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Abstract— In this paper, we propose an algorithm to identify will be of paramount importance [2].

the parameters of a multi-stage digital predistorter (PD). In A cascaded multi-stage structure has been frequently used
multi-stage PD, digital predistortion (DPD) is implemente in i jitarature for DPD modeling. In this multi-stage strugu

two or more stages. Using the proposed algorithm each stagé o . . . .

the multi-stage PD can be identified separately by taking ind one or more Ilne_ar time invariant (I,‘TI) ‘_systems are cas-
account the contribution of all other stages. The algorithmis ~caded with a static memoryless nonlinearity [3]. One of the
iterative and shown to converge after few system-level itations. most used model to implement this multi-stage structure is
Through system level simulation, it has also been demonstied  the Wiener-Hammerstein (W-H) model, also called three-box
that the proposed algorithm can be successfully used to idéfy  4qe|. |n this model, an LTI system is connected in tandem

the parameters of two-box, three-box or multi-stage memory ¢ tati i it hich i . ted t LTI
polynomial (MP) predistorters. The performance of the proposed 0 a stauc nonfinearity which 1S again connected 1o a

algorithm is evaluated by measuring the adjacent channel pser System as shown in [4]. Two-box models such as Wiener
ratio (ACPR) and error vector magnitude (EVM) at the output  model in which an LTI system is connected in tandem to

of power amplifier (PA) when a Long Term Evolution-Advanced g static nonlinearity and Hammerstein model in which static
(LTE-Advanced) signal is applied at the input. = nonlinearity is connected in tandem to a LTI system are
Index Terms— Multi-stage digital predistortion, indirect learn- . .
ing architecture, high power amplifiers special cases Qf the W-H model,.have also been used in [5],
[6]. To generalize cascaded multi-stage models, one can use
for each stage a memory polynomial (MP) as given in [7].
Other configurations like generalized MP (GMP) [8] or 2D-
New transmission formats such as wideband code divisidemory selective polynomial (2D-MSP) proposed in [9] can
multiple access (WCDMA) or orthogonal frequency divisiomlso be used to model each stage. Note that, LTI systems are
multiplexing (OFDM), with high peak-to-average power oati special cases of the MP model considering only the first order
(PAPR) and wide bandwidth, are increasingly being deployednlinearity [7].
for broadband wireless communication systems such as UniHowever, one of the major problems associated with identi-
versal Mobile Telecommunications System (UMTS), Lonying the parameters of a cascaded multi-stage structure is
Term Evolution-Advanced (LTE-Advanced) etc.. Howevethe fact that the internal signals interconnecting the esag
when nonlinear high power amplifiers (PAs) are excited yre inaccessible to measurements [10], [11]. Hence complex
such signals it causes severe distortion on the transmiteet tedious parameter estimation algorithms are usuatigl us
signal resulting in adjacent channel interference (spece- to identify the parameters of each stage of a multi-stage
growth beyond the signal bandwidth) and in-band distorticstructure [5], [12]. These estimation algorithms are diffic
(error vector magnitude degradation) [1]. To minimize th#o implement and have low correction capability and thus
nonlinear distortions, it is desirable to operate the PAt# ithe usage of multi-stage structures for DPD implementation
linear region i.e. with huge back off, but in this case, efficly is restricted.
has to be compromised. In this paper, we have tried to overcome the above drawback
Many techniques for linearizing power amplifiers havey proposing a new algorithm to identify the parameters of
been proposed in literature [1]: feedback, feedforward amdulti-stage PD [13]. In the proposed algorithm, each stage
predistortion. However digital predistortion (DPD) withsi of multi-stage PD is identified separately by taking into
implementation flexibility and potential to achieve highrpe account the contribution of all other stages. The algorithm
formance improvement with significantly lower cost has beas iterative and converges after few system-level iteretio
gaining widespread popularity. Consequently, DPD has beelt has also been demonstrated through simulation resuts th
frontrunner in solution for linearization of PAs in futureutti-  the proposed algorithm can be used for identification of two-
standard multi-band cognitive radios where reconfiguitgbil box, three-box or multi-stage MP PD. The performance of the

I. INTRODUCTION



Pre_'nvers,%: PD Ill. PROPOSED IDENTIFICATION ALGORITHM
u(n) 2(n) | y(n)
The block diagram of the proposed identification algorithm
. is shown in Fig. 2. The proposed identification algorithm
relies on the idea of gradually linearizing the PA. Similar t
single stage PD identification using ILA, LS method is used
identify the parameters of each stage of the multi-stage/b.
start by identifying a first stage which partially compeesat
P the nonlinearity and/or memory of the PA. Then we identify
arameters . . . .
| estimation the second stage which improves the linearity or compensate
for the residual distortion of the new system constituted by
Fig. 1. Indirect Learning Architecture - ILA. the cascade of the first stage and the PA, then a third one
to linearize the cascade of the second and first stages with
the PA, etc.. Thus, theP, stage is identified to improve
proposed algorithm is evaluated in terms of ACPR and EVithe performance of the cascade of tie 1,..., P, stages
improvements using an LTE-Advanced signal. Furthermonjth the PA. The complexity of the identification algorithm,
the impact of noise on the identification of the multi-stag® Pwhich depends on the number of parameters, will substntial
using the proposed algorithm has also been investigated. decrease since only one stage is processed by iteratios. Thi
The remainder of this paper is organized as follows. Sectigain in complexity reduction is at the expense of the time of
Il gives the brief description related to indirect learnenghi- convergence, which may be longer.
tecture (ILA). Section Il presents the proposed identtfama It is important to note that after the insertion of last stage
algorithm for multi-stage PD. In Section IV simulation résu we have to re-identify the other stages as the behavior of
for proposed algorithm is presented and discussed. Finalhe system might have changed due to the modification of
Section V concludes the paper. In the following, the vectotke input waveform caused by the insertion of new stages
and matrices are denoted by bold lowercase lettersa(egnd [14], [15]. For ex. onceP; stage is identified, for subsequent
bold uppercase letters (egl) respectively. The superscriptsidentification of stageP;.,, it will be considered as being
()*, ()T and(.)f denote the conjugate, the transpose and tpart of a newly constituted system (staBe P;_1, ..., P1, PA)

Copying .
parameters

conjugate transpose, respectively. as shown in Fig. 2. However once last stage is implemented,
all the prior stages need to be re-identified. This proce#is wi
[I. INDIRECT LEARNING ARCHITECTURE(ILA) optimize the identification of all stages and achieve the bes

In this section we briefly discuss the identification OFossible solutioh by simultaneously considering contribution
rom all the stages. Hence i/ is the total number of

parameters of a single stage PD using ILA. . d at th b X ith
A single stage PD identification using ILA is shown in Fig.Stages’ stagé; is processe at theM ks +4)™ iteration, W't.
0,1,2,3,... using stagedyy, ..., P,_1. As shown later in

1. A post-inverse of the PA is identified and used as a PD.lif:

the post-inverse is modeled as a MP, then its output can PE1Uation results the proposed algorithm converges éier
written as [8] system-level iterations.

The graphical description in Fig. 3 aids in explaining the
() =Y > cpmPulz(n)] (1) steps for the identification of a three-stage PD (i\&.= 3)
keK leL model using the proposed algorithm. In thet iteration, Stage

where z(n) = Y2 is the input to the post-inverse block asl is identified. In the2nd iteration, Stage is identified to
N g . o _ bptimize the performance of the cascade of Stageth the
shown in Fig. 1,gK is the index array for nonlinearity antl b P ge

. : PA. Similarly in the 3rd iteration, St is identified t
is the index array for memorys, k € K andi € L are the imilarly in the 3rd iteration, Stage3 is identified to

. optimize the performance of the cascade of Stdgasd2 with
complex coefficients andy,[2(n)] = z(n—1)|z(n—1)|*. The o o :
total number of coefficients ig — & L with X denoting the the PA. However once Stage 3 is identified and implemented,

cardinality (number of elements) of in the 4th iteration Stagd is re-identified as the behavior of

After convergence, we should haeg(n) = z(n) and hence the system might have changed due to the modification of the

= F total ber of | | input waveform caused by the insertion of Stag@®d3. This
z;z)v;ri:le(n)' or a total number of samples equaliio we identification process is continued till the cascaded tstage

PD converges to the best possible solution.
zp=2c (2)
oo o V. SIMULATION RESULTS
wherez,=[z,(1),...,2,(N)]", cis J x 1 vector containing

the set of coefficientsy, Z is N x .J matrix containing®y,[2] In this section, simulation results are presented for thoe pr
where z=[2(1),. .. z(N)]T. The least square (LS) solutionPosed identification algorithm. A Wiener-Hammerstein niode

for (2) will be

1The best possible solution here refers to the identified P@ahwhich

A (5 Ho\—15H achieves the best improvement in the performance of ACPREAfd at the
e=(272)""2" zp. 3) output of PA.



TABLE |
IDENTIFICATION OF TWO-BOX, THREE-BOX AND MULTI -STAGEMP PDUSING THE PROPOSED ALGORITHM

parameters Without DPD Two-Box PD Two-Box PD Three-Box PD Two-stage MP PD Single-stage MP PD]
(Wiener PD) (Hammerstein PD) (W-H PD)
ACPR U (dBc) -50.7 -87.8 -74.7 -89.2 -98.2 -97
ACPR L (dBc) -51.3 -86.8 -76.3 -87.0 -97.6 -96.9
EVM (%) 20.1 0.0467 0.049 0.029 0.009 0.029
Stage 1: Stage 1: Stage 1: Stage 1:
Index array for K=[0], L=[0123456] | K=[023456 8], L=[0] | K=[0], L=[0 12345 6] K=[024],L=[012 3] K=[01234567]
Nonlinearity and NA Stage 2: Stage 2: Stage 2: Stage 2: L=[012467]
M K=[0 2 4 6 8], L=[0] K=[0], L=[0123456] | Ks[0234568],L=[0] | KS[024567],L=[01246]
emory Stage 3:
K=[0], L=[0 1 23 4 5 6]

Number of Stage 1: 7 Stage 1: 7 Stage 1: 7 Stage 1: 12
Coefficients ) NA Stage 2: 5 Stage 2: 7 Stage 2: 7 Stage 2: 30 48

Stage 3: 7

Postimy. used as pre-in.: PD | k and( values as given in (1). As seen from Table I, the
u(n) nl). “(") 21(n) |PA y(n) proposed algorithm can be used to identify the parameters of
T two-box, three-box as well as multi-stage MP predistort&ls
the multi-stage PD are able to achieve sufficient improvemen
in ACPR and EVM at the output of PAHowever, the multi-
stage MP PD outperforms all the other PDs. Single stage MP
PD achieves approximately same ACPR performance as multi-
stage MP PD but requires large set of coefficients. It can also
be seen from Table | that multi-stage MP PD requires lower
non-linearity order and memory depth and as a consequence
less number of coefficients compared to single-stage PD.

Fig. 2. Proposed identification algorithm for multi-stage. P Wiener PD and W-H PD are good Compromise with fewer
‘ number of coefficients and sufficient improvement in ACPR
= > and EVM performance at the output of PA.
0 T T T T
77777 - -0 , ‘ , ,
% _30 Wiener PD : il
Fig. 3. Graphical illustration of the algorithm with thretage PD. S o Hammestein PO i
3 Output w/o DPD
g -50r g
é’ 6ol Single-Stage MP P[J
as given in [7] is used as a reference PA for simulation. The PA & -
is driven by an LTE-Advanced signal with bandwidth MHz, § -80
sampling frequencyt22.88 MHz and peak-to-average power = -oor
ratio (PAPR) of approximately1dB. During the simulation -1oor ;
the nonlinearity order and/or memory depth of each stage of B B ) 0 20 30

0 1
Frequency (MHz)

multi-stage PD are varied till the multi-stage PD achieves t
best p.OS.SIble. performance. Morgover _tO F)bserve th? Imp'@@. 4. The spectral regrowth suppression performance Wiéner PD,
of realistic noise floor on the PD identification for multage Hammerstein PD, W-H PD, multi-stage MP PD and single stageR\dP
PD, we also add low level white Gaussian noise at the input of

pOSt-inverse identiﬁcation blOCkS. The performance W[DiBB F|g 4 ShOWS the spectra' regrowth Suppression performance

is demonstrated for signal-to-noise ratio (SNR) of 30dB.  \jth the proposed identification algorithm for Wiener PD,
Table | shows the results for the identification of twoHammerstein PD, W-H PD, two-stage MP PD and Sing|e stage

box (Wiener and Hammerstein PD), three-box (W-H PD) andp PD in absence of noise. As observed all the identified

multi-stage MP PD using the proposed algorithm in absengglti-stage PD are able to achieve sufficient amount of sakect

of noise. The performance of multi-stage MP PD has beesgrowth suppression. However the identified two-stage MP

demonstrated by considering two-stage MP PD. For sake @ is able to achieve the best spectral regrowth suppression

completion, results of best-performing single-stage MP Pxrformance among all the different PD, hence proving to be
is also included. ACPR U and ACPR L measures the ratifiore robust among all the different PD.

of power in adjacent upper channel and lower channel of
eqUNal_ent bandwidth W|th respect to the amount of POWET IN2Note that only the best values of ACPR and EVM over differertem-
the main channel respectivell. and L are vectors containing level iterations are reported here.



= Two-stage MP PD PD. The performance of the proposed algorithm is evaluated
—4=W-H PD by measuring the ACPR and EVM at the output of the PA
e 508 DO for an LTE-Advanced input signal. Furthermore, the impact
—eol \ of noise on the identification of the multi-stage PD using
3 the proposed algorithm is also investigated. Simulaticulis
S 70 wionoise demonstrated that two-stage MP PD outperformed all therothe
& — PD in absence of noise whereas Hammerstein PD achieved
< g0t best ACPR improvement in presence of noise.
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Fig. 6. EVM performance: System level Iterations
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Fig. 5 and Fig. 6 shows the ACPR U and EVM performance

of multi-stage PDs with the proposed identification aldorit

for different system level iterations with (SNR=30dB) and(®
without (w/0) noise. As observed the identification algamit

for all the multi-stage PD converges to the best possible
solution after2 — 3 system level iterations. However it is quite 9
obvious that two-stage MP PD outperforms all the other PD
in absence of noise. Two-stage MP PD converges after 2nd
system level iteration to achieve an ACPR of approximateﬁ
-97dBc and EVM of approximately 0.02%. Hence two-stage
MP PD is able to improve the ACPR performance by aptl]
proximately 45dB in absence of noise. However, Hammerstein
PD is more robust when noise is present in the identificatigip)
process. Hammerstein PD achieves an ACPR improvement of
approximately 20dB a8rd system level iteration in presence, 5,
of noise.

V. CONCLUSION
[14]

In this paper, a parameter identification algorithm for rfult
stage PD is proposed. The proposed algorithm is shown to
identify each stage of the multi-stage PD separately and)
system level convergence can be achieved in few iterations.
The proposed algorithm is used to identify the parametars fo
Wiener PD, Hammerstein PD, W-H PD and multi-stage MP

grant agreement n° 230688.
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