can either approach this problem by sorting

trajectories by one of the criteria, which give us two baseline

approaches. However, we show that our greedy algorithm

outperforms either of these baseline methods. Furthermore,

in order to speed up the trajectory cover computation, we

introduce a novel filter to prune irrelevant trajectories prior

to the CT computation. We give a detailed description of

our solution approach in the next section.

III. ALGORITHMS

In this section, we first present the two baseline

algorithms, namely Keyword-based approach (KA) and

Location-based approach (LA). The keyword-based ap-

proach optimizes textual relevance score with respect to the

query but does not take into account the minimum spatial

proximity. On the other hand, the location-based approach

decides the inclusion of trajectories in the CT of a query

solely based on the spatial distance proximity and does not

consider maximal textual relevance. In contrast, our greedy

algorithm takes into account of both spatial and textual

relevance by finding the smallest subset of trajectories,

which maximizes the keyword coverage and the spatial

proximity.

A. Keyword-based Algorithm (KA)

Input: D: Trajectory dataset
q: (K,L)

Output: G: Trajectory cover

1 QK = q.K ;
2 G = φ ;
3 ∀t ∈ D, if t.k ∩QK = φ, Remove t from D ;
4 repeat
5 Find a trajectory t ∈ D, t 6∈ G and |t.K ∩QK| is

maximum and TQK(t, q) ∩QK 6= φ ;
6 G = t ∪G ;
7 QK = QK − t.K ;

until TSQK(G) ⊇ q.K;
8 return G ;

Algorithm 1: Keyword-based Algorithm

First baseline algorithm uses inverted list index for its

working. It filters out all trajectories in the database D that

do not contain any keyword mentioned in the query (q.K).

Then for the remaining candidates, we sequentially process

each trajectory in the order of maximum keyword relevance



with respect to the query keywords, i.e. a trajectory having

largest number of query keywords is considered first for CT.

We initialize the resultant group to empty (line 2) and add

a most keyword relevant trajectory in the result set in each

iteration (line 5-6). Once the result set G has trajectories

that together cover the query keywords, it is returned at the

output (line 8). Note that in cases when we obtain more than

one trajectory covering the same number of query keywords

then we choose one trajectory out of them randomly for

inclusion in G. Consider the example given in figure 1. We

will obtain either G = {t4} or G = {t2}, since t2 and t4
both covers all the query keywords.

B. Location-based Algorithm (LA)

Input: D: Trajectory Data
q: (K,L)

Output: G: Trajectory cover

1 G = φ ;
2 QK = q.K ;
3 ∀t ∈ D, if t.k ∩QK = φ, Remove t from D ;
4 repeat
5 Find a trajectory t ∈ D, t 6∈ G with the shortest

TQD(t, q) value;
6 if TQK(t, q) ∩QK 6= φ then
7 G = G ∪ t ;
8 QK = QK − t.K ;

end
until TSQK(G) ⊇ q.K;

9 return G
Algorithm 2: Location-based Algorithm

LA algorithm (Algorithm 2) as like KA algorithm first

prunes out trajectories that do not contain any query keyword

q.K (line 3). Then it finds trajectories in the order of their

TQD value (line 5). We use the algorithm proposed in [2]

for this step. The algorithm returns top-k nearest trajectories

from a given set of location points. We extend it to an

incremental algorithm version to retrieve a trajectory at a

time in the order of their TQD value. We add a trajectory

t to the resultant trajectory cover G, if t covers any new

query keyword not yet covered by G (line 6-7).

In our example (figure 1), this algorithm will first include

t3 in G as it has the smallest distance of 15.38 from query

points. Since, t3.k = {a, b, c, d}, therefore QK = {r, w}
(according to line 8). Now, the algorithm will select trajec-

tory t1 as it has next smallest distance of 15.54 from query

points and also covers QK. Thus, G = {t1, t3} covers all

the query keywords and has its TSQD(G, q) value as 30.92.

Hence, the algorithm stops iterating over trajectories and

returns the trajectory cover G as the result.

C. Greedy algorithm (GA)

1) Promising Value Filter and Its Efficient Implementa-

tion: Like the baseline KA and LA algorithms, GA also

filters out trajectories not having any query keyword. How-

ever, unlike the baseline algorithms, which optimize only

one dimension, either spatial or textual, for the remaining

candidate trajectories, GA introduces two novel filters: the

promising value filter and the lower-upper bound filter. We

compute the promising value for each candidate trajectory

using both spatial and textual similarity of the trajectory with

respect to the user query q. Then we sort all the candidate

trajectories by the increasing order of their promising values.

For our running example (Figure 1), GA computes CT

as G = t2 with a TSQD(G, q) value 22.12. It can be

seen that CT computed by GA is compact and spatially

close, compared to KA and LA. For example, KA algorithm

computes compact CT but with high TSQD value.

Definition 6: Promising Value (PValue) Given a user

query q, the promising value of a trajectory t is defined

as a ratio of its spatial distance from the query points q.L
to the number of new query keywords it covers with respect

to q:

PV alue(t, q) =
TQD(t, q)

|TQK(t, q) ∩ QK|

Here QK is the set of query keywords not yet covered by

the trajectories in the partially computed trajectory cover G,

i.e., QK = q.K − TSQK(G).
The notion of PV alue allows search for a smallest set

of trajectories covering more query keywords even if they

might be at slightly farther distances from the query points.

A trajectory with the minimum PV alue is considered as the

most promising trajectory in the candidate set of trajectories

to be included in the CT of q.

The naive approach for employing the promising value

filter is to compute the PV alue for every trajectory in

the trajectory database D and sort them according to the

increasing order of their PV alue. Then we can compute

CT by examining the most promising trajectory t every time

in a greedy manner to compute the maximum coverage of

query keywords. When the size of the trajectory database

D is large, this approach is not scalable due to its large

computation cost. Therefore, we design an efficient approach

by using a lower bound lb and upper bound ub of promis-

ing values. Conceptually lb defines the minimum expected

Pvalue of a trajectory and ub defines the maximum Pvalue
of any trajectory. A trajectory with its lb value greater than

the ub value can be classified as non-relevant trajectory.

We create three data structures, namely R-tree, a global

heap H and hash table C in our algorithm. An R-tree

indexes trajectories in database D to enable efficient search

of nearest trajectory places from each of the query points

q.li. The heap H controls the schedule of trajectory places

retrieval for given query points. Each entry in the heap

is a quadruple (key, trajectories, q.li, d); where q.li is a

query point for which next nearest place say pj at distance

d is retrieved from the R-tree, and trajectories is a list

of trajectories passing through pj . The key value key is

computed as the ratio of spatial distance d to the maximum

number of query keywords a trajectory in the trajectory



list covers. As an example, if one of the places pj gets

returned from the R-tree for a query point ql with a distance

value d, and t is a trajectory passing through pj has x
number of query keywords not yet covered by the current

trajectory cover G, then the key value for t for query point

ql will be d/x. The hash table C stores the computed

trajectories distances. Each time a entry with the minimum

key is removed from the global heap H , it is stored in C
and H is replenished with next nearest location distance

of the corresponding query point. Therefore, C will have

some trajectories with their partially computed TQD value,

and some trajectories with their fully computed TQD value

called as partially-explored and fully-explored trajectories,

respectively. The upper bound ub is the minimum PV alue
of fully-explored trajectories. The lower bound lb is defined

as the minimum estimated Pvalue for any trajectory in

partially-explored or unexplored categories. Any partially-

explored trajectory which have its lb more than the upper

bound (ub) can not be a promising trajectory.

Property 1: For a given user query q, and a global heap

H , the following equation for lower bound lb defines the

actual lower bound for any trajectory t.

lb(t) =
∑

i

Dist(q.li, t)

|q.K ∩ t.K|

Dist(q.li, t) = C(t)[q.li] if the hash table C has an

entry of t for query point q.li, and Dist(q.li, t) = H(q.li)
otherwise. H(q.li) denotes the current distance value for

query point q.li in heap H .

Proof: Let t.pj be a place in trajectory t at the minimum

distance from a query point q.li. Now, if t.qj is not present

in C then Dist(q.li, t.pj) ≥ H(q.li), since elements from

the global heap H are extracted out in non-decreasing order

of distance. Similarly, if C has a entry for query location

t(q.li), then C(t)[q.li] = Dist(q.li, t.pj). As q.K ∩ t.K is

the maximum number of query keywords that a trajectory

can cover, i.e. t.K ⊇ TQK(t, q), the formula given above

defines the minimum PV alue for t.

2) Promising Filter-based Greedy Algorithm: Algorithm

3 presents our proposed GA approach. We first initialize

our variables G (trajectory cover), H (global heap ), and C
(candidate set) with their initial values (lines 1-3). For our

example figure 1, after line 3 of the algorithm we will have

H = [ ], G = {}, and C = [ ]. The lb and ub initial values

will be ∞ as none of the trajectory has been accessed yet.

Lines 4-6 in the algorithm show how an entry for heap is

prepared and inserted. In our example, after completion of

retrieval of the nearest places for each of the query points

from R-tree (lines 4-6), the state of H will change to H =
[(0.235, t2, q1, 1.41), (0.705, t3, q2, 2.82), (0.56, t3, q4, 2.24),
(0.94, t1, q3, 2.82)].

The trajectory cover is computed in lines 7-17 of the

Input: D: Trajectory Data
q: (K,L)

Output: G: Trajectory cover

1 G = φ ;
2 QK = q.K ;
3 Initialize global heap H and a candidate trajectory set C ;
4 for (q.li ∈ q.L) do
5 TL = A list of trajectories passing through pj at the

shortest distance d from q.li ;
6 Insert tuple (key, TL, q.li, d) in heap H, where

key = min
i

( d
|ti.k∩QK|

), ti ∈ TL;

end
7 repeat
8 Extract minimum key value tuple < key, TL, q.lj , d >

from H;
9 foreach t ∈ TL do

10 if (d < C(t, q.lj)) then
11 C(t, q.lj) = d;

end
end

12 TL = A list of trajectories passing through pj at the
shortest distance d from q.lj ;

13 Insert tuple (key, TL, q.lj , d) in heap H;
14 while (q.K ⊃ TSQK(G) and 6 ∃t′, t′.lb < ub) do
15 G = G ∪ t, where PV alue(t, q) = ub ;
16 Remove t from C;
17 QK = QK − t.K ;

end
until (q.K ⊂ TSQK(G));

18 return G
Algorithm 3: Greedy Algorithm

algorithm. As mentioned earlier, C is a hash table data

structure. It uses trajectory-id as a key value and an

array of size equal to the number of query points as its

element value. C(t, q.li) denotes the spatial distance of

the nearest valid place of t. Whenever we remove an

entry from the global heap H (line 8), we update the

corresponding entry in C with the distance value d if it is

not yet present there in C (lines 9-11). We also replenish

the global heap with the next nearest distance value of the

corresponding query point (lines 12-13). For our example,

in the first iteration of the repeat loop of line 7 when we

reach to line 13, we will have C = (t2 : [(q1, 1.41)]),
as the place p21 returned by q1 has the minimum key

value of 0.235. Now, the value of H becomes H =
[(0.56, t3, q4, 2.24), (0.705, t3, q2, 2.82), (0.94, t1, q3, 2.82),
(0.743, t1, q1, 2.23)]. The ub remains unchanged as there

is still no fully-explored trajectory in C, whereas lb(t2)
becomes lb(t2) = (1.41 + 2.82 + 2.82 + 2.24)/5 = 1.858.

In this iteration the lines 15-17 will not be executed as

ub > lb(t2).

Finally, when there is no trajectory in partially-explored or

unexplored category with its lb value less than the ub value,

a trajectory with the current ub value is declared as the most

promising trajectory and is included in the trajectory cover

G (lines 14-15). After a trajectory t is included in G (line

16), the query keywords that remain yet to be covered get



reduced (line 17). Set G is returned at the output, whenever

TSQK(G) covers all the query keywords (line 18). In

our example case (Figure 1), trajectory cover G includes

trajectory t2 first even though trajectory t3 becomes fully-

explored earlier than t2. This is due to the reason that lb(t2)
has value 2.79 which is smaller than the ub value 3.845 as

currently set by t3. Trajectories t1 and t4 get their lb more

than the ub as set by t3 and hence not analyzed further and

ruled out for inclusion in G. Trajectory t2 covers all the

query keywords, hence algorithm returns G = {t2} as a

trajectory cover with TSQD value of 22.12.

IV. EXPERIMENTAL EVALUATION

Datasets: We have conducted extensive experiments to

evaluate the proposed methods. The synthetic trajectory

datasets D1 and D2 used for experimental purpose are

derived from trajectory data and geo-spatial locations re-

spectively, by annotating the keywords with them. The

dataset D1 has been generated from the TDrive project

data. The trajectories in D2 are generated by distributing

geo-spatial locations (of Flickr images) in each trajectory

such that the number of location vs trajectories follows

Gaussian distribution. Further, keywords are assigned to

locations using Gaussian Distribution whereas locations to

keywords assignment follows Power Law Distribution. Table

I describes some useful parameters (| K | = number of

keywords, | L | = number of locations, | D | = number

of trajectories in dataset, L/K = number of locations per

keyword, K/L = number of keywords per location and ATL
= Average Trajectory Length) for datasets D1 and D2.

DataSet | K | | L | | D | L/K K/L ATL

D1 500 5500 1165 406 37 250

D2 250 39075 200000 535 3 20

Table I: Description of Datasets

Experimental Setup: We have defined four different

classes of queries on the basis of popularity of keywords and

locations i.e., Popular Locations Popular Keywords (PP),

Unpopular Locations Popular Keywords (UP), and Popular

Locations Unpopular Keywords (PU), and Unpopular Loca-

tions Unpopular Keywords (UU). A keyword is defined as

popular if frequency of number of locations a keyword is

associated with, is more than the average number of loca-

tions associated with a keyword in the data set. Similarly, a

location is popular if frequency of keywords associated with

that location is more than the average number of keywords

associated with a location in the data set. We have generated

different sizes of queries for each class.

Evaluation: We have defined three evaluation metrics:

• group distance: describes the quality of the query result

in terms of spatial distance from query locations.

• average execution time: measures the actual clock time

an algorithm takes to evaluate a query.

• group size: defines the compactness of a trajectory

cover i.e., a CT with small size is preferable over a

CT with large size.

We have created 100 different query instances for each

query type and have reported the average value for each

performance metric. The experiments are conducted on a

PC with Intel Core-i3 CPU 2.10G Hz and 4.00 GB RAM.

The operating system is Ubuntu11.04. All the algorithms are

implemented in Java on Eclipse 3.5.2 platform with JDK

1.6.0 24.

A. Results

Figure 2: Effect of Query Type on Group Distance (Dataset

TDrive)

Figure 3: Effect of Query Type on Group Distance (Dataset

Flickr)

1) Effect of Query Type on Group Distance (TSQD):

Our experimentation results (Figures 2 and 3) show that the

performance of Greedy algorithm (GA) is always better than

both location algorithm (LA) and keyword algorithm (KA)

in both the datasets. However, in case of dataset D1, we

observe that the difference between group distance returned

by GA is not much as compared to group distance returned

by other two naive approaches. This is because of the reason

that dataset D1 is very compact and ATL is also large. For

dataset D2, KA clearly performs worst and LA returns same

group G as GA quite often. This is due to the number of

keywords per location is small in case of D2. However, our



next graphs for metric group size show GA always better

than LA.

Figure 4: Effect of Query Type on Computation Time

(Dataset TDrive)

Figure 5: Effect of Query Type on Computation Time

(Dataset Flicker)

2) Effect of Query Type on Computation Time: Experi-

mental results (Figures 4 and 5) show that the computation

time overhead for query evaluation using GA is minimal as

compared to LA and KA algorithm. The worst case overhead

for D1 dataset of GA is 4 seconds as compared to LA.

On the other hand the worst case overhead for dataset D2
is around 2.0 seconds for query type UP64. This is due

to the reason that GA analyzes more candidate trajectories

before including a trajectory in G. The number of candidate

trajectories is more in case of dataset D2, because average

number of keywords per location is 3 (From table I). The KA

computation time is always very small but its performance

in terms of group distance is very poor as also seen in our

previous graph for metric group distance (Figure 3).

3) Effect of Query Type on Group Size: (Figures 6 and

7) shows experimental results for group size metric. GA

algorithm always performs better than LA algorithm. On

the other hand KA out performs both LA and GA in group

size. It can be seen in most of the cases KA returns single

trajectory group in TDrive dataset. This is due to the reason

that KA algorithm prefers trajectories on the basis of activity

covered by a trajectory only. Since, TDrive dataset is dense

(K/L is 37 and ATL is 250) therefore we obtain trajectory

cover of size one in most cases for KA. On the other hand

KA performs very poorly for metric group distance.

Figure 6: Effect of Query Type on Group Size (Dataset

TDrive)

Figure 7: Effect of Query Type on Group Size (Dataset

Flicker)

B. Remarks

We have shown that GA algorithm consistently performs

better as compared to the baseline algorithms KA and LA,

although LA appears to perform equally well in case of

sparse trajectory data for group distance metric but the

resulting set of trajectories produced by LA always have

many more trajectories in CT than that of GA, showing

that GA is a much better approximation algorithm for the

trajectory cover problem. Similarly, KA appears better in

terms of group size and computation time, but the trajec-

tories produced by KA are often at far distances from the

query points compared to that of GA, showing the lack of

maximizing spatial relevance in KA.

V. RELATED WORK

The most relevant research to this work is trajectory

retrieval based on spatial proximity or based on both spatial

and textual relevance. The work in [2] finds the top-k
trajectories with the minimum aggregated distance from

the set of query points. However, their work focuses on

trajectory queries without any textual data. [3] is one of the

first work on searching trajectories for trip recommendation.

Their algorithm finds the trajectory having both spatial

closeness and higher textual relevance with respect to a

query (i.e., set of locations and keywords). However, their

algorithm often returns many more trajectories since they

treat trajectories as independent and they only optimize

the spatial and textual relevance on per trajectory basis.



In contrast, our promising value based Greedy algorithm

returns the trajectory cover with respect to a query, i.e.,

the smallest subset of trajectories, which maximizes textual

relevance and minimizes spatial proximity on per trajectory

group.

A lot of work has been done for indexing spatial temporal

data [5], [6], [7], [8], [9]. These indexes help to retrieve k
nearest neighbors or a set of objects within a given area

efficiently. They also support retrieving trajectories which

follows certain complex pattern [10], [11]. A lot of work

has also been done on trajectory clustering[12], [13], [14],

[15]. These work deal with only spatial data and do not

consider textual dimension at all.

There have also been work on indexing of trajectory data

e.g., a signature file-based index structure (IR2 − tree)

[16] that supports spatial-keyword queries retrieving a set

of spatial objects covering the query keywords; a hybrid

index structure integrating R∗− tree and bitmap index [17]

that also supports retrieval of spatial objects having a set

of keywords; a hybrid index structure integrating R − tree
and inverted index (IR − tree) [18] that supports retrieval

of top-k rank trajectories for a given location and a set of

keywords; a Spatial Inverted Index structure [19] organizing

spatial objects related to each keyword separately using

R− tree [20] and supports collective spatial keyword query

[1] to retrieve spatially closest objects covering the query

keywords; and a hybrid index structure integrating B+−tree
with spatial location codes derived from location coding

mechanism (Bck − tree) [21], which supports retrieval of

top-k trajectories covering all the query keywords that are

closest to the given query location. These indexes can be

used to search CT faster and is complementary to our work.
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VII. CONCLUSIONS AND FUTURE WORK

We have introduced the notion of trajectory cover and

showed that even though the trajectory cover problem is

NP hard, we can have an efficient Greedy algorithm for

processing trajectory cover queries. We introduce a novel

promising value filter and a fast implementation of the

filter using the expected lower bound and upper bound of

promising values. This optimization allows us to prune out

irrelevant trajectories that do not contribute to the trajectory

cover of the query prior to the CT computation. We conduct

an extensive experimental study on different datasets and

show that Greedy approach performs better than the two

baseline approaches in terms of quality and computation

time. We are interested in exploring trajectory index based

optimization in the future work and we are also interested

in developing scaling techniques to allow our GA algorithm

to run over much larger set of trajectories.
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K. Nørvåg, “Efficient processing of top-k spatial keyword
queries,” in SSTD, 2011, pp. 205–222.

[20] D. Papadias, P. Kalnis, J. Zhang, and Y. Tao, “Efficient olap
operations in spatial data warehouses,” in SSTD, 2001, pp.
443–459.

[21] G. Cong, H. Lu, B. C. Ooi, D. Zhang, and M. Zhang,
“Efficient spatial keyword search in trajectory databases,”
CoRR, vol. abs/1205.2880, 2012.


