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Abstract
Distance metric learning has proven to be very successful in various problem do-

mains. Most techniques learn a global metric in the form of a n× n symmetric positive
semidefinite (PSD) Mahalanobis distance matrix, which has O(n2) unknowns. The PSD
constraint makes solving the metric learning problem even harder making it computation-
ally intractable for high dimensions. In this work, we propose a flexible formulation that
can employ different regularization functions, while implicitly maintaining the positive
semidefiniteness constraint. We achieve this by eigendecomposition of the rank p Ma-
halanobis distance matrix followed by a joint optimization on the Stiefel manifold Sn,p
and the positive orthant Rp

+. The resulting nonconvex optimization problem is solved by
employing an alternating strategy. We use a recently proposed projection free approach
for efficient optimization over the Stiefel manifold. Even though the problem is noncon-
vex, we empirically show competitive classification accuracy on UCI and USPS digits
datasets.

1 Introduction
Distance metric learning has received a lot of attention in the last decade owing to its success
in many application domains like computer vision, text analysis, information retrieval, clas-
sification and clustering. The default Euclidean distance equally weights each dimension in
the input space and is often inadequate to capture the semantics of the data. Metric learning
techniques use training examples to learn a distance function that is semantically consistent
with the data. The most commonly used approach is to learn a Mahalanobis distance based
metric characterized by a symmetric positive semidefinite (PSD) matrix. This popularity
is mainly due to their simple formulations and ease of extensibility to nonlinear spaces via
kernelization.

Learning the Mahalanobis distance amounts to learning a transformed input space that
ensures that similar points are closer, while dissimilar points are farther apart. The notion of
similarity and dissimilarity is based on the semantics of the application. Many popular tech-
niques [7, 9, 11, 12] set up the metric learning problem in a constrained optimization frame-
work. The imposed constraints capture the intuition that same class point pairs have small
distances, while sample points from different classes have a large distance. The challenge
in solving such problems is efficient projection on to the constraint space while maintaining
the positive semidefiniteness of the Mahalanobis distance matrix.
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Metric learning has been solved using conventional solvers like SDPT3 [19] or SeDuMi
[18] for semidefinite programs (SDPs), but several specialized algorithms have been pro-
posed to circumvent their high complexity (O(n6.5)). These metric learning algorithms can
broadly be classified into two categories: one that perform a projection onto Sn

+, the set of all
n×n positive semidefinite matrices and the other that take a projection free approach. These
specialized algorithms scale better than generic SDP solvers, however the time and memory
requirements often become prohibitive for large-scale data.

Techniques that rely on projection on to Sn
+ like [12, 20, 22], usually require an eigen-

decomposition or SVD in each iteration resulting in an additional cost of O(n3). Projection
free approaches like [7, 9, 11] use special regularization functions leading to updates that
guarantee positive semidefiniteness. In this paper, we explore a projection free approach that
permits the flexibility to use different regularization functions.

The remainder of the paper is organized as follows. In Section 2, we discuss recent
related work in the area of metric learning. We introduce the notation and some preliminaries
in Section 3 followed by the details of the proposed method in Section 4. The experimental
results are presented in Section 5 and we conclude with a discussion and future directions in
Section 6.

2 Related Work
Due to the large body of work on metric learning, a comprehensive survey of existing tech-
niques is out of the scope of this paper. We therefore restrict the discussion in this section to
important developments in metric learning that are relevant in the context of our work. For
a more complete view of research in metric learning, we encourage the interested reader to
see the recent survey articles [3, 4, 10].

A convex optimization based approach for metric learning was first proposed by Xing
et al. in [22], which attempted to maximize the distance between dissimilar points while
bounding the distance between similar points. The solution was attained by a modified gra-
dient ascent algorithm that incorporated a projection on to the constraint sets. The projection
on to Sn

+ was done by clipping the negative eigenvalues at zero. Shalev-Shwartz et al. fol-
lowed this work by introducing the Pseudo-metric Online Learning Algorithm (POLA) [16],
which used rank one updates based on a single constraint at a time. Due to rank one updates,
the semidefiniteness constraint only required the smallest eigenvalue to be determined as
opposed to a full eigen-decomposition. Weinberger et al. combined the ideas of convex opti-
mization and margin maximization with k-Nearest Neighbors (kNN) and proposed the Large
Margin Nearest Neighbor (LMNN) method [20] aiming at improving performance of a kNN
classifier. Neither of these algorithms used a regularization function in the objective function
and relied on the margin maximization strategy to achieve good generalization. Additionally,
the aforementioned methods also learned a full n×n matrix limiting their scalability to data
in high-dimensional spaces.

More recent methods have focused on learning distance functions that can handle high-
dimensional input spaces. In [23], the authors add a regularization function to the convex
objective that biases the solution such that similar points in a small neighborhood lie on a
low-dimensional manifold. Law et al. [12] also use a regularization function that elegantly
incorporates explicit control over the rank of the learned Mahalanobis matrix in the objective
function. An ADMM based algorithm is proposed to learn the low-rank metric. A Frobenius
norm based regularization function is proposed in [17], where the authors show that solving
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the dual is significantly simpler. In [13], the authors design a linearized ADMM algorithm
for minimizing the trace norm regularized metric learning problem. All the methods rely
on eigen-decomposition in each iteration to ensure positive semidefiniteness of the learned
metric.

Mignon et al. [14] directly learn a linear transformation L by optimizing a generalized
logistic loss function. Without a regularizer in the objective function, the technique requires
an early stopping criterion, which is difficult to tune for each dataset [12]. Other methods [7,
9, 11] take a projection free approach and use special regularization functions like the logdet
Bregman divergence, which implicitly maintains the positive semidefiniteness constraint and
the rank of the learned Mahalanobis matrix.

Some recent work has used Riemannian geometry in context of learning similarity met-
rics. Hauberg et al. [15] propose a feature space that is modeled as a smooth manifold for
which a Riemannian metric is learned as a smoothly varying linear combination of multiple
pre-learned metric tensors. The learned feature space is guaranteed to be a metric space,
which is then exploited to perform generalized PCA and regression. In [5], the author uses
a framework for learning a non-symmetric and non-square similarity matrix. This approach
learns a more general form of similarity metric that can be used for computing similari-
ties between point pairs arising from different representations. The optimization problem is
solved by the Riemannian trust-region method over the manifold of fixed rank matrices. In
each iteration when the descent direction is accepted, a retraction operation [2] involving an
SVD is performed.

In this paper, we exploit the Stiefel manifold Sn,p and perform a joint optimization
over Sn,p×Rp

+ to learn the p orthonormal eigenvectors and nonnegative eigenvalues that
parametrizes the learned metric. We use a block coordinate descent like updates similar to
[6] for optimizing over Sn,p.

3 Preliminaries
In this section, we will introduce the notation and lay the necessary background for our
proposed work. We denote the set of data points X = {x1,x2, . . . ,xm}, with xi ∈ Rn, i =
1, . . . ,m and their corresponding class labels by `i. The n-dimensional real space is denoted
by Rn and its positive orthant as Rn

+. The space of n× n symmetric positive semidefinite
matrices is denoted by Sn

+ and Sn,p represents the Stiefel manifold, i.e., the space of n× p
orthonormal matrices. As we use pairwise constraints for metric learning, the constraint
point pairs are grouped into two sets: Cs, the set of similar pairs and Cd , the set of dissimilar
pairs. The complete set of constraints is denoted by C = Cs∪Cd .

3.1 Mahalanobis Distance Learning
Given the points xi,x j ∈ Rn, the Mahalanobis distance function between two data points is
given by

dM(xi,x j) =
√
(xi−x j)T M(xi−x j) (1)

where M ∈ Sn
+. The PSD constraint is necessary for this distance function to be a metric and

satisfy the properties of nonnegativity (dM(x1,x2)≥ 0), symmetry (dM(x1,x2) = dM(x2,x1))
and triangle inequality (dM(x1,x3)≤ dM(x1,x2)+dM(x2,x3)).
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The task of Mahalanobis distance metric learning is to learn a suitable PSD matrix M
that satisfies the distance constraints imposed on the training data. Different approaches use
training data to model distance constraints using point pairs, triplets or quadruplets. While
we use pairwise constraints, it is straightforward to adapt it to use triplets or quadruplets.
The set of similar point pairs Cs = {(i, j) : `i = ` j} can be generated by using data points
having the same class label, while the set of dissimilar pairs Cd = {(i, j) : `i 6= ` j} can be
generated from points with different class labels. Note that the pairwise constraints do not
necessarily need the class labels and can therefore be easily extracted from metadata e.g. text
tags in images or documents.

A generic metric learning problem can be written as

min
M∈Sn

+

L(M,C)+λR(M) (2)

where, L is the loss function penalizing the violated constraints, R(M) is the regularization
function used for smoothly learning M and λ is the regularization trade-off parameter. Our
formulation for metric learning is a modified version of (2)

min
w∈Rp

+,U∈Sn,p

L(UWU>,C)+λR(UWU>) (3)

where W = Diag(w). We solve for w and U by alternately optimizing over Rn
+ and the

Stiefel manifold Sn,p. The details of the algorithm are discussed in Section 4.2.

3.2 Optimization on Stiefel Manifold

The set of n× p orthornormal matrices has a Riemannian structure and is called the Stiefel
manifold, Sn,p = {U ∈ Rn×p : U>U = Ip,n≥ p} [8]. An alternate interpretation is that of a
quotient space of the orthogonal group On = {Q∈Rn×n : Q>Q = In}, i.e., Sn,p = On/On−p.
The tangent space at a point U ∈ Sn,p is given by TU = {∆ ∈ Rn×p : ∆>U =−U>∆}.

An optimization problem of the form minU∈Sn,pF(U) can be solved by moving along the
manifold in a direction that decreases the value of the objective function. Various optimiza-
tion algorithms like conjugate gradient and Newton’s method have been adapted that account
for the underlying geometry of the Stiefel manifold to maintain orthogonality constraints
during iterations[2, 8]. However, most existing algorithms for manifold optimization either
perform re-orthogonalization by SVD like matrix factorization or move along the geodesics
which usually require computation of matrix exponentials.

Wen and Jin [21] proposed an efficient constraint preserving update on the Stiefel man-
ifold based on the Cayley transformation. The key idea is to relax the constraint of mov-
ing along geodesics and use retraction [2] to smoothly map a tangent vector to manifold.
For a given point U ∈ Sn,p, let G be the gradient of F(U). A skew symmetric matrix
A = GU>−UG> is then defined to get the following update in closed form [21]

V(τ) = QX , where Q :=
(

I+
τ

2
A
)−1(

I− τ

2
A
)
. (4)

Since we seek fast updates on the Stiefel manifold, we resort to this update scheme in de-
signing our metric learning algorithm.
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4 Proposed Framework
Our formulation for metric learning is based on the premise that PSD matrices have non-
negative eigenvalues and orthogonal eigenvectors. Thus we work with the representation of
the rank p Mahalanobis matrix obtained by its eigendecomposition, Mn×n = UWU>, W =
Diag(w), where U ∈ Sn,p is the orthonormal matrix of eigenvectors, and w ∈ Rp

+ is the
vector of eigenvalues. We rewrite the metric learning problem as a joint optimization over
Sn,p×Rp

+ and use ||w||22 as the regularization function, which is equivalent to ||M||2F , the
squared Frobenius norm of M.

4.1 Problem Formulation
The convex metric learning problem with the Frobenius norm regularizer is

min
M∈Sn

+

||M−M0||2F (5)

subject to z>i jMzi j ≤ s, ∀ i, j ∈ Cs

z>i jMzi j ≥ d, ∀ i, j ∈ Cd

where the vectors zi j are the difference vectors xi−x j obtained from the constraint pairs in
C, s and d are the desired distances for constraints in Cs and Cd respectively. M0 is the initial
Mahalanobis distance matrix, often initialized to identity or the data covariance matrix. Since
the problem in (5) could be infeasible, we introduce slack variables ξ and rewrite the relaxed
problem as

min
w∈Rp

+,U∈Sn,p,ξ∈R|C|
||w−w0||22 + γ||ξ −ξ 0||22 (6)

subject to z>i jU Diag(w)U>zi j ≤ ξi j, ∀ i, j ∈ Cs

z>i jU Diag(w)U>zi j ≥ ξi j, ∀ i, j ∈ Cd

where w0 is the vector of eigenvalues of M0. The initial vector of slack variables ξ 0 of length
|C| takes values (ξ 0)i j = {s,d} based on whether i, j ∈ Cs or i, j ∈ Cd . Note that the problem
becomes nonconvex because of the domain of U, which is the Stiefel manifold. The solution
to the problem (6) yields ŵ and Û, which are used to reconstruct the Mahalanobis matrix

M̂ = ÛDiag(ŵ)Û
>

.
Intuitively, the solution to (6) gives an orthogonal basis Û of the p-dimensional subspace

of Rn, along which minimal scaling is required to satisfy the distance constraints. While we
cannot theoretically guarantee good generalization, our experiments in Section 5 show that
results are competitive with metric learned by solving (5). It should be noted that our formu-
lation (6) can be conveniently extended to kernel spaces by modifying the difference vector
zi j = ei− e j and representing the positive semidefinite kernel matrix K = UDiag(w)U>.

4.2 Algorithm
We solve the problem developed in (6) jointly over Sn,p×Rp

+ by taking an alternating mini-
mization approach. We initialize the algorithm with the Euclidean metric in a p-dimensional
space with w0 as a vector of ones and U0 as a randomly picked point on Sn,p.
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Keeping U fixed, we solve the following constrained least squares problem to update w

min
w,ξ

||w−w0||22 + γ||ξ −ξ 0||22 (7)

subject to z>i jU Diag(w)U>zi j ≤ ξi j, ∀ i, j ∈ Cs

z>i jU Diag(w)U>zi j ≥ ξi j, ∀ i, j ∈ Cd

w≥ 0, ξ ≥ 0

At the t th iteration, the KKT conditions yield the following updates for a single constraint
(i, j) ∈ C

λ
t
i j = argmin

λ t
i j

λ
t
i j yi j (z>i jU

t−1Diag(wt−1)Ut−1>zi−ξ
t−1
i j ) (8)

wt = argmin
wt

||wt −wt−1||22 +λ
t
i j yi j(z>i jU

t−1Diag(wt)Ut−1>zi j−ξ
t−1
i j )

ξ
t
i j = argmin

ξ
t
i j

−ξ
t
i j + γ||ξ t −ξ

t−1||22

where yi j = −1, if i, j ∈ Cs and yi j = 1 if i, j ∈ Cd and λi j ≥ 0 are the Lagrange multipliers.
With an updated w, we then solve for U for the same constraint pair (i, j). This is achieved
by solving the following problem over the Stiefel manifold using updates in (4)

min
Ut∈Sn,p

λ
t
i j yi j(z>i jU

tDiag(wt)Ut>zi j−ξ
t
i j). (9)

We pick another constraint and repeat the updates (8) and (9) till convergence.
Since p could be as large as n, and the updates (4) require inversion of a 2p×2p matrix

[21], we use a block coordinate descent like strategy proposed in [6] to speed up this step.
The key idea in [6] is to parametrize U by a point on a smaller Stiefel manifold. To obtain
this parametrization, a set of k ≤ n rows K, is selected from U to construct a smaller matrix
Hk×p. If I is the set of linearly independent columns of H, the parametrization is given as
[6]

U(V) =

[
VP1/2 VP1/2R
UK̄,I UK̄,Ī

]
(10)

where P = H>·,IH·,I is positive definite, the K̄ and Ī denote the complementary sets of K
and I respectively. The matrix R ∈ R|I|×|Ī| is the linear transformation that maps H·,I to
H·,Ī and the orthonormal matrix V is a point on the smaller Stiefel manifold Sk,|I|. Collins et
al. [6] show that a descent curve on Sk,|I| gets mapped to the original manifold Sn,p by (10)
in a direction of descent. As each block of k rows is updated on a smaller Stiefel manifold,
we get efficient updates for U. Moreover, this block coordinate descent type strategy can
be parallelized by using disjoint sets of rows Ki such that | ∪iKi| ≤ n. We summarize our
overall metric learning algorithm in Algorithm 1.

5 Experiments
We evaluated the proposed learning algorithm called Stiefel Manifold based Metric Learning
(SMML) on the UCI benchmark data sets and USPS digits. The learned metric is evaluated
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Algorithm 1 Metric Learning Algorithm on Sk,p (SMML)
Input: Cs :set of similar pair, Cd : set of dissimilar pairs, s, d: distance thresholds, γ:slack
parameter, K ; number of rows
Output: M: Learned Distance Matrix

1. Initialize U and w
w0: 1p×1 (vector of ones)
U0: Random Orthogonal matrix

2. Initialize slack variables
ξ 0

i, j = s for (i, j) ∈ Cs and ξ 0
i, j= d for (i, j) ∈ Cd

3. repeat for t = 1, . . .

(a) Pick a constraint (i,j) ∈ Cs or Cd

(b) Compute λ t
i, j, ξ t

i j and wt using (8)

(c) Update Ut ∈ Sn,p

i. Select k rows from (1,2, ....n)
ii. Construct Ut

K,· : k× p ⊆ Ut

iii. Find I, the set of linearly independent columns in Ut
K,·

iv. Compute V on Sk,|I| for an appropriate τ (4)
v. Update Ut with the modified k rows based on V (10)

4. until convergence

return M̂ = Û Diag(ŵ)Û
>

and compared against the Euclidean distance metric in terms of classification accuracy of
a 3-nearest neighbor classifier. We compared the running time of SMML (Algorithm 1) to
solve (6) with that of SeDuMi [18] to solve the relaxed version of (5). The experiments ran
on a laptop with a core i7 quad core processor and 8 GB RAM with only two cores enabled.
The threshold values s and d in (6) for similarity and dissimilarity constraints are set to the
1st and 99th percentile of all pairwise distances.

UCI datasets: We compared running time and accuracy of three UCI data set of varying
dimension with the convex counterpart. For high dimensional data, we optimize simultane-
ously over multiple Sk,p by selecting disjoint sets of k rows, whereas a sequential approach
is used in case of low dimension data to avoid communication overheads between parallel
threads. The optimal choice of k is found heuristically.

Figure 1: USPS digits

Citation
Citation
{Sturm} 1999



8 SHUKLA A., ANAND S.: METRIC LEARNING USING THE STIEFEL MANIFOLD

USPS digits [1]: The dataset consists of 16×16 grayscale images with 1100 images for
each digit. A few sample images from the dataset are shown in Fig. 1. The images are
represented as 256 dimensional vector formed by concatenating the columns of image. A set
of 15 labeled points from each class are selected to create 2×

(15
2

)
similarity and dissimilarity

constraints. The results for both, the UCI datasets and USPS digits is summarized in Table
1.

We used PCA to reduce the dimensionality of the data with 99%, 95% and 90% energy.
While the results for convex formulation and our proposed method are same for lower di-
mension representation with improvement in computation time. However, in case of higher
dimensions, the learning with SeDuMi solver becomes computationally expensive in terms
of memory usage with impractical run times. The accuracy and running time comparisons
are summarized in Table 2.

Table 1: Classification Accuracy and Run time Comparison Results

USPS Wine Inosphere Haberman’s Survival
# samples 11000 178 351 306
# constraints (|C|) 900 630 900 900
# dimension 256 13 34 3
# dimension after PCA 114
# Training points 150 45 30 30
# Testing points 2000 133 148 276
# classes 10 3 2 2
|K| 24 5 8 2
Classification Accuracy %
Euclidean 76.10 72.3 69.4 58
CVX 93.7 94.6 98 96.3
SMML 93.1 95 97.3 98
Computational Time(in secs)
CVX 846.3 7.2 22.6 2.3
SMML 346 13.6 39.2 7.8

Table 2: Comparison Results: USPS digits for different dimension from PCA

Run time(in mins) Accuracy(%)
PCA dimension, |K| CVX SMML Euclidean SMML/CVX

38,10 10 8.7 76 82 /83
66,22 54 17 76.7 89.4/80
152,30 - 39 79 93.7/-
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6 Conclusion
We proposed a metric learning formulation that poses a joint optimization problem over
Sn,p×Rp

+ to find the eigenvectors and eigenvalues of the learned Mahalanobis distance ma-
trix M. The objective function used was the sum of squared eigenvalues, which is equivalent
to the squared Frobenius norm of M. This formulation allows the flexibility to replace the
regularizer with any convex spectral function of M without significant changes in the solving
strategy.

We took an alternate minimization approach by iteratively updating the eigenvalues and
the eigenvectors of M to solve the ensuing nonconvex problem. We compared the proposed
method with the convex counterpart and showed competitive performance in classification
tasks. While these experiments show encouraging results with respect to accuracy and run-
ning time, the inherent nonconvexity of the problem demands a deeper theoretical analysis
that will be pursued in the future. Finally, we plan to explore the impact of other regularizers,
especially convex spectral functions like logdet or Burg entropy.

7 Acknowledgments
The authors would like to acknowledge Peter Meer, as this idea spawned when the second
author was at the Robust Image Understanding Lab, Rutgers University.

References
[1] USPS digits data set. http://cs.nyu.edu/ấLijroweis/data.html.
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