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Semi-Supervised Kernel Mean Shift Clustering
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Abstract—Mean shift clustering is a powerful nonparametric technique that does not require prior knowledge of the number of
clusters and does not constrain the shape of the clusters. However, being completely unsupervised, its performance suffers when the
original distance metric fails to capture the underlying cluster structure. Despite recent advances in semi-supervised clustering
methods, there has been little effort towards incorporating supervision into mean shift. We propose a semi-supervised framework for
kernel mean shift clustering (SKMS) that uses only pairwise constraints to guide the clustering procedure. The points are first mapped
to a high-dimensional kernel space where the constraints are imposed by a linear transformation of the mapped points. This is
achieved by modifying the initial kernel matrix by minimizing a log det divergence-based objective function. We show the advantages
of SKMS by evaluating its performance on various synthetic and real datasets while comparing with state-of-the-art semi-supervised
clustering algorithms.

Index Terms—Semi-supervised kernel clustering, log det Bregman divergence, mean shift clustering

1 INTRODUCTION

MEAN shift is a popular mode seeking algorithm, which
iteratively locates the modes in the data by maximizing

the kernel density estimate (KDE). Although the procedure
was initially described decades ago [17], it was not popular
in the vision community until its potential uses for feature
space analysis and optimization were understood [8], [12].
The nonparametric nature of mean shift makes it a powerful
tool to discover arbitrarily shaped clusters present in the
data. Additionally, the number of clusters is automatically
determined by the number of discovered modes. Due to
these properties, mean shift has been applied to solve sev-
eral computer vision problems, e.g., image smoothing and
segmentation [11], [41], visual tracking [9], [19] and informa-
tion fusion [7], [10]. Mean shift clustering was also extended
to nonlinear spaces, for example, to perform clustering on
analytic manifolds [36], [38] and kernel induced feature
space [34], [39] under an unsupervised setting.

In many clustering problems, in addition to the unla-
beled data, often some additional information is also easily
available. Depending on a particular problem, this addi-
tional information could be available in different forms.
For example, the number of clusters or a few must-link
(similarity) and cannot-link (dissimilarity) pairs could be
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known a-priori. In the last decade, semi-supervised clus-
tering methods that aim to incorporate prior information
into the clustering algorithm as a guide, have received
considerable attention in machine learning and computer
vision [2], [6], [18]. Increasing interest in this area has trig-
gered the adaptation of several popular unsupervised clus-
tering algorithms into a semi-supervised framework, e.g.,
background constrained k-means [40], constrained spectral
clustering [23], [28] and kernel graph clustering [24]. It
is shown that unlabeled data, when used in conjunction
with a small amount of labeled data, can produce signifi-
cant improvement in clustering accuracy. However, despite
these advances, mean shift clustering has largely been
ignored under the semi-supervised learning framework. To
leverage all the useful properties of mean shift, we adapt
the original unsupervised algorithm into a semi-supervised
clustering technique.

The work in [37] introduced weak supervision into the
kernel mean shift algorithm where the additional infor-
mation was provided through a few pairwise must-link
constraints. In that framework, each pair of must-link
points was collapsed to a single point through a linear
projection operation, guaranteeing their association with
the same cluster. In this paper, we extend that work by
generalizing the linear projection operation to a linear trans-
formation of the kernel space that permits us to scale the
distance between the constraint points. Using this trans-
formation, the must-link points are moved closer to each
other, while the cannot-link points are moved farther apart.
We show that this transformation can be achieved implic-
itly by modifying the kernel matrix. We also show that
given one constraint pair, the corresponding kernel update
is equivalent to minimizing the log det divergence between
the updated and the initial kernel matrix. For multiple con-
straints, this result proves to be very useful since we can
learn the kernel matrix by solving a constrained log det
minimization problem [22].

0162-8828 c© 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Fig. 1. Olympic circles. (a) Original data in the input space with five
different clusters. (b) Labeled points used to generate pairwise con-
straints. (c) Pairwise distance matrix (PDM) using the modes discovered
by unsupervised mean shift clustering performed in the kernel space.
The points are ordered according to class. (d) PDM using the modes
found after supervision was added. Sample clustering results using
(e) unsupervised and (f) semi-supervised kernel mean shift clustering.

Fig. 1 illustrates the basic approach. The original data
with five circles, each containing 300 points, is shown in
Fig. 1(a). We assume that 20 labeled points from each cluster
are selected at random (only 6.7% of the data) to generate
pairwise must-link and cannot-link constraints (Fig. 1(b)).
We use all the 5 × (20

2

)
unique intra-class pairs as must-link

constraints and a same number of cannot-link constraints.
Note that, although we generate pairwise constraints using
a small fraction of labeled points, the algorithm does not
require the explicit knowledge of class labels. The data is
first mapped to a kernel space using a Gaussian kernel
(σ = 0.5). In the first case, kernel mean shift is directly
applied to the data points in the absence of any supervi-
sion. Fig. 1(c) shows the corresponding 1500×1500 pairwise
distance matrix (PDM) obtained using modes recovered by
mean-shift. The lack of a block diagonal structure implies
the absence of meaningful clusters discovered in the data.
In the second case, the constraint pairs are used to trans-
form the initial kernel space by learning an appropriate
kernel matrix via log det divergence minimization. Fig. 1(d)
shows the PDM between the modes obtained when ker-
nel mean shift is applied to the transformed feature points.
In this case, the five-cluster structure is clearly visible in
the PDM. Finally, Fig. 1(e) and (f) show the corresponding
clustering labels mapped back to the input space. Through
this example, it becomes evident that a small amount

of supervision can improve the clustering performance
significantly.

In the following, we list our key contributions (•) and
present the overall organization of the paper.

◦ In Section 2, we present an overview of the past
work in semi-supervised clustering.

• In Section 3.1, we briefly review the Euclidean
mean shift algorithm and in Section 3.2 we discuss
its extension to high-dimensional kernel spaces. By
employing the kernel trick, the explicit representa-
tion of the kernel mean shift algorithm in terms of
the mapping function is transformed into an implicit
representation described in terms of the kernel func-
tion inducing that mapping.

• In Section 4.1, we derive the expression for perform-
ing kernel updates using orthogonal projection of
the must-link constraint points. With little manipula-
tion of the distances between the constraint points, in
Section 4.2, we extend this projection operation to the
more general linear transformation, that can also uti-
lize cannot-link constraints. By allowing relaxation
on the constraints, we motivate the formulation of
learning the kernel matrix as a Bregman divergence
minimization problem.

◦ In Section 5, we review the optimization algo-
rithm of [22], [25] for learning the kernel
matrix using log det Bregman divergences. More
details about this algorithm are also furnished
in the supplementary material, which is avail-
able in the Computer Society Digital Library at
http://doi.ieeecomputersociety.org/10.1109/190.

• In Section 6, we describe the complete semi-
supervised kernel mean shift (SKMS) algorithm. In
addition, several practical enhancements like auto-
matically estimating various algorithmic parameters
and low-rank kernel learning for significant compu-
tation gains are also discussed in detail.

◦ In Section 7, we show experimental results on
several synthetic and real data sets that encom-
pass a wide spectrum of challenges encountered
in practical machine learning problems. We also
present detailed comparison with state-of-the-art
semi-supervised clustering techniques.

◦ Finally, in Section 8, we conclude with a discus-
sion around the key strengths and limitations of our
work.

2 RELATED WORK

Semi-supervised clustering has received a lot of attention in
the past few years due to its highly improved performance
over traditional unsupervised clustering methods [3], [6].
As compared to fully-supervised learning algorithms, these
methods require a weaker form of supervision in terms of
both the amount and the form of labeled data used. In
clustering, this is usually achieved by using only a few
pairwise must-link and cannot-link constraints. Since gen-
erating pairwise constraints does not require the knowledge
of class labels or the number of clusters, they can easily be
generated using additional information. For example, while
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clustering images of objects, two images with similar text
annotations could be used as a must-link pair. We discuss
some of the traditional unsupervised clustering methods
and their semi-supervised variants below.

Partitioning based clustering: k-means is one of the old-
est and most popular clustering algorithm. See [21] for
an extensive review of all the variants of k-means algo-
rithm. One of its popular semi-supervised extensions using
pairwise constraints was proposed in [40]. The method par-
titions the data into k non-overlapping regions such that
must-link pairs are enforced to lie in the same cluster
while the cannot-link pairs are enforced to lie in dif-
ferent clusters. However, since the method enforces all
constraints rigidly, it is sensitive to labeling errors in pair-
wise constraints. Basu et al. [2] proposed a more robust,
probabilistic model by explicitly allowing relaxation for a
few constraints in k-means clustering. Similarly, Bilenko
et al. [4] proposed a metric learning based approach
to incorporate constraints into k-means clustering frame-
work. Since the clustering in both these methods is per-
formed in the input space, these methods fail to handle
non-linear cluster boundaries. More recently, Kulis et al.
proposed semi-supervised kernel k-means (SSKK) algo-
rithm [24], that constructs a kernel matrix by adding the
input similarity matrix to the constraint penalty matrix.
This kernel matrix is then used to perform k-means
clustering.

Graph based clustering: Spectral clustering [31] is another
very popular technique that can also cluster data points
with non-linear cluster boundaries. In [23], this method
was extended to incorporate weak supervision by updat-
ing the computed affinity matrix for the specified constraint
points. Later, Lu et al. [28] further modified the algorithm
by propagating the specified constraints to the remain-
ing points using a Gaussian process. More recently, Lu
and Ip [29] showed improved clustering performances
by applying exhaustive constraint propagation and han-
dling soft constraints (E2CP). One of the fundamental
problems with this method is that it can be sensitive to
labeling noise since the effect of a mislabeled data point
pair could easily get propagated throughout the affinity
matrix. Moreover, in general, spectral clustering methods
suffer when the clusters have very different scales and
densities [30].

Density based clustering: Clustering methods in this cat-
egory make use of the estimated local density of the data
to discover clusters. Gaussian Mixture Models (GMM) are
often used for soft clustering where each mixture repre-
sents a cluster distribution [27]. Mean shift [11], [12], [37]
was employed in computer vision for clustering data in the
feature space by locating the modes of the nonparametric
estimate of the underlying density. There exist other density
based clustering methods that are less known in the vision
community, but have been applied to data mining applica-
tions. For example, DBSCAN [15] groups together points
that are connected through a chain of high-density neigh-
bors that are determined by the two parameters: neighbor-
hood size and minimum allowable density. SSDBSCAN [26]
is a semi-supervised variant of DBSCAN that explicitly
uses the labels of a few points to determine the neighbor-
hood parameters. C-DBSCAN [33] performs a hierarchical

density based clustering while enforcing the must-link and
cannot-link constraints.

3 KERNEL MEAN SHIFT CLUSTERING

First, we briefly describe the Euclidean mean shift clus-
tering algorithm in Section 3.1 and then derive the kernel
mean shift algorithm in Section 3.2.

3.1 Euclidean Mean Shift Clustering
Given n data points xi on a d-dimensional space R

d and the
associated diagonal bandwidth matrices hiId×d, i = 1, . . . , n,
the sample point density estimator obtained with the kernel
profile k(x) is given by

f (x) = 1
n

n∑

i=1

1

hd
i

k

(∥
∥
∥
∥

x − xi

hi

∥
∥
∥
∥

2
)

. (1)

We utilize multivariate normal profile

k(x) = e− 1
2 x x ≥ 0. (2)

Taking the gradient of (1), we observe that the stationary
points of the density function satisfy

2
n
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1

hd+2
i
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= 0, (3)

where g(x) = −k′(x). The solution is a local maximum of
the density function which can be iteratively reached using
mean shift procedure

δx =
∑n
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xi
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i

g
(∥∥∥ x−xi
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2
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i=1

1
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(∥∥∥ x−xi

hi
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2
) − x, (4)

where x is the current mean and δx is the mean shift vector.
To recover from saddle points adding a small perturbation
to the current mean vector is usually sufficient. Comaniciu
and Meer [11] showed that the convergence to a local mode
of the distribution is guaranteed.

3.2 Mean Shift Clustering in Kernel Spaces
We extend the original mean shift algorithm from the
Euclidean space to a general inner product space. This
makes it possible to apply the algorithm to a larger class of
nonlinear problems, such as clustering on manifolds [38].
We also note that a similar derivation for fixed bandwidth
mean shift algorithm was given in [39].

Let X be the input space such that the data points xi ∈ X ,
i = 1, . . . , n. Although, in general, X may not necessar-
ily be a Euclidean space, for sake of simplicity, we assume
X corresponds to R

d. Every point x is then mapped to a
dφ-dimensional feature space H by applying the mapping
functions φl, l = 1, . . . , dφ , where

φ(x) = [φ1(x) φ2(x) . . . φdφ
(x)]�. (5)

Note that in many problems, this mapping is sufficient to
achieve the desired separability between different clusters.
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Fig. 2. Clustering with must-link constraints. (a) Input space. Red markers are the constraint pair (x1, x2). (b) Input space is mapped to the feature
space via quadratic mapping φ(x) = [x x2]�. The black arrow is the constraint vector (φ(x1)−φ(x2))�, and the red dashed line is its null space. (c)
Feature space is projected to the null space of the constraint vector. Constraint points collapse to a single point and are guaranteed to be clustered
together. Two clusters can be easily identified.

We first derive the mean shift procedure on the feature
space H in terms of the explicit representation of the map-
ping φ. The point sample density estimator at y ∈ H, with
the diagonal bandwidth matrices hiIdφ×dφ

is

fH(y) = 1
n

n∑

i=1

1

h
dφ

i

k
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y − φ(xi)
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2
)

. (6)

Taking the gradient of (6) w.r.t. φ, like (4), the solution can
be found iteratively using the mean shift procedure
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By employing the kernel trick, we now derive the
implicit formulation of the kernel mean shift algorithm. We
define K:X × X �→ R, a positive semidefinite, scalar kernel
function satisfying for all x, x′ ∈ X

K(x, x′) = φ(x)�φ(x′). (8)

K(·) defines an inner product which makes it possible to
map the data implicitly to a high-dimensional kernel space.
Let

� = [φ(x1) φ(x2) . . . φ(xn)] (9)

be the dφ × n matrix of the mapped points and K = �T�

be the n × n kernel (Gram) matrix. We observe that at each
iteration of the mean shift procedure (7), the estimate ȳ =
y+δy always lies in the column space of �. Any such point
ȳ can be written as

ȳ = �αȳ, (10)

where αȳ is an n-dimensional weighting vector. The dis-
tance between two points y and y′ in this space can
be expressed in terms of their inner product and their
respective weighting vectors

‖y − y′‖2 = ‖�αy − �αy′ ‖2 (11)

= α�
y ���αy + α�

y′���αy′ − 2α�
y ���αy′

= α�
y Kαy + α�

y′Kαy′ − 2α�
y Kαy′ .

Let ei denote the i-th canonical basis vector for R
n.

Applying (11) to compute distances in (7) by using the

equivalence φ(xi) = �ei, the mean shift algorithm itera-
tively updates the weighting vector αy
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∑n
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The clustering starts on the data points on H, therefore
the initial weighting vectors are given by αyi = ei, such that,
yi = �αyi = φ(xi), i = 1 . . . n. At convergence, the mode ȳ
can be recovered using (10) as �ᾱy. The points converging
close to the same mode are clustered together, following the
original proof [11]. Since any positive semidefinite matrix K
is a kernel for some feature space [13], the derived method
implicitly applies mean shift on the feature space induced
by K. Note that under this formulation, mean shift in the
input space can be implemented by simply choosing the
mapping function φ(·) to be identity, i.e. φ(x) = x.

An important point is that the dimensionality of the fea-
ture space dφ can be very large, for example it is infinite
in case of the Gaussian kernel function. In such cases it
may not be possible to explicitly compute the point sample
density estimator (6) and consequently the mean shift vec-
tors (7). Since the dimensionality of the subspace spanned
by the feature points is equal to rank K ≤ n, it is suffi-
cient to use the implicit form of the mean shift procedure
using (12).

4 KERNEL LEARNING USING LINEAR
TRANSFORMATIONS

A nonlinear mapping of the input data to a higher-
dimensional kernel space often improves cluster separa-
bility. By effectively enforcing the available constraints, it
is possible to transform the entire space and guide the
clustering to discover the desired structure in the data.

To illustrate this intuition, we present a simple two class
example from [37] in Fig. 2. The original data lies along
the x-axis, with the blue points associated with one class
and the black points with the second class (Fig. 2(a)). This
data appears to have originated from three clusters. Let
(x1, x2) be the pair of points marked in red which are con-
strained to be clustered together. We map the data explicitly
to a two-dimensional feature space via a simple quadratic
mapping φ(x) = [x x2]� (Fig. 2(b)). Although the data is
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linearly separable, it still appears to form three clusters.
Using the must-link constraint pair, we enforce the two red
points to be clustered together. The black arrow denotes the
constraint vector φ(x1) − φ(x2) and the dashed red line is
its null space. By projecting the feature points to the null
space of the constraint vector, the points φ(x1) and φ(x2) are
collapsed to the same point, guaranteeing their association
with the same mode. From Fig. 2(c), we can see that in the
projected space, the data has the desired cluster structure
which is consistent with its class association.

This approach, although simple, does not scale well
with increasing number of constraints for a simple non-
linear mapping like above. Given m linearly independent
constraint vectors in a dφ-dimensional space, the dimen-
sionality of the null space of the constraint matrix is dφ −m.
This implies that if dφ or more constraints are specified,
all the points collapse to a single point and are therefore
grouped together in one cluster. This problem can be allevi-
ated if a mapping function φ(·) is chosen such that dφ is very
large. Since explicitly designing the mapping function φ(x)

is not always practical, we use a kernel function K(x, x′) to
implicitly map the input data to a very high-dimensional
kernel space. As we show in Section 4.1, the subsequent
projection to the null-space of the constraint vectors can
also be achieved implicitly by appropriately updating the
kernel matrix. In Section 4.2, we further generalize the pro-
jection operation to a linear transformation that also utilizes
cannot-link constraints.

4.1 Kernel Updates Using Orthogonal Projection
Recall the matrix � in (9), obtained by mapping the input
points to H via the nonlinear function φ. Let (j1, j2) be
a must-link constraint pair such that φ(xj1) = �ej1 and
φ(xj2)=�ej2 are to be clustered together. Given a set of m
such must-link constraint pairs M, for every (j1, j2) ∈ M,
the dφ-dimensional constraint vector can be written as
aj = �

(
ej1 − ej2

) = �zj. We refer to the n-dimensional vec-
tor zj as the indicator vector for the jth constraint. The dφ ×m
dimensional constraint matrix A can be obtained by column
stacking all the m constraint vectors, i.e., A = �Z, where
Z = [z1, . . . , zm] is the n × m matrix of indicator vectors.
Similar to the example in Fig. 2, we impose the constraints
by projecting the matrix � to the null space of A using the
the projection matrix

P = Idφ
− A

(
A�A

)+
A�, (13)

where Idφ
is the dφ-dimensional identity matrix and ‘+’

denotes the matrix pseudoinverse operation. Let S = A�A
be the m×m scaling matrix. The matrix S can be computed
using the indicator vectors and the initial kernel matrix K
without knowing the mapping φ as

S = A�A = Z����Z = Z�KZ. (14)

Given the constraint set, the new mapping function φ̂(x)

is computed as φ̂(x) = Pφ(x). Since all the constraints in M
are satisfied in the projected subspace, we have

||P�Z||2F = 0, (15)

where || · ||F denotes the Frobenius norm. The initial ker-
nel function (8) correspondingly transforms to the projected

kernel function K̂(x, x′) = φ̂(x)�φ̂(x′). Using the projection
matrix P, it can be rewritten in terms of the initial kernel
function K(x, x′) and the constraint matrix A

K̂(x, x′) = φ(x)�P�Pφ(x′) = φ(x)�Pφ(x′)
= φ(x)�(Idφ

− AS+A�)φ(x′)
= K(x, x′) − φ(x)�AS+A�φ(x′). (16)

Note that the identity P�P = P follows from the fact that P
is a symmetric projection matrix. The m-dimensional vector
A�φ(x) can also be written in terms of the initial kernel
function as

A�φ(x) = Z���φ(x)

= Z� [K(x1, x), . . . , K(xn, x)]� . (17)

Let the vector kx = [K(x1, x), . . . , K(xn, x)]�. From (16), the
projected kernel function can be written as

K̂(x, x′) = K(x, x′) − k�
x ZS+Z�kx′ . (18)

The projected kernel matrix can be directly computed as

K̂ = K − KZS+Z�K, (19)

where the symmetric n × n initial kernel matrix K has rank
r ≤ n. The rank of the matrix S is equal to the number of lin-
early independent constraints, and the rank of the projected
kernel matrix K̂ is r − rank S.

4.2 Kernel Updates Using Linear Transformation
By projecting the feature points to the null space of the
constraint vector a, their components along the a are fully
eliminated. This operation guarantees that the two points
belong to the same cluster. As proposed earlier, by appro-
priately choosing the kernel function K(·) (such that dφ is
very large), we can make the initial kernel matrix K full-
rank. However, a sufficiently large number of such linearly
independent constraints could still result in a projected
space with dimensionality that is too small for meaningful
clustering.

From a clustering perspective, it might suffice to bring
the two must-link constraint points sufficiently close to each
other. This can be achieved through a linear transformation
of the kernel space that only scales down the component
along the constraint vector. Such a linear transformation
would preserve the rank of the kernel matrix and is poten-
tially capable of handling a very large number of must-link
constraints. A similar transformation that increases the dis-
tance between two points also enables us to incorporate
cannot-link constraints.

Given a constraint vector a = �z, a symmetric transfor-
mation matrix of the form

T = Idφ
− s

(
aa�)

(20)

allows us to control the scaling along the vector a using
the scaling factor s. When s = 1

a�a the transformation
becomes a projection to the null space of a. The transfor-
mation decreases distances along a for 0 < s < 2

a�a , while
it is increased for s < 0 or s > 2

a�a .
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We can set a target distance d > 0 for the constraint
point pair by applying an appropriate transformation T.
The constraint equation can be written as

||T�z||2F = z�K̂z = d, (21)

where K̂ = ��T�T� = ��T2� is the corresponding trans-
formed kernel matrix. To handle must-link constraints, d
should be small, while it should be large for cannot-link
constraint pairs. Using the specified d, we can compute s
and therefore the transformed kernel matrix

K̂ = �� (
Idφ

− s aa�)2
�. (22)

Substituting a = �z the expression for K̂ is

K̂ = K − 2s Kzz�K + s2
(

z�Kz
)

Kzz�K. (23)

From (21), we can solve for s

s = 1
p

(

1 ±
√

d
p

)

, where p = z�Kz > 0 (24)

and the choice of s does not affect the following kernel
update† such that the constraint (21) is satisfied

K̂ = K + βKzz�K, β =
(

d
p2 − 1

p

)
. (25)

The case when p = 0 implies that the constraint vector
is a zero vector and T = Idφ

and a value of β = 0 should
be used.

When multiple must-link and cannot-link constraints
are available, the kernel matrix can be updated iteratively
for each constraint by computing the update parameter βj
using corresponding dj and pj. However, by enforcing the
distance between constraint pairs to be exactly dj, the lin-
ear transformation imposes hard constraints for learning the
kernel matrix which could potentially have two adverse
consequences:

1) The hard constraints could make the algorithm dif-
ficult (or even impossible) to converge, since previ-
ously satisfied constraints could easily get violated
during subsequent updates of the kernel matrix.

2) Even when the constraints are non-conflicting in
nature, in the absence of any relaxation, the method
becomes sensitive to labeling errors. This is illus-
trated through the following example.

The input data consists of points along five concentric cir-
cles as shown in Fig. 3(a). Each cluster comprises of 150
noisy points along a circle. Four labeled points per class
(shown by square markers) are used to generate a set of(4

2

) × 5 = 30 must-link constraints. The initial kernel matrix
K is computed using a Gaussian kernel with σ = 5, and
updated by imposing the provided constraints (19). The
updated kernel matrix K̂ is used for kernel mean shift clus-
tering (Section 3.2) and the corresponding results are shown
in Fig. 3(b). To test the performance of the method under
labeling errors, we also add one mislabeled must-link con-
straint (shown in black line). The clustering performance

† This update rule is equivalent to minimizing the log det diver-
gence (29) for a single equality constraint using Bregman projections
(31).

Fig. 3. Five concentric circles. Kernel learning without relaxation.
(a) Input data. The square markers indicate the data points used to
generate pairwise constraints. The black line shows the only mislabeled
similarity constraint used. (b) Clustering results when only the correctly
labeled similarity constraints were used. (c) Clustering results when the
mislabeled constraint was also used.

deteriorates drastically with just one mislabeled constraint
as shown in Fig. 3(c).

In order to overcome these limitations, the learning
algorithm must accommodate for systematic relaxation of
constraints. This can be achieved by observing that the ker-
nel update in (25) is equivalent to minimizing the log det
divergence between K̂ and K subject to constraint (21) [25,
Sec. 5.1.1]. In the following section, we formulate the ker-
nel learning algorithm into a log det minimization problem
with soft constraints.

5 KERNEL LEARNING USING BREGMAN
DIVERGENCE

Bregman divergences have been studied in the context of
clustering, matrix nearness and metric and kernel learn-
ing [1], [22], [25]. We briefly discuss the log det Bregman
divergence and its properties in Section 5.1. We summa-
rize the kernel learning problem using Bregman divergence
which was introduced in [22], [25] in Section 5.2.

5.1 The LogDet Bregman Divergence
The Bregman divergence [5] between real, symmetric n × n
matrices X and Y is a scalar function given by

Dϕ(X, Y)=ϕ(X)−ϕ(Y)−tr
(
∇ϕ (Y)�(X−Y)

)
, (26)

where ϕ is a strictly convex function and ∇ denotes the
gradient operator. For ϕ(X) = − log (det(X)), the resulting
divergence is called the log det divergence

Dld (X, Y) = tr
(

XY−1
)

− log det
(

XY−1
)

− n (27)

and is defined when X, Y are positive definite. In [25], this
definition was extended to rank deficient (positive semidefi-
nite) matrices by restricting the convex function to the range
spaces of the matrices. For positive semidefinite matrices X
and Y, both having rank r ≤ n and singular value decom-
position X = V�V� and Y = U�U�, the log det divergence
is defined as

Dld (X, Y) =
∑

i,j≤r

(
v�

i uj

)2
(

λi

θj
− log

λi

θj
− 1

)

. (28)

Moreover, the log det divergence, like any Bregman diver-
gence, is convex with respect to its first argument X [1]. This
property is useful in formulating the kernel learning as a
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convex minimization problem in the presence of multiple
constraints.

5.2 Kernel Learning with LogDet Divergences
Let M and C denote the sets of m must-link and c cannot-
link pairs respectively, such that m + c = nc. Let dm and
dc be the target squared distance thresholds for must-link
and cannot-link constraints respectively. The problem of
learning a kernel matrix using linear transformations for
multiple constraints, discussed in Section 4.2, can be equiv-
alently formulated as the following constrained log det
minimization problem

min
K̂

Dld
(
K̂, K

)
(29)

s.t.
(
ej1 − ej2

)� K̂
(
ej1 − ej2

) = dm ∀(j1, j2) ∈ M
(
ej1 − ej2

)� K̂
(
ej1 − ej2

) = dc ∀(j1, j2) ∈ C.

The final kernel matrix K̂ is obtained by iteratively updat-
ing the initial kernel matrix K.

In order to permit relaxation of constraints, we rewrite
the learning problem using a soft margin formulation similar
to [22], where each constraint pair (j1, j2) is associated with
a slack variable ξ̂j, j = 1, . . . , nc

min
K̂,ξ̂

Dld
(
K̂, K

) + γ Dld
(
diag

(
ξ̂

)
, diag (ξ)

)
(30)

s.t.
(
ej1 − ej2

)� K̂
(
ej1 − ej2

) ≤ ξ̂j ∀(j1, j2) ∈ M
(
ej1 − ej2

)� K̂
(
ej1 − ej2

) ≥ ξ̂j ∀(j1, j2) ∈ C.

The nc-dimensional vector ξ̂ is the vector of slack vari-
ables and ξ is the vector of target distance thresholds dm
and dc. The regularization parameter γ controls the trade-
off between fidelity to the original kernel and the training
error. Note that by changing the equality constraints to
inequality constraints, the algorithm allows must-link pairs
to be closer and cannot-link pairs to be farther than their
corresponding distance thresholds.

The optimization problem in (30) is solved using the
method of Bregman projections [5]. A Bregman projection
(not necessarily orthogonal) is performed to update the
current matrix, such that the updated matrix satisfies that
constraint. In each iteration, it is possible that the current
update violates a previously satisfied constraint. Since the
problem in (30) is convex [25], the algorithm converges to
the global minimum after repeatedly updating the kernel
matrix for each constraint in the set M ∪ C.

For the log det divergence, the Bregman projection that
minimizes the objective function in (30) for a given con-
straint (j1, j2) ∈ M ∪ C, can be written as derived in [25]

K̂t+1 = K̂t + βt K̂t
(
ej1 − ej2

) (
ej1 − ej2

)� K̂t. (31)

For the tth iteration the parameter βt is computed in closed
form as explained in the supplementary material, available
online. The algorithm converges when βt approaches zero
for all (j1, j2)∈ M ∪ C with the final learned kernel matrix
K̂ = �̂

�
�̂.

Using K̂, the kernel function that defines the inner prod-
uct in the corresponding transformed kernel space can be
written as

K̂
(
x, y

) = K
(
x, y

) + k�
x

(
K+ (

K̂ − K
)

K+)
ky, (32)

Fig. 4. Block diagram describing the semi-supervised kernel mean shift
clustering algorithm. The bold boxes indicate the user input to the
algorithm.

where K(·) is the scalar initial kernel function (8), and
the vectors kx = [K(x, x1), . . . , K(x, xn)]� and ky =[
K(y, x1), . . . , K(y, xn)

]� [22]. The points x, y ∈ X could be
out of sample points, i.e., points that are not in the sample
set {x1, . . . , xn} used to learn K̂. Note that (18) also general-
izes the inner product in the projected kernel space to out
of sample points.

6 SEMI-SUPERVISED KERNEL MEAN-SHIFT
CLUSTERING ALGORITHM

We present the complete algorithm for semi-supervised ker-
nel mean shift clustering (SKMS) in this section. Fig. 4
shows a block diagram for the overall algorithm. We
explain each of the modules using two examples: Olympic
circles, a synthetic data set and a 1000 sample subset of
USPS digits, a real data set with images of handwritten
digits. In Section 6.1, we propose a method to select the
scale parameter σ for the initial Gaussian kernel func-
tion using the sets M, C and target distances dm, dc. We
show the speed-up achieved by performing the low-rank
kernel matrix updates (as opposed to updating the full
kernel matrix) in Section 6.2. For mean shift clustering,
we present a strategy to automatically select the band-
width parameter using the pairwise must-link constraints
in Section 6.3. Finally, in Section 6.4, we discuss the selection
of the trade-off parameter γ .

6.1 Initial Parameter Selection
Given two input sample points xi, xj ∈ R

d, the Gaussian
kernel function is given by

Kσ

(
xi, xj

) = exp

(

−‖xi − xj‖2

2σ 2

)

∈ [0, 1], (33)

where σ is the scale parameter. From (33) and (11) it is
evident that pairwise distances between sample points in
the feature space induced by Kσ (·) lies in the interval [0, 2].
This provides us with an effective way of setting up the
target distances dm = min(d1, 0.05) and dc = max(d99, 1.95),
where d1 and d99 are the 1st and 99th percentile of dis-
tances between all pairs of points in the kernel space. We



1208 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

Fig. 5. Selecting the scale parameter σ̂ that minimizes Dld (ξ , ξσ ) using
grid search. Selected σ values: Olympic circles, σ̂ = 0.75; USPS digits,
σ̂ = 7.

select the scale parameter σ such that, in the initial kernel
space, distances between must-link points are small while
those between cannot-link points are large. This results in
good regularization and faster convergence of the learning
algorithm.

Recall that ξ is the nc-dimensional vector of target
squared distances between the constraint pairs

ξj =
{

dm ∀(j1, j2) ∈ M
dc ∀(j1, j2) ∈ C.

(34)

Let ξσ be the vector of distances computed for the nc
constraint pairs using the kernel matrix Kσ . The scale
parameter that minimizes the log det divergence between
the vectors ξ and ξσ is

σ̂ = arg min
σ∈S Dld

(
diag (ξ) , diag

(
ξσ

))
(35)

and the corresponding kernel matrix is Kσ̂ . The kernel
learning is insensitive to small variations in σ̂ , thus it is
sufficient to do a search over a discrete set S. The elements
of the set S are roughly the centers of equal probability
bins over the range of all pairwise distances between the
input sample points xi, i = 1, . . . , n. For Olympic circles, we
used S = {0.025, 0.05, 0.1, 0.3, 0.5, 0.75, 1, 1.5, 2, 3, 5} and for
USPS digits, S = {1, 2, . . . , 10, 15, 20, 25}. A similar set can
be automatically generated by mapping a uniform proba-
bility grid (over 0−1) via the inverse cdf of the pairwise
distances. Fig. 5 shows the plot of the objective function in
(35) against different values of σ for the Olympic circles data
set and the USPS digits data set.

6.2 Low Rank Kernel Learning
When the initial kernel matrix has rank r ≤ n, the n × n
matrix updates (31) can be modified to achieve a significant
computational speed-up [25] (see supplementary material,
available online, for the low-rank kernel learning algo-
rithm). We learn a kernel matrix for clustering the two
example data sets: Olympic circles (5 classes, n = 1500) and
USPS digits (10 classes, n = 1000). The must-link constraints
are generated using 15 labeled points from each class: 525
for Olympic circles and 1050 for USPS digits, while an equal
number of cannot-link constraints is used.

The n × n initial kernel matrix Kσ̂ is computed as
described in the previous section. Using singular value
decomposition (SVD), we compute an n×n low-rank kernel
matrix K such that rank K = r ≤ n and ‖K‖F‖Kσ̂ ‖F

≥ 0.99. For
Olympic circles, this results in a rank 58 approximation of
the 1500×1500 matrix K leading to a computational speed-
up from 323.3 secs. to 0.92 secs. In case of USPS digits,
the 1000 × 1000 matrix K has rank 499 and the run time
reduces from 151.1 secs. to 68.2 secs. We also observed that
in all our experiments in Section 7, the clustering perfor-
mance did not deteriorate significantly when the low-rank
approximation of the kernel matrix was used.

6.3 Setting the Mean Shift Parameters
For kernel mean shift clustering, we define the bandwidth
for each point as the distance to its kth nearest neighbor. In
general, clustering is an interactive process where the band-
width parameter for mean shift is provided by the user, or
is estimated based on the desired number of clusters. In this
section we propose an automatic recommendation method
for the bandwidth parameter k by using only the must-link
constraint pairs.

We build upon the intuition that in the transformed
kernel space, the neighborhood of a must-link pair com-
prises of points similar to the constraint points. Given
the jth constraint pair (j1, j2) ∈ M, we compute the pair-
wise distances in the transformed kernel space between the
first constraint point �̂ej1 and all other feature points as
di = (ej1 − ei)

�K̂(ej1 − ei), i = 1, . . . , n, i �= j1. These points
are then sorted in the increasing order of di. The bandwidth
parameter kj for the jth constraint corresponds to the index
of j2 in this sorted list. Therefore, the point �̂ej2 is the kth

j
neighbor of �̂ej1 . Finally, the value of k is selected as the
median over the set {kj, j = 1, . . . , m}.

Fig. 6. Selecting the mean shift bandwidth parameter k , given five labeled points per class. (a) Olympic circles. Number of recovered clusters is
sensitive at the median based estimate k = 6, but not at k = 15 (see text). (b) USPS digits. Number of recovered clusters is not sensitive at the
median based estimate k = 4. The asterisk indicates the median based estimate, while the square marker shows a good estimate of k .
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Fig. 7. Selecting the trade-off parameter γ . The AR index vs log γ for 50
cross-validation runs. The asterisks mark the selected value of γ = 100.

For a correct choice of k, we expect the performance of
mean shift to be insensitive to small changes in the value
of k. In Fig. 6, we plot the number of clusters recovered by
kernel mean shift as the bandwidth parameter is varied.
For learning the kernel, we used 5 points from each class
to generate must-link constraints: 50 for the Olympic circles
and 100 for USPS digits. An equal number of cannot-link
constraints is used. Fig. 6(a) shows the plot for Olympic
circles (5 classes), where the median based value (k = 6)
underestimates the bandwidth parameter. A good choice is
k = 15, which lies in the range (10−23) where the clustering
output is insensitive to changes in k.

As seen in Fig. 6(b), in case of USPS digits (10 classes),
the number of clusters recovered by mean shift is insen-
sitive to the median based estimate (k = 4). For all other
data sets we used in our experiments, the median based
estimates produced good clustering output. Therefore, with
the exception of Olympic circles, we used the bandwidth
parameter obtained using the median based approach.
However, for completeness, the choice of k should be veri-
fied, and corrected if necessary, by analyzing the sensitivity
of the clustering output to small perturbations in k.

For computational efficiency, we run the mean shift
algorithm in a lower dimensional subspace spanned by
the singular vectors corresponding to at most the 25
largest singular values of K̂. For all the experiments in
Section 7, a 25-dimensional representation of the kernel
matrix was large enough to represent the data in the kernel
space.

6.4 Selecting the Trade-Off Parameter
The trade-off parameter γ is used to weight the objective
function for the kernel learning. We select γ by perform-
ing a two-fold cross-validation over different values of
γ and the clustering performance is evaluated using the
scalar measure Adjusted Rand (AR) index [20]. The kernel
matrix is learned using half of the data with 15 points used
to generate the pairwise constraints, 525 must-link con-
straints for the Olympic circles and 1050 for the USPS digits.
An equal number of cannot-link constraint pairs is also
generated.

Each cross-validation step involves learning the kernel
matrix with the specified γ and clustering the testing subset
using the kernel mean shift algorithm and the transformed
kernel function (32). Fig. 7 shows the average AR index
plotted against log γ for the two data sets. In both the
examples an optimum value of γ = 100 was obtained.
In general, this value may not be optimum for other

Fig. 8. Semi-supervised kernel mean shift algorithm (SKMS).

applications. However, in all our experiments in Section 7,
we use γ = 100, since we obtained similar curves with
small variations in the AR index in the vicinity of γ = 100.

Fig. 8 shows a step-by-step summary of the semi-
supervised kernel mean shift (SKMS) algorithm.

7 EXPERIMENTS

We show the performance of semi-supervised kernel mean
shift (SKMS) algorithm on two synthetic examples and four
real-world examples. We also compare our method with
two state-of-the-art methods: the semi-supervised kernel
k-means (SSKK) [24] and the constrained spectral cluster-
ing (E2CP) [29]. In the past, the superior performance of
E2CP over other recent methods has been demonstrated.
Please see [29] for more details. In addition to this, we also
compare SKMS with the kernelized k-means (Kkm) and ker-
nelized spectral clustering (KSC) algorithms. The learned
kernel matrix is used to compute distances in SKMS and
Kkm, while KSC uses it as the affinity matrix. By provid-
ing the same learned kernel matrix to the three algorithms,
we compare the clustering performance of mean shift with
that of k-means and spectral clustering. Note that, unlike
Kkm and KSC, the methods SSKK and E2CP do not use
the learned kernel matrix and supervision is supplied with
alternative methods. With the exception of SKMS, all the
methods require the user to provide the correct number of
clusters.

Comparison metric. The clustering performance of dif-
ferent algorithms is compared using the Adjusted Rand
(AR) index [20]. It is an adaptation of the rand index that
penalizes random cluster assignments, while measuring the
agreement between the clustering output and the ground
truth labels. The AR index is a scalar and takes values
between zero and one, with perfect clustering yielding a
value of one.
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Fig. 9. Olympic circles. (a) Input data. (b) AR index as the number of pairwise constraints is varied. (c) AR index as the fraction of mislabeled
constraints is varied.

Fig. 10. Ten concentric circles. (a) Input data. (b) AR index as the number of pairwise constraints is varied. (c) AR index as the fraction of mislabeled
constraints is varied.

Experimental setup. To generate pairwise constraints,
we randomly select b labeled points from each class. All
possible must-link constraints are generated for each class
such that m= (b

2

)
and a subset of all cannot-link constraint

pairs is selected at random such that c = m = nc
2 . For each

experimental setting, we average the clustering results over
50 independent runs, each with randomly selected pairwise
constraints.

The initial kernel matrix is computed using a Gaussian
kernel (33) for all the methods. We hand-picked the scale
parameter σ for SSKK and E2CP from a wide range of
values such that their final clustering performance on
each data set was maximized. For Kkm, KSC and SKMS,
the values of σ and the target distances dm and dc are
estimated as described in Section 6.1. Finally, the mean
shift bandwidth parameter k, is estimated as described in
Section 6.3.

For each experiment, we specify the scale parame-
ter σ we used for SSKK and E2CP. For Kkm, KSC and
SKMS, σ is chosen using (35) and the most frequent value
is reported. We also list the range of k, the bandwidth
parameter for SKMS for each application. For the log det
divergence based kernel learning, we set the maximum
number of iterations to 100000 and the trade-off parameter
γ to 100.

Fig. 11. Sample images from the USPS digits data set.

7.1 Synthetic Examples
Olympic Circles. As shown in Fig. 9(a), the data consists of
noisy points along five intersecting circles each comprising
300 points. For SSKK and E2CP algorithms, the value of the
initial kernel parameter σ was 0.5. For Kkm, KSC and SKMS
the most frequently selected σ was 0.75 and the range of
the bandwidth parameter k was 15 − 35.

We performed two sets of experiments. In the first
experiment, the performance of all the algorithms is com-
pared by varying the total number of pairwise con-
straints. The number of labeled points per class vary as
{5, 7, 10, 12, 15, 17, 20, 25} and are used to generate must-
link and cannot-link constraints that vary between 100 and
3000. Fig. 9(b) demonstrates SKMS performs better than
E2CP and KSC while its performance is similar to SSKK
and Kkm. For 100 constraints, SKMS recovered 5−8 clusters,
making a mistake 22% of the times. For all other settings
together, it recovered an incorrect number of clusters (4−6)
only 6.3% of the times.

In the second experiment, we introduced labeling errors by
randomly swapping the labels of a fraction of the pairwise
constraints. We use 20 labeled sample points per class to
generate 1900 pairwise constraints and vary the fraction
of mislabeled constraints between 0 and 0.6 in steps of 0.1.
Fig. 9(c) shows the clustering performance of all the methods.
The performance of SKMS degrades only slightly even when
half the constraint points are labeled wrongly, but it starts
deteriorating when 60% of the constraint pairs are mislabeled.
Concentric Circles. The data consists of ten concentric
circles each comprising 100 noisy points (Fig. 10(a)). For
Kkm, KSC and SKMS the most frequently selected σ was 1
and the range of the bandwidth parameter for SKMS was
25 − 45. Both algorithms, SSKK and E2CP have the value
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Fig. 12. USPS digits. (a) AR index as the number of pairwise constraints is varied. (b) 11000 × 11000 pairwise distance matrix (PDM) after
performing mean shift clustering.

of σ = 0.2. In the first experiment, we vary the number of
labeled points per class between 5 and 25 as in the previous
example to generate pairwise constraints between 200 and
6000. For 200 constraints, SKMS incorrectly recovered nine
clusters 50% of the times, while for all the other settings it
correctly detected 10 clusters every time.

In the second experiment, we use 25 labeled points
to generate 6000 pairwise constraints and mislabeled a
fraction of randomly selected constraints. This mislabeled
fraction was varied between 0 to 0.6 in steps of 0.1 and the
performance of all the algorithms in the two experiments
is shown in Fig. 10(b),(c).

7.2 Real-World Applications
In this section, we demonstrate the performance of our
method on two real applications having a small number
of classes; USPS digits: 10 classes and MIT scene: 8 classes;
and two real applications with a large number of classes;
PIE faces: 68 classes and Caltech-101 subset: 50 classes. We
also show the performance of SKMS while clustering out of
sample points using (32) on the USPS digits and the MIT
scene data sets. Since the sample size per class is much
smaller for PIE faces and Caltech-101 subset, results for
generalization are not shown. We observe that the supe-
riority of SKMS over other competing algorithms is clearer
when the number of clusters is large.

USPS Digits. The USPS digits data set is a collection of
16 × 16 grayscale images of natural handwritten digits and
is available from http://cs.nyu.edu/∼roweis/data.html.
Each class contains 1100 images of one of the ten digits.
Fig. 11 shows sample images from each class. Each image
is then represented with a 256-dimensional vector where
the columns of the image are concatenated. We vary the
number of labeled points per class between 5 and 25 as in
the previous example to generate pairwise constraints from
200 to 6000. The maximum number of labeled points per
class used comprises only 2.27% of the total data.

Since the whole data set has 11000 points, we select 100
points from each class at random to generate a 1000 sample
subset. The labeled points are selected at random from this
subset for learning the 1000×1000 kernel matrix. The value
of σ used was 5 for SSKK and 2 for E2CP. For Kkm, KSC
and SKMS the most frequently selected σ was 7 and the
range of the bandwidth parameter k was 4 − 14.

In the first experiment we compare the performance of
all the algorithms on this subset of 1000 points. Fig. 12(a)
shows the clustering performance of all the methods. Once
the number of constraints were increased beyond 500,
SKMS outperformed the other algorithms. For 200 con-
straints, the SKMS discovered 9 − 11 clusters, making a
mistake 18% of the times, while it recovered exactly 10
clusters in all the other cases.

In the second experiment, we evaluated the perfor-
mance of SKMS for the entire data set using 25 labeled
points per class. The AR index averaged over 50 runs was
0.7529±0.0510. Note that from Fig. 12(a) it can be observed
that there is only a marginal decrease in clustering accu-
racy. The pairwise distance matrix (PDM) after performing
mean shift clustering is shown in Fig. 12(b). For illustration
purpose, the data is ordered such that the images belong-
ing to the same class appear together. The block diagonal
structure indicates good generalization of SKMS for out of
sample points with little confusion between classes. Neither
SSKK nor E2CP could be generalized to out of sample
points because these methods need to learn a new kernel
or affinity matrix (11000 × 11000).

MIT Scene. The data set is available from MIT
http://people.csail.mit.edu/torralba/code/spatialenvelope/
and contains 2688 labeled images. Each image is 256 × 256
pixels in size and belongs to one of the eight outdoor scene
categories, four natural and four man-made. Fig. 13 shows
one example image from each of the eight categories.
Using the code provided with the data, we extracted the
GIST descriptors [32] which were then used to test all the

Fig. 13. Sample images from each of the eight categories of the MIT
scene data set.
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Fig. 14. MIT Scene data set. (a) AR index on the 800 × 800 kernel matrix as the number of pairwise constraints is varied. (b) AR index on entire
data as the number of pairwise constraints is varied.

algorithms. We vary the number of labeled points per class
like in the previous example, but only between 5 and 20
to generate the pairwise constraints from 160 to 3040. The
maximum number of labeled points used comprises only
7.44% of the total data.

We select 100 points at random from each of the eight
classes to generate the 800 × 800 initial kernel matrix. The
pairwise constraints are obtained from the randomly cho-
sen labeled points from each class. The value of σ used was
1 for SSKK and 0.5 for E2CP. For Kkm, KSC and SKMS the
most frequently selected σ was 1.75 and the range of the
bandwidth parameter k was 4 − 14.

Fig. 14(a) shows the clustering performance of all the
algorithms as the number of constraint points are varied.
For 160 constraint pairs, SKMS incorrectly discovered 7−10
clusters about 22% of the time, while it correctly recovered
eight clusters in all other settings.

In the second experiment, the whole data set was clus-
tered using the 800×800 learned kernel matrix and general-
izing to the out of sample points (32). Both SSKK and E2CP
were used to learn the full 2688 × 2688 kernel and affinity
matrix respectively. Fig. 14(b) shows the performance of all
the algorithms as the number of pairwise constraints was
varied. Note that in [29] for similar experiments, the supe-
rior performance of E2CP was probably because of the use
of spatial Markov kernel instead of the Gaussian kernel.

PIE Faces. From the CMU PIE face data set [35], we use
only the frontal pose and neutral expression of all 68 sub-
jects under 21 different lighting conditions. We coarsely
aligned the images with respect to eye and mouth loca-
tions and resized them to be 128 × 128. In Fig. 15, we show
eight illumination conditions for three different subjects.

Fig. 15. PIE faces data set. Sample images showing eight different
illuminations for three subjects.

Due to significant illumination variation, interclass variabil-
ity is very large and some of the samples from different
subjects appear to be much closer to each other than within
classes.

We convert the images from color to gray scale and nor-
malize the intensities between zero and one. Each image
is then represented with a 16384-dimensional vector where
the columns of the image are concatenated. We vary the
number of labeled points per class as {3, 4, 5, 6, 7} to gen-
erate pairwise constraints between 408 and 2856. The max-
imum number of labeled points comprises 30% of the total
data.

We generate the 1428 × 1428 initial kernel matrix using
all the data. The value of σ used was 10 for SSKK and 22
for E2CP. For Kkm, KSC and SKMS the most frequently
selected σ was 25 and the range of the bandwidth parame-
ter k was 4 − 7. Fig. 16 shows the performance comparison
and it can be observed that SKMS outperforms all the other
algorithms. Note that SKMS approaches near perfect clus-
tering for more than 5 labeled points per class. When three
labeled points per class were used, the SKMS discovered
61−71 clusters, making a mistake about 84% of the time.
For all other settings, SKMS correctly recovered 68 clus-
ters about 62% of the times, while it recovered 67 clusters
about 32% of the time and between 69−71 clusters in the
remaining runs. The Kkm and KSC methods perform poorly
inspite of explicitly using the number of clusters and the
same learned kernel matrix as SKMS.

Caltech-101 Objects. The Caltech-101 data set [16] is a col-
lection of variable sized images across 101 object categories.

Fig. 16. PIE faces data set. AR index as the number of pairwise
constraints is varied.
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Fig. 17. Sample images from eight of the 50 classes used from Caltech-
101 data set.

This is a particularly hard data set with large intraclass vari-
ability. Fig. 17 shows sample images from eight different
categories.

We randomly sampled a subset of 50 categories, as listed
in Table 1, with each class containing 31 to 40 samples.
For each sample image, we extract GIST descriptors [32]
and use them for evaluation of all the competing clustering
algorithms. We vary the number of labeled points per class
as {5, 7, 10, 12, 15} to generate pairwise constraints between
500 and 10500. The maximum number of labeled points
comprises 38% of the total data. We use a larger number
of constraints in order to overcome the large variability in
the data set.

We generate the 1959 × 1959 initial kernel matrix using
all the data. The value of σ used is 0.2 for E2CP and 0.3
for SSKK. For Kkm, KSC and SKMS the most frequently
selected σ was 0.5 and the range of the bandwidth parame-
ter k was 4−11. Fig. 18 shows the comparison of SKMS with
the other competing algorithms. It can be seen that SKMS
outperforms all the other methods. For five labeled points
per class, SKMS detected 50 − 52 clusters, making mistakes
75% of the times. For all the other settings together, SKMS
recovered the incorrect number (48 − 51) of clusters only
9% of the times.

A tabular summary of all comparisons across differ-
ent data sets is provided in the supplementary material,
available online.

8 DISCUSSION

We presented the semi-supervised kernel mean shift
(SKMS) clustering algorithm where the inherent structure
of the data points is learned using a few user supplied
pairwise constraints. The data is nonlinearly mapped to
a higher-dimensional kernel space where the constraints
are effectively imposed by applying a linear transforma-
tion. This transformation is learned by minimizing a log det
Bregman divergence between the initial and the learned
kernels. The method also estimates the parameters for the
mean shift algorithm and recovers an unknown number

Fig. 18. Caltech-101 data set. AR index as the number of pairwise
constraints is varied.

of clusters automatically. We evaluate the performance of
SKMS on challenging real and synthetic data sets and
compare it with state-of-the-art methods.

We compared the SKMS algorithm with kernelized k-
means (Kkm) and kernelized spectral clustering (KSC)
algorithms, which used the same learned kernel matrix.
The linear transformation applied to the initial kernel space
imposes soft distance (inequality) constraints, and may
result in clusters that have very different densities in the
transformed space. This explains the relatively poor per-
formance of KSC in most experiments because spectral
clustering methods perform poorly when the clusters have
significantly different densities [30]. The k-means method is
less affected by cluster density, but it is sensitive to initial-
ization, shape of the clusters and outliers, i.e., sparse points
far from the cluster center.

Unlike the other methods, mean shift clustering does not
need the number of clusters as input and can identify clus-
ters of different shapes, sizes and density. Since locality is
imposed by the bandwidth parameter, mean shift is more
robust to outliers. As shown in our experiments, this advan-
tage gets pronounced when the number of clusters in the
data is large.

Clustering, in general, becomes very challenging when
the data has large intra-class variability. For example,
Fig. 19 shows three images from the highway category of the
MIT scene data set that were misclassified. The misclassi-
fication error rate in Caltech-101 data set was even higher.
On large scale data sets with over 10000 categories [14], all
methods typically perform poorly, as an image may qualify
for multiple categories. For example, the images in Fig. 19
were classified in the street category, which is semantically
correct. To deal with a large number of categories, cluster-
ing (classification) algorithms should incorporate the ability
to use higher level semantic features that connect an image
to its possible categories.

The code for SKMS is written in MATLAB and C
and is available for download at http://coewww.rutgers.
edu/riul/research/code/SKMS/index.html

TABLE 1
Object Classes Used from Caltech-101 Data Set
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Fig. 19. Three images from the class highway of the MIT Scene data set
that were misclassified.
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