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Abstract— In this paper, we propose an algorithm to identify
the parameters of a multi-stage digital predistorter (PD). In
multi-stage PD, digital predistortion (DPD) is implemented in
two or more stages. Using the proposed algorithm each stage of
the multi-stage PD can be identified separately by taking into
account the contribution of all other stages. The algorithmis
iterative and shown to converge after few system-level iterations.
Through system level simulation, it has also been demonstrated
that the proposed algorithm can be successfully used to identify
the parameters of two-box, three-box or multi-stage memory
polynomial (MP) predistorters. The performance of the proposed
algorithm is evaluated by measuring the adjacent channel power
ratio (ACPR) and error vector magnitude (EVM) at the output
of power amplifier (PA) when a Long Term Evolution-Advanced
(LTE-Advanced) signal is applied at the input.

Index Terms— Multi-stage digital predistortion, indirect learn-
ing architecture, high power amplifiers

I. I NTRODUCTION

New transmission formats such as wideband code division
multiple access (WCDMA) or orthogonal frequency division
multiplexing (OFDM), with high peak-to-average power ratio
(PAPR) and wide bandwidth, are increasingly being deployed
for broadband wireless communication systems such as Uni-
versal Mobile Telecommunications System (UMTS), Long
Term Evolution-Advanced (LTE-Advanced) etc.. However,
when nonlinear high power amplifiers (PAs) are excited by
such signals it causes severe distortion on the transmitted
signal resulting in adjacent channel interference (spectral re-
growth beyond the signal bandwidth) and in-band distortion
(error vector magnitude degradation) [1]. To minimize the
nonlinear distortions, it is desirable to operate the PA in its
linear region i.e. with huge back off, but in this case, efficiency
has to be compromised.

Many techniques for linearizing power amplifiers have
been proposed in literature [1]: feedback, feedforward and
predistortion. However digital predistortion (DPD) with its
implementation flexibility and potential to achieve high per-
formance improvement with significantly lower cost has been
gaining widespread popularity. Consequently, DPD has beena
frontrunner in solution for linearization of PAs in future multi-
standard multi-band cognitive radios where reconfigurability

will be of paramount importance [2].
A cascaded multi-stage structure has been frequently used

in literature for DPD modeling. In this multi-stage structure
one or more linear time invariant (LTI) systems are cas-
caded with a static memoryless nonlinearity [3]. One of the
most used model to implement this multi-stage structure is
the Wiener-Hammerstein (W-H) model, also called three-box
model. In this model, an LTI system is connected in tandem
to a static nonlinearity which is again connected to a LTI
system as shown in [4]. Two-box models such as Wiener
model in which an LTI system is connected in tandem to
a static nonlinearity and Hammerstein model in which static
nonlinearity is connected in tandem to a LTI system are
special cases of the W-H model, have also been used in [5],
[6]. To generalize cascaded multi-stage models, one can use
for each stage a memory polynomial (MP) as given in [7].
Other configurations like generalized MP (GMP) [8] or 2D-
Memory selective polynomial (2D-MSP) proposed in [9] can
also be used to model each stage. Note that, LTI systems are
special cases of the MP model considering only the first order
nonlinearity [7].

However, one of the major problems associated with identi-
fying the parameters of a cascaded multi-stage structure is
the fact that the internal signals interconnecting the stages
are inaccessible to measurements [10], [11]. Hence complex
and tedious parameter estimation algorithms are usually used
to identify the parameters of each stage of a multi-stage
structure [5], [12]. These estimation algorithms are difficult
to implement and have low correction capability and thus
the usage of multi-stage structures for DPD implementation
is restricted.

In this paper, we have tried to overcome the above drawback
by proposing a new algorithm to identify the parameters of
multi-stage PD [13]. In the proposed algorithm, each stage
of multi-stage PD is identified separately by taking into
account the contribution of all other stages. The algorithm
is iterative and converges after few system-level iterations.
It has also been demonstrated through simulation results that
the proposed algorithm can be used for identification of two-
box, three-box or multi-stage MP PD. The performance of the
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Fig. 1. Indirect Learning Architecture - ILA.

proposed algorithm is evaluated in terms of ACPR and EVM
improvements using an LTE-Advanced signal. Furthermore,
the impact of noise on the identification of the multi-stage PD
using the proposed algorithm has also been investigated.

The remainder of this paper is organized as follows. Section
II gives the brief description related to indirect learningarchi-
tecture (ILA). Section III presents the proposed identification
algorithm for multi-stage PD. In Section IV simulation results
for proposed algorithm is presented and discussed. Finally
Section V concludes the paper. In the following, the vectors
and matrices are denoted by bold lowercase letters (eg.a) and
bold uppercase letters (eg.A) respectively. The superscripts
(.)∗, (.)T and(.)H denote the conjugate, the transpose and the
conjugate transpose, respectively.

II. I NDIRECT LEARNING ARCHITECTURE(ILA)

In this section we briefly discuss the identification of
parameters of a single stage PD using ILA.
A single stage PD identification using ILA is shown in Fig.
1. A post-inverse of the PA is identified and used as a PD. If
the post-inverse is modeled as a MP, then its output can be
written as [8]

zp(n) =
∑

k∈K

∑

l∈L

cpmΦkl[z(n)] (1)

wherez(n) = y(n)
g

is the input to the post-inverse block as
shown in Fig. 1,K is the index array for nonlinearity andL
is the index array for memory.ckl, k ∈ K and l ∈ L are the
complex coefficients andΦkl[z(n)] = z(n− l)|z(n− l)|k. The
total number of coefficients isJ = ¯̄K ¯̄L with ¯̄X denoting the
cardinality (number of elements) ofX .
After convergence, we should havezp(n) = x(n) and hence
z(n) = u(n). For a total number of samples equal toN , we
can write

zp = Zc (2)

wherezp= [zp(1), . . . , zp(N)]
T , c is J × 1 vector containing

the set of coefficientsckl, Z is N×J matrix containingΦkl[z]
wherez= [z(1), . . ., z(N)]

T . The least square (LS) solution
for (2) will be

ĉ = (ZHZ)−1ZH
zp. (3)

III. PROPOSED IDENTIFICATION ALGORITHM

The block diagram of the proposed identification algorithm
is shown in Fig. 2. The proposed identification algorithm
relies on the idea of gradually linearizing the PA. Similar to
single stage PD identification using ILA, LS method is used
identify the parameters of each stage of the multi-stage PD.We
start by identifying a first stage which partially compensates
the nonlinearity and/or memory of the PA. Then we identify
the second stage which improves the linearity or compensate
for the residual distortion of the new system constituted by
the cascade of the first stage and the PA, then a third one
to linearize the cascade of the second and first stages with
the PA, etc.. Thus, thePi stage is identified to improve
the performance of the cascade of thePi−1, ..., P1 stages
with the PA. The complexity of the identification algorithm,
which depends on the number of parameters, will substantially
decrease since only one stage is processed by iteration. This
gain in complexity reduction is at the expense of the time of
convergence, which may be longer.

It is important to note that after the insertion of last stage
we have to re-identify the other stages as the behavior of
the system might have changed due to the modification of
the input waveform caused by the insertion of new stages
[14], [15]. For ex. oncePi stage is identified, for subsequent
identification of stagePi+1, it will be considered as being
part of a newly constituted system (stagePi, Pi−1, ..., P1, PA)
as shown in Fig. 2. However once last stage is implemented,
all the prior stages need to be re-identified. This process will
optimize the identification of all stages and achieve the best
possible solution1 by simultaneously considering contribution
from all the stages. Hence ifM is the total number of
stages, stagePi is processed at the(Mk+ i)th iteration, with
k = 0, 1, 2, 3, ... using stagesPM , ..., Pi−1. As shown later in
simulation results the proposed algorithm converges afterfew
system-level iterations.

The graphical description in Fig. 3 aids in explaining the
steps for the identification of a three-stage PD (i.e.M = 3)
model using the proposed algorithm. In the1st iteration, Stage
1 is identified. In the2nd iteration, Stage2 is identified to
optimize the performance of the cascade of Stage1 with the
PA. Similarly in the 3rd iteration, Stage3 is identified to
optimize the performance of the cascade of Stages1 and2 with
the PA. However once Stage 3 is identified and implemented,
in the 4th iteration Stage1 is re-identified as the behavior of
the system might have changed due to the modification of the
input waveform caused by the insertion of Stages2 and3. This
identification process is continued till the cascaded three-stage
PD converges to the best possible solution.

IV. SIMULATION RESULTS

In this section, simulation results are presented for the pro-
posed identification algorithm. A Wiener-Hammerstein model

1The best possible solution here refers to the identified PD model which
achieves the best improvement in the performance of ACPR andEVM at the
output of PA.



TABLE I

IDENTIFICATION OF TWO-BOX, THREE-BOX AND MULTI -STAGEMP PDUSING THE PROPOSED ALGORITHM

Parameters
Without DPD Two-Box PD Two-Box PD Three-Box PD Two-stage MP PD Single-stage MP PD

(Wiener PD) (Hammerstein PD) (W-H PD)
ACPR U (dBc) -50.7 -87.8 -74.7 -89.2 -98.2 -97
ACPR L (dBc) -51.3 -86.8 -76.3 -87.0 -97.6 -96.9
EVM (%) 20.1 0.0467 0.049 0.029 0.009 0.029

Index array for
Nonlinearity and
Memory

Stage 1: Stage 1: Stage 1: Stage 1:
K=[0], L=[0 1 2 3 4 5 6] K=[0 2 3 4 5 6 8], L=[0] K=[0], L=[0 1 2 3 4 5 6] K=[0 2 4], L=[0 1 2 3] K=[0 1 2 3 4 5 6 7]

NA Stage 2: Stage 2: Stage 2: Stage 2: L=[0 1 2 4 6 7]
K=[0 2 4 6 8], L= [0] K=[0], L= [0 1 2 3 4 5 6] K=[0 2 3 4 5 6 8], L=[0] K=[0 2 4 5 6 7], L= [0 1 2 4 6]

Stage 3:
K=[0], L=[0 1 2 3 4 5 6]

Number of
Coefficients (J)

Stage 1: 7 Stage 1: 7 Stage 1: 7 Stage 1: 12
NA Stage 2: 5 Stage 2: 7 Stage 2: 7 Stage 2: 30 48

Stage 3: 7
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Fig. 2. Proposed identification algorithm for multi-stage PD.
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Fig. 3. Graphical illustration of the algorithm with three-stage PD.

as given in [7] is used as a reference PA for simulation. The PA
is driven by an LTE-Advanced signal with bandwidth10 MHz,
sampling frequency122.88 MHz and peak-to-average power
ratio (PAPR) of approximately11dB. During the simulation
the nonlinearity order and/or memory depth of each stage of
multi-stage PD are varied till the multi-stage PD achieves the
best possible performance. Moreover to observe the impact
of realistic noise floor on the PD identification for multi-stage
PD, we also add low level white Gaussian noise at the input of
post-inverse identification blocks. The performance with noise
is demonstrated for signal-to-noise ratio (SNR) of 30dB.

Table I shows the results for the identification of two-
box (Wiener and Hammerstein PD), three-box (W-H PD) and
multi-stage MP PD using the proposed algorithm in absence
of noise. The performance of multi-stage MP PD has been
demonstrated by considering two-stage MP PD. For sake of
completion, results of best-performing single-stage MP PD
is also included. ACPR U and ACPR L measures the ratio
of power in adjacent upper channel and lower channel of
equivalent bandwidth with respect to the amount of power in
the main channel respectively.K andL are vectors containing

k and l values as given in (1). As seen from Table I, the
proposed algorithm can be used to identify the parameters of
two-box, three-box as well as multi-stage MP predistorters. All
the multi-stage PD are able to achieve sufficient improvement
in ACPR and EVM at the output of PA2. However, the multi-
stage MP PD outperforms all the other PDs. Single stage MP
PD achieves approximately same ACPR performance as multi-
stage MP PD but requires large set of coefficients. It can also
be seen from Table I that multi-stage MP PD requires lower
non-linearity order and memory depth and as a consequence
less number of coefficients compared to single-stage PD.
Wiener PD and W-H PD are good compromise with fewer
number of coefficients and sufficient improvement in ACPR
and EVM performance at the output of PA.
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Fig. 4. The spectral regrowth suppression performance withWiener PD,
Hammerstein PD, W-H PD, multi-stage MP PD and single stage MPPD

Fig. 4 shows the spectral regrowth suppression performance
with the proposed identification algorithm for Wiener PD,
Hammerstein PD, W-H PD, two-stage MP PD and single stage
MP PD in absence of noise. As observed all the identified
multi-stage PD are able to achieve sufficient amount of spectral
regrowth suppression. However the identified two-stage MP
PD is able to achieve the best spectral regrowth suppression
performance among all the different PD, hence proving to be
more robust among all the different PD.

2Note that only the best values of ACPR and EVM over different system-
level iterations are reported here.
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Fig. 5 and Fig. 6 shows the ACPR U and EVM performance
of multi-stage PDs with the proposed identification algorithm
for different system level iterations with (SNR=30dB) and
without (w/o) noise. As observed the identification algorithm
for all the multi-stage PD converges to the best possible
solution after2−3 system level iterations. However it is quite
obvious that two-stage MP PD outperforms all the other PD
in absence of noise. Two-stage MP PD converges after 2nd
system level iteration to achieve an ACPR of approximately
-97dBc and EVM of approximately 0.02%. Hence two-stage
MP PD is able to improve the ACPR performance by ap-
proximately 45dB in absence of noise. However, Hammerstein
PD is more robust when noise is present in the identification
process. Hammerstein PD achieves an ACPR improvement of
approximately 20dB at3rd system level iteration in presence
of noise.

V. CONCLUSION

In this paper, a parameter identification algorithm for multi-
stage PD is proposed. The proposed algorithm is shown to
identify each stage of the multi-stage PD separately and
system level convergence can be achieved in few iterations.
The proposed algorithm is used to identify the parameters for
Wiener PD, Hammerstein PD, W-H PD and multi-stage MP

PD. The performance of the proposed algorithm is evaluated
by measuring the ACPR and EVM at the output of the PA
for an LTE-Advanced input signal. Furthermore, the impact
of noise on the identification of the multi-stage PD using
the proposed algorithm is also investigated. Simulation results
demonstrated that two-stage MP PD outperformed all the other
PD in absence of noise whereas Hammerstein PD achieved
best ACPR improvement in presence of noise.
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