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Abstract Real-world visual data is often corrupted and requires the use of
estimation techniques that are robust to noise and outliers. Robust methods
are well studied for Euclidean spaces and their use has also been extended
to Riemannian spaces. In this chapter, we present the necessary mathemati-
cal constructs for Grassmann manifolds, followed by two different algorithms
that can perform robust estimation on them. In the first one, we describe
a nonlinear mean shift algorithm for finding modes of the underlying ker-
nel density estimate (KDE). In the second one, a user-independent robust
regression algorithm, the generalized projection based M-estimator (gpbM)
is detailed. We show that the gpbM estimates are significantly improved if
KDE optimization over the Grassmann manifold is also included. The results
for a few real-world computer vision problems are shown to demonstrate the
importance of performing robust estimation using Grassmann manifolds.

1 Introduction

Estimation problems in geometric computer vision often require dealing with
orthogonality constraints in the form of linear subspaces. Since orthogonal
matrices representing linear subspaces of Euclidean space can be represented
as points on Grassmann manifolds, understanding the geometric properties
of these manifolds can prove very useful for solving many vision problems.
Usually, the estimation process involves optimizing an objective function to
find the regression coefficients that best describe the underlying constraints.
Alternatively, given a distribution of sampled hypotheses of linear solutions,
it could also be formulated as finding the cluster centers of those distributions
as the dominant solutions to the underlying observations.

A typical regression problem in computer vision involves discovering mul-
tiple, noisy inlier structures present in the data corrupted with gross out-
liers. Usually, very little or no information is available about the number
of inlier structures, the nature of the noise corrupting each one of them
and the amount of gross outliers. The original RAndom SAmple Cons-
esus (RANSAC) [5] and its several variants like MLESAC, LO-RANSAC,
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PROSAC, QDEGSAC [15] were designed for problems with single inlier struc-
ture where either a fixed estimate of the scale of inlier noise is provided by the
user beforehand or it is estimated using a simple heuristic. As the complexity
of the problems grow, a scale estimate becomes harder to determine. Although
Grassmann manifolds provide a continuous parameter space to optimize and
refine the estimate returned by a robust algorithm, it is still essential for
the original algorithm to perform well in situations where the data deviates
from the underlying model in a variety of different ways. Accurate estima-
tion of the scale of inlier noise, especially for multi-dimensional problems is
an important step for all robust algorithms.

Robust methods applied to the more general Riemannian manifolds have
appeared in computer vision literature. A short introduction to Riemannian
manifolds, mainly from a computer vision point of view and some applications
can be seen in [13] and [19], as well as the references therein. More recent work
in this area could be found in [6, 8, 10, 16, 20, 21, 22]. In case of Grassmann
manifolds, such techniques amount to clustering and finding the modes of the
subspace distributions obtained from the data.

This chapter is organized as follows. We introduce in Section 2, the neces-
sary tools for solving subspace estimation and clustering problems on Grass-
mann manifolds. Section 3 describes two robust subspace estimation algo-
rithms - the nonlinear mean shift and the generalized projection based M-
estimator (gpbM). A few applications of the two algorithms are presented in
Section 4. We conclude with a discussion in Section 5.

2 Grassmann Manifolds

A point X on the Grassmann manifold, Gm,k, represents a k-dimensional
linear subspace in Rm, where m > k. The point X is represented by an m×k
orthogonal matrix, i.e., X>X = Ik×k and is independent of the choice of
any particular basis vectors. Hence, points on the Grassmann manifold are
equivalence classes of m × k orthogonal matrices, where two matrices are
equivalent if their columns span the same k-dimensional subspace in Rm [4].

Tangent vectors at X to Gm,k are also represented as m×k matrices. Given
a real valued function f : Gm,k → R on the manifold, ∆(f) is the magnitude
of the derivative of f in the tangent direction ∆ at X. Intuitively, the tangent
vector can be thought of as velocity of a point constrained to move on the
manifold. The tangent space can be further divided into complementary hor-
izontal and vertical spaces. The space normal to the tangent space is called
the normal space. See Fig. 1a for an illustration of this decomposition. A 3×3
matrix of G3,1 has two-dimensional horizontal, one-dimensional vertical and
six-dimensional normal space.

A curve in a Riemannian manifold M is a smooth mapping α from an
open interval T of R toM. For a particular t ∈ T, X(t) lies on the manifold
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(a) (b)

Fig. 1 (a) Tangent and normal spaces of Grassmann (Riemannian) manifold with
the geodesic along the direction of the horizontal space. (b) Parallel transport of
tangent ∆ from X to Y on the manifold by removing the normal component ∆⊥.

and X′(t) is a tangent vector at X(t). Given points X,Y onM, the shortest
curve connecting X and Y is called the geodesic. The length of the geodesic
is defined to be the Riemannian distance between the two points. It can be
shown that for Grassmann manifold Gm,k, a geodesic from X, in the direction
of the tangent Λ (m× k matrix) can be written as

X(t) = [XV U]

[
cosΣt
sinΣt

]
V> (1)

where UΣV> is the compact SVD of Λ (only Uk, the first k columns of U
are computed) and the operators sin and cos act element-by-element along
the diagonal of Σ.

In Euclidean space, a vector can be moved parallel to itself by just moving
the base of the vector. Moving a tangent vector ∆ from a point X to Y
on the manifold M also accumulates a normal component ∆⊥ at Y, which
is subtracted from the transported vector. This is called parallel translation
and is illustrated in Fig. 1b. A tangent vector ∆ ∈ ∆X at X = X(0) can be
parallel-translated to another point Y ∈ M by infinitesimally removing the
normal component of the translated vector, ∆⊥ along the path between X and
Y on the manifold. For Grassmann manifold Gm,k, the parallel-translation
of ∆ along the geodesic in direction Λ is given by

∆(t) =

(
[XV U]

[
−sinΣt
cosΣt

]
U> + [I−UU>]

)
∆ (2)

where UΣV> is the compact SVD of Λ, and ∆(0) = ∆.
The horizontal space of the tangent vectors and geodesics on the manifold

are closely related. There is a unique geodesic curve α : [0, 1] → Gm,k,
starting at X with tangent vector ∆, which has the initial velocity α′(0) = ∆.
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The exponential map, expX, maps ∆ from the tangent space to the point on
the manifold reached by this geodesic

expX(∆) = α(1) = X(1). (3)

where X(1) is computed using (1). The origin of the tangent space is mapped
to the point itself, expX(0) = X(0). For each point X ∈ Gm,k, there exists
a neighborhood around the origin of ∆X that can be uniquely mapped to a
neighborhood of X via expX. The inverse mapping is achieved by the loga-
rithm map, logX = exp−1X .

Given two points X,Y ∈ Gm,k, the logarithm map finds a tangent direc-
tion Λ such that the geodesic from X along Λ reaches Y in unit time. With
[X X⊥]>[X X⊥] = Im, let C and S represent the generalized singular values
of X>Y and X>⊥Y such that C>C + S>S = Ik. With some computation, it
can be shown that for Gm,k, the logarithm operator can be written as

logX(Y) = Λ = UΣV> = Ucos−1 (C1) V> = Usin−1 (S1) V> (4)

where C1 =

[
C 0
0 I(m−k)

]
and S1 =

[
S 0
0 0(m−k)×(m−k)

]
and cos−1 and sin−1

act element-by-element along the diagonals of C1 and S1. The exponential
and logarithm operators vary as the point X moves on Gm,k which is made
explicit above by the subscript.

The distance between two points on the Grassmann manifold using (4) is
given by

d(X,Y) = ||logX(Y)||F (5)

where ||·||F is the matrix Frobenius norm. The gradient of the squared Rie-
mannian distance for Grassmann manifolds [19] is

∇Xd
2(X,Y) = −2 logX(Y). (6)

For a real-valued, scalar function f : Gm,k → R on Gm,k, let ∂fX be
the m × k Jacobian of f w.r.t. X such that ∂fX(i, j) = ∂f/∂X(i, j), i =
1, . . . ,m, and j = 1, . . . , k. The jth column vector in ∂fX gives the partial
differential of f w.r.t. the jth basis vector of X. Since each entry of ∂fX is
computed independently, in general, ∂fX does not lie in the tangent space
∆X. The gradient of f at X is the tangent vector ∇fX obtained by sub-
tracting from ∂fX its component in subspace spanned by the columns of X
yielding

∇fX = ∂fX −XX>∂fX = X⊥X>⊥∂fX. (7)

It is easy to verify that X>(∇fX) = 0. See [13] for proofs of most of the
above equations.
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3 Robust Estimation using Grassmann Manifolds

First, we describe the nonlinear-mean shift algorithm, which takes a clustering-
based approach to identify dominant subspace hypotheses over the Grass-
mann manifold. Next, we describe the generalized projection-based M-estimator
(gpbM), which improves the subspace estimate over the Grassman manifold
by using conjugate gradient optimization method.

3.1 Nonlinear Mean Shift on Grassmann Manifolds

The mean shift algorithm [3] takes an iterative approach for identifying local
modes of the underlying kernel density estimate (KDE). In Euclidean space,
this is achieved by computing weighted means of sample points in a local
neighborhood. As opposed to this, the mean of points lying on a Grassmann
manifold itself may not lie on the manifold. However, the tangent vectors
of these points exist in a vector space, where their weighted mean can be
computed and used to update the mode estimate. This method has been
generalized to many Riemannian manifolds [19].

Given n points on the Grassmann manifold, Xi, i = 1, . . . , n, the kernel
density estimate with a kernel profile κ and bandwidth h is

f̂κ(Y) =
cκ,h
n

n∑
i=1

κ

(
d2(Y,Xi)

h2

)
(8)

where cκ,h is the normalization constant and d(·, ·) represents the Riemannian
distance for Grassmann manifolds computed using (5). The kernel profile κ
is related to the kernel function as Kh(u) = cκ,hκ(u2) [3]. The bandwidth h,
which is a tuning parameter in the application, is provided by the user. It
can also be thought of as the scale parameter in the distance function.

The gradient of f̂κ at Y is calculated as

∇f̂κ(Y) =
1

n

n∑
i=1

∇κ
(
d2(Y,Xi)

h2

)

= − 1

n

n∑
i=1

g

(
d2(Y,Xi)

h2

)
∇d2(Y,Xi)

h2

=
2

n

n∑
i=1

g

(
d2(Y,Xi)

h2

)
logY(Xi)

h2
(9)

where, g(·) = −κ′(·), and the relation (6) is used in the last equation of
(9). The gradient of the distance function is taken here with respect to Y.
Like in the Euclidean case, the updated nonlinear mean shift vector is then
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computed as

δY =

n∑
i=1

g

(
d2(Y,Xi)

h2

)
logY(Xi)

n∑
i=1

g

(
d2(Y,Xi)

h2

) . (10)

This expression is defined in a vector space since logY(Xi) terms lie in the
tangent space ∆Y and the kernel terms g(d2(Y,Xi)/h

2) are scalars. Since the
mean shift vector is computed in the tangent space, i.e., not on the manifold
intrinsically, this algorithm was referred to as the extrinsic mean shift in [1].
On the other hand, the intrinsic mean shift (Int-MS) proposed in [1] operates
directly on the manifold. As shown in Sec. 4.4, there is little difference in
performance of the two mean shift procedures. The mean shift vector (10)
computed in ∆Y is projected back to the Grassmann manifold using the
exponential map for the jth iteration

Y(j+1) = expY(j)

(
δY(j)

)
. (11)

Each iteration of (11) updates the current mode estimate Y(j) by moving
along the geodesic defined by the mean shift vector to get the next estimate,
Y(j+1). A mean shift iteration is initialized at each data point by initializing
X = Xi and repeatedly updated until convergence. The complete nonlinear
mean shift algorithm is shown in Fig. 2.

Nonlinear Mean Shift over Grassmann Manifolds

Given: Points on Grassmann manifold Xi, i = 1, . . . , n
for i← 1 . . . n

Y ← Xi
repeat

δY ←

n∑
i=1

g
(
d2(Y,Xi)/h

2
)
logY(Xi)

n∑
i=1

g
(
d2(Y,Xi)/h

2
)

Y ← expY (δY)
until ‖δY‖ < ε
Retain Y as a local mode

Report distinct local modes.

Fig. 2 Nonlinear mean shift over Grassmann manifolds.

The mean shift procedure is initiated from every hypothesis point on the
manifold. Points whose iterations converges into a particular mode belong
to its basin of attraction. Dominant modes are identified as the ones having



Robust Estimation for Computer Vision using Grassmann Manifolds 7

high kernel density estimates and a large number of points in their basins of
attraction. Spurious modes are characterized by low kernel density estimates
and fewer points in their basins of attraction and can be easily pruned.

3.2 Generalized Project Based M-estimators (gpbM)

The generalized projection based M-estimator (gpbM) [12] is a robust sub-
space estimation algorithm that works on the hypothesize and test principle.
The scale of the inlier noise, the number of inlier structures and the asso-
ciated model hypotheses are automatically estimated by gpbM without any
user intervention. The gpbM can also handle heteroscedastic data for single
or multiple carrier problems in a unified framework. The original pbM algo-
rithm [17] performed scale estimation for each newly chosen elemental subset
based hypothesis by computing the median absolute deviation (MAD) esti-
mate in each dimension separately. More recently, a completely different scale
estimation strategy was presented in [12] showing superior performance over
competing methods. However, the model parameters were estimated by op-
timization over a discrete set of parameter matrices. In [13], these estimates
were refined over the Grassmann manifold as a continuous space of parameter
matrices, which led to significant performance improvements.

Given n1 measurements of inlier variables yi ∈ Rp, let xi ∈ Rm, i =
1, . . . , n1 represent the corresponding carrier vectors that are usually mono-
mials in a subset of the variables. For example, in the case of fitting an
ellipse to measured data yi = [y1 y2]> ∈ R2, the corresponding carrier vector
is given by x = [y1 y2 y21 y1y2 y22 ]> ∈ R5. In this setting, robust subspace
estimation corresponds to performing a linear estimation in the carrier space
of the data corrupted with outliers and containing an unknown number of
noisy inlier points. We have n (> n1) points xi, i = 1, . . . , n, where n − n1
points are outliers. The parameter matrix Θ is an m×k, (k < m), orthonor-
mal matrix such that Θ>Θ = Ik×k, and therefore can be represented as a
point on the Grassmann manifold Gm,k. Geometrically, it is a basis of the
k-dimensional null space of the inlier data representing the k constraints im-
posed on them. The α ∈ Rk is the corresponding k-dimensional vector of
intercepts. Therefore

Θ>xio −α = 0k (12)

where xio, i = 1, . . . , n1, are the unknown true values of the inlier carrier
points. The multiplicative ambiguity in the estimation of Θ is resolved by
enforcing Θ>Θ = Ik×k. No assumptions are made about the distribution of
the n− n1 outlier points.

The carrier vectors are often nonlinear in the variables, thereby making
the estimation problem heteroscedastic, i.e., each carrier vector has a different
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noise covariance matrix, and in general can even have a different mean. Given
the covariance matrices of the observed variables, Cyi and the Jacobians
of the carrier vectors with respect to those variables, Jxi|yi , the first order
approximation of the m×m carrier covariances can be computed using error
propagation as

Cxi = J>xi|yi Cyi Jxi|yi , i = 1, . . . , n. (13)

The covariance of the vector of variables Cyi is often assumed to be the same
for all i, but in general, can be different for each yi. Since some carriers are
associated with outliers, their covariances are computed incorrectly.

For each projected point zi = Θ>xi, the k × k covariance matrix is com-
puted as Hi = Θ>CxiΘ. The k × k point-dependent bandwidth matrices
Bi are computed as Bi = S>HiS using the k × k diagonal scale matrix S,
with the diagonal entries corresponding to the value of scale of inlier noise
in each dimension of the null space. Therefore, in order to compute Bi, we
need to estimate the k-dimensional scale first. In gpbM, each inlier structure
is estimated by using a three-step procedure:

• scale estimation,
• mean shift based robust model estimation,
• inlier/outlier dichotomy.

In case of multiple structures, the set of inlier points associated with each
detected structure is removed iteratively from the data and the three step
procedure is repeated until no more significant inlier structures are found.

The gpbM algorithm follows a hypothesize-then-test strategy such that an
estimate of the parameter pair [Θ,α] is computed from a randomly selected
elemental subset, i.e., minimal set of points necessary to generate a subspace
hypothesis. The hypothesis corresponding to the best model over the set of
all randomly generated hypotheses is selected by maximizing the following
heteroscedastic objective function

[
Θ̂, α̂

]
= arg max

Θ,α

1

n

n∑
i=1

K
((

(Θ>xi −α)>B−1i (Θ>xi −α)
) 1

2

)
√

det Bi

(14)

where K(u) is the kernel function and is related to a redescending M-
estimator loss function by K(u) = 1 − ρ(u). The loss function ρ(u) is non-
negative, symmetric, non-decreasing with |u| and has a unique minimum of
ρ(0) = 0 and a maximum of one for |u| > 1.

Step 1: Heteroscedastic Scale Estimation. The estimation of the scale of
inlier noise is equivalently posed as the problem of estimating the approximate
fraction of data points belonging to an inlier structure. For estimating the
fraction, M elemental subset-based model hypotheses are generated. For each
hypothesis [Θ,α], the value of fraction is varied between (0, 1] in Q steps,
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such that for q = 1, . . . , Q, the fraction is ηq = q/Q = nq/n. A value of
Q = 40 was used for all applications shown in [12, 13]. The scale of the inlier
noise is estimated by taking into account the heteroscedasticity of the carrier
vector. In the projected space defined by Θ, the volume around the intercept
α containing nq points is computed as

volq(Θ,α) =

√√√√ nq∑
l=1

(zl −α)
>

H−1l (zl −α) (15)

where zl, l = 1, . . . , nq are Mahalanobis distance-based nq nearest neighbors
of α. Given a hypothesis [Θ,α], the density at each fraction ηq, q = 1, . . . , Q
is computed as nq/(vol

q(Θ,α) + ε), where a small constant ε is added to
suppress extremely high numerical values of the densities at low fractions.
The computed density values are used to populate an M ×Q matrix Ψ.

From the matrix Ψ, the peak density values along each of the M hypothe-
ses (rows) and their corresponding fractions (columns) are retained. Typi-
cally, some columns are associated with several density peaks while other
columns are not. At each column q, a fraction ηq of the highest peak density
values are summed up. The largest sum of density peaks corresponds to ηq̂,
i.e., the estimate of the fraction of points comprising an inlier structure. This
approach makes the fraction estimate more robust, especially when multiple
inlier structures exist, each comprising very different number of points.

The hypothesis [Θ∗,α∗] that gives the highest density at ηq̂ is used to
project the data points xi. The dimensions of the smallest k-dimensional
rectangle enclosing the nq̂ nearest neighbors of α∗ provide the final estimate
of the scale, which forms the diagonal of S. The corresponding nq̂ points
enclosed inside the rectangle form an initial estimate of the inliers.

Step 2: Model Estimation. Model estimation is performed by generating
N elemental subset based model hypotheses. However, only the initial set
of inliers returned by the scale estimation step are used for the selection of
elemental subsets, making the model estimation very efficient. For a given
hypothesis [Θ,α], the problem 14 can be re-written as that of estimating
the kernel density of the data points projected to the k-dimensional null
space. The adaptive kernel density function over the projections zi = Θ>xi ∈
Rk, i = 1, . . . , n is defined as

f̂κ (Θ, z) =
1

n

n∑
i=1

κ
(
(z− zi)

>B−1i (z− zi)
)

√
det Bi

(16)

where κ(u2) = K(u) is the profile of the kernel function K(u). Differentiating
(16) w.r.t. z,
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df̂κ(Θ, z)

dz
=

2

n

n∑
i=1

B−1i (z− zi)
g
(
(z− zi)

>B−1i (z− zi)
)

√
det Bi

= 0 (17)

where g(u2) = −d
(
κ(u2)

)
/d(u2). The Euclidean mean shift vector can be

written as

δz =

[
n∑
i=1

B−1i g (. . .)√
det Bi

]−1 [ n∑
i=1

B−1i zig (. . .)√
det Bi

]
− z. (18)

The mean shift procedure is initiated from z(0), i.e., the projection of the
elemental subset points on Θ. The update z(j+1) = δz(j) + z(j), is a gradient
ascent step converging to α, the closest mode of the KDE (16).

Step 2.1: Conjugate Gradient on the Grassmann manifold. Each
Θ is an m × k orthogonal matrix and can be represented as a point on the
Grassmann manifold, Gm,k. Continuous optimization techniques to maximize
the objective function of (16) over Gm,k can therefore be employed.

The conjugate gradient algorithm is widely used for optimization of non-
linear objective functions defined over Euclidean spaces. This popularity is
due to fast convergence rates achieved by iteratively moving along linearly
independent directions in the solution space. Moreover, it avoids computing
the Hessian, thus making each iteration less expensive than other alterna-
tives like Newton’s method. The optimization along a chosen direction is
performed using line search methods and in this case Brent’s method [14,
pp. 402–405] is used. Edelman et al. [4] adapted the conjugate gradient al-
gorithm to minimize a function f : Gm,k → R over the Grassmann manifold
Gm,k.

Conjugate gradient method originally being a function minimization al-
gorithm, the function f♦(Θ,α) = −f̂κ(Θ,α) is optimized. The function
f♦(Θ,α) is jointly minimized over its domain Gm,k × Rk with each iter-
ation of conjugate gradient simultaneously updating both Θ ∈ Gm,k and
α ∈ Rk. Given an estimated pair [Θ,α], the initial gradient of the objective
function f♦(Θ,α) w.r.t. Θ on Gm,k is computed using (7) as

∇fΘ = ∂fΘ −ΘΘ>∂fΘ (19)

where ∂fΘ is the Jacobian of f♦(Θ,α) w.r.t. Θ. The corresponding gradient
w.r.t. α is given by

∇fα = ∂fα (20)

where ∂fα is the Jacobian of f♦(Θ,α) w.r.t. α.
The Jacobians ∂fΘ and ∂fα depend on the choice of the kernel function and

are computed to a first order approximation. This is equivalent to assuming
an explicit independence among Θ, α and the covariance matrices Hi, i =
1, . . . , n, i.e, the Jacobian computation does not involve differentiating Hi

w.r.t. Θ and α. For the Epanechnikov kernel defined as
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K(u) '
{

1− u2 if |u| ≤ 1
0 if |u| > 1

(21)

and j = 1, . . . , k, l = 1, . . . ,m, the entries of the m× k matrix ∂fΘ are

∂fΘ(l, j) = − 1

n

n∑
i=1

1√
det Bi

(
∂κ(u2)

∂Θ(l, j)

)
=

2

n

n∑
i=1

pi(j)xi(l) (22)

where u =
(
(Θ>xi −α)>B−1i (Θ>xi −α)

) 1
2 and pi =

B−1

i

(
Θ>xi−α

)
√

detBi

. The

entries of the k-dimensional vector ∂fα are given as

∂fα(j) = − 1

n

n∑
i=1

1√
det Bi

(
∂κ(u2)

∂α(j)

)
= − 2

n

n∑
i=1

pi(j) j = 1, . . . , k. (23)

The conjugate gradient algorithm is initialized by setting the optimiza-
tion variables to

[
Θ(0),α(0)

]
as estimated in the model estimation step. The

initial search directions are taken to be the negative gradient direction, i.e.,
Λ(0) = −∇fΘ(0) and λ(0) = −∇fα(0) , computed using (19) and (20). For
each iteration j, Brent’s method is applied for minimization of f♦ in direc-
tions along

[
Λ(j),α(j)

]
and the variables

[
Θ(j+1),α(j+1)

]
are updated to

this directional minimum. Both the search and the gradient directions on
the Grassmann manifold are parallel-translated to the newly updated loca-

tion Θ(j+1) using (2) and are denoted by Λ
(j)
τ and ∇τ fΘ(j) respectively. The

equivalent operations for λ(j) and fα(j) are simply the Euclidean translations
in Rk. The new gradient directions

[
∇f

Θ(j+1) ,∇fα(j+1)

]
are computed at the

updated points and the resulting conjugate directions are

Λ(j+1) = −∇fΘ(j+1) + ω(j)Λ(j)
τ

λ(j+1) = −∇fα(j+1) + ω(j)λ(j) (24)

where

ω
(j)

=

trace
([
∇f

Θ(j+1)−∇τ f
Θ(j)

]>
∇f

Θ(j+1)

)
+
[
∇fα(j+1)−∇fα(j)

]>
∇fα(j+1)

trace
((
∇f

Θ(j)

)>
∇f

Θ(j)

)
+
(
∇fα(j)

)>
∇fα(j)

.

While the covariance matrices H
(j)
i =

(
Θ(j)

)>
CxiΘ

(j), i = 1, . . . , n,
should ideally be recomputed in each iteration, it was shown in [13] that

maintaining H
(j)
i = H

(0)
i , j = 1, 2, . . . , i = 1, . . . , n reduced the computa-

tional cost significantly without noticeable changes in the final estimates. Af-

ter convergence of the conjugate gradient, the optimization variables
[
Θ̂, α̂

]
gives the final estimate of the parameter matrix and the intercept.
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Step 3: Inlier/Outlier Dichotomy. Given the estimated model
[
Θ̂, α̂

]
,

the deviation of each point from the mode is normalized by its point-
dependent covariance. For zi = Θ̂>xi, i = 1, . . . , n, the heteroscedastic pro-
jections around the mode are computed as

z̃i = α̂ +
(zi − α̂)

||zi − α̂||2

√
(zi − α̂)

>
H−1i (zi − α̂) (25)

This reduces the inlier/outlier dichotomy to homoscedastic mean shift clus-

tering problem since the bandwidth matrices B̃i = S>Ik×kS = S>S also
become constant for all points. The points for which the mean shift itera-
tions converge to α̂ (within a small tolerance) are considered inliers.

Using the estimated scale matrix S, the strength of the detected in-

lier structure is computed as ξ = f
(
Θ̂, α̂

)
/‖S‖2. The algorithm stops if

the strength drops by a factor of 20 compared to the maximum strength
among the previously computed inlier structures, indicating that the remain-
ing points comprise only gross outliers.

4 Applications

A result of the nonlinear mean shift for chromatic noise filtering is presented,
followed by the application of generalized project based M-estimators (gpbM)
algorithm applied to fundamental matrix and homography estimation. Fi-
nally, a quantitative comparison of both methods with related robust esti-
mation techniques is presented using a subset of the Hopkins155 dataset.

4.1 Chromatic Noise Filtering

In general, pixels in images are represented by m-dimensional vectors, e.g.,
RGB values encoded as a 3-vector. Chromatic image noise affects only a
pixel’s chromaticity, i.e., the direction of the color vector but not its inten-
sity. Here we restrict the filtering application to RGB images, therefore the
chromaticity can be represented by unit vectors in R3, which lies on the
Grassmann manifold G3,1. The original mean shift has been used for the
discontinuity preserving filtering of color images [2, 3]. This algorithm was
extended to manifold-valued images in [18].

The image I is considered to be a mapping on a d-dimensional lattice
which assigns a value to each lattice point. Visual images typically have
d = 2, although 3D images with d = 3 are also used. In this case d = 2 and
at each location zi = [xi, yi]

>, the data values I(zi) are assumed to lie on
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Fig. 3 Chromatic Noise Filtering. Mean Shift over R2 ×G3,1. The peppers image
corrupted with chromatic noise is shown on the left. The results of using standard
mean shift filtering with EDISON are in the middle and the result of nonlinear mean
shift filtering is on the right.

G3,1. A pixel I(zi) along with its location zi is considered as a single data
point xi = (zi, I(zi)), in the joint domain R2 ×G3,1.

The mean shift iterations are performed in this joint space to cluster the
pixels. Consider an iteration starting at the point xi = (zi, ci), where ci =

I(zi), that converges to the mode (ẑi, ĉi). In the filtered image Î, all the pixel
values converging to this mode are set to ĉi. The profile in the joint domain is
the product of a spatial profile defined on R2 and a parameter profile defined
on the Grassmann manifold G3,1, as

κ(x,xi) = κs

(
‖z− zi‖2

h2s

)
κp

(
d2(c, ci)

h2p

)
. (26)

A truncated normal kernel was used for both κs and κp. The bandwidth in
the joint domain consists of a one-dimensional spatial bandwidth hs and a
one-dimensional parameter bandwidth hp. The bandwidths hs and hp can be
varied by the user to achieve the desired quality in the output.

Subbarao and Meer [19] showed that chromatic filtering using Grassmann
manifolds leads to remarkable improvements over the original mean shift
which smooths both intensity and color. The filtering results for the 512×512
peppers image are shown in Figure 3. The image is corrupted with chromatic
noise by adding Gaussian noise with standard deviation σ = 0.3, along tan-
gent directions followed by an exponential map on to G3,1. The original
mean shift image filtering algorithm from EDISON, was executed with care-
fully selected bandwidth parameters (spatial hs = 11.0 and color hp = 10.5),
to obtain the middle image. Using larger hp led to oversmoothing and using
smaller values did not denoise the original noisy image sufficiently. The non-
linear mean shift was executed with the same hs = 11.0 but with hp = 0.5
to obtain the image on the right. The nonlinear chromatic filtering is clearly
better than EDISON due to the smoothening of the correct noise model.
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Fig. 4 Two images from the Raglan Castle sequence. The true inliers are marked
with green markers while the outliers with red markers. The viewpoints of the two
images are very different.

4.2 Fundamental Matrix Estimation

Reliable estimation of the fundamental matrix is often crucial for multi-view
vision systems. Typically, in robust estimation formulations, the 3 × 3 fun-
damental matrix is represented by θ ∈ R8 while α ∈ R. Each data point is a
vector of variables y = [x y x′ y′]

>
and lies in R4. Here, (x, y) and (x′, y′)

are the coordinates of the corresponding points in the two images. Using the
epipolar constraint with the homogeneous image coordinates (without the
points at infinity) can be written as

[x′ y′ 1]F3×3

xy
1

 = 0. (27)

The carrier vector is written as x = [x y x′ y′ xx′ xy′ yx′ yy′]
>

which
lies in R8. Assuming the variables y have covariance σ2I4×4, the first order
approximation of the covariance matrix of x is computed from the Jacobian
using error propagation

Jx|y =


1 0 0 0 x′ y′ 0 0
0 1 0 0 0 0 x′ y′

0 0 1 0 x 0 y 0
0 0 0 1 0 x 0 y

 = [ I4×4 J(y) ] (28)

Cx = σ2J>x|y I4×4 Jx|y = σ2

[
I4×4 J(y)

J(y)> J(y)>J(y)

]
. (29)

Raglan Castle Images: The gpbM algorithm was used to estimate the
fundamental matrix between the Raglan Castle image pair shown in Fig. 4.
Notice the large viewpoint change between the left and the right images.
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Fig. 5 Two images of the Graffiti dataset. The true inliers are shown with green
markers while the outliers are in red.

Using the SIFT algorithm [11], 109 point matches were obtained, out of
which 54 were true inliers. With the values of M = 400 and N = 200, the
performance of the gpbM algorithm was compared over 50 runs with and
without the optimization on Grassmann manifold. On average, the gpbM
algorithm misclassified 7.1 (out of 109) points, while only 5.6 points were
classified wrongly after using the conjugate gradient algorithm. The average
absolute residual error for the 54 true inlier points using gpbM algorithm
was 1.86 pixels, while it was 1.77 pixels when optimization using conjugate
gradient algorithm was also performed.

4.3 Planar Homography Estimation

A planar homography is a general 2D mapping between corresponding points
on two projective planes. A pair of inlier homogeneous point correspondences
p and p′, represented in homogeneous coordinates, satisfy p′ = Hp. Using
the Direct Linear Transformation (DLT) [7, Alg. 7.1], the same equation can
be re-written as

Aih =

[
−p>i 0>3 x′ip

>
i

0>3 −p>i y′ip
>
i

]h1

h2

h3

 = 02 i = 1, . . . , n1 (30)

where pi = [xi yi 1]> and p′i = [x′i y′i 1]> are obtained from the image
point correspondences of the n1 inliers. The parameter vector θ is obtained
by rearranging the 3×3 homography matrix H = [h1 h2 h3]

>
. The variables

are yi = [xi yi x′i y′i]
> and Ai is the 2 × 9 carrier matrix. The rows of Ai

correspond to the two carrier vectors x
[1]
i ,x

[2]
i ∈ R9 obtained from each point

correspondence and are heteroscedastic due to multiplicative terms.
Given four point correspondences across two planes, the 8×9 data matrix

is formed by stacking the corresponding four carrier matrices. For a point
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correspondence pair, the 4 × 4 covariance matrix of the variable vector y is
given as Cy = σ2I4×4. The 4× 9 Jacobians of the two carriers given by

J
x

[1]
i |yi

=

−I2×2

04×4

x′I2×2 02

0>2 p>

0>2 0>2 0


J

x
[2]
i |yi

=

04×3

−I2×2

04

y′I2×2 02

0>2 0>2 0
0>2 p>

 (31)

are used to compute the 9 × 9 covariance matrices for each carrier vector

C
[c]
i = σ2J>

x
[c]
i |yi

CyiJx
[c]
i |yi

, c = 1, 2. The covariances correctly capture the

point-dependent noise for inlier points only.

Graffiti Images: Fig. 5 shows two images from the Graffiti dataset used
for planar homography estimation. The projective distortion between the two
images is clearly visible. The SIFT algorithm [11] identified 61 point matches,
out of which only 21 were true matches. Using M = 800 and N = 200, the
performance of the gpbM algorithm was compared over 50 runs with and
without performing the optimization on Grassmann manifolds. On average,
the gpbM algorithm misclassified 8.68 (out of 61) points, while only 7.31
points were classified incorrectly after using the conjugate gradient algorithm.
The relatively large number of misclassifications is due to the large projective
distortion between the two images. The average absolute residual error over
the 21 true inlier points using gpbM algorithm was 1.132 pixels while it was
1.091 pixels after using the conjugate gradient algorithm too.

4.4 Affine Motion Factorization

When n1 image points lying on a rigid object undergoing an affine motion,
are tracked over F frames, each trajectory can be represented as a 2F -
dimensional point. Due to the rigid body motion constraint, these points lie
in a three-dimensional subspace of R2F . Please see [7, pp. 436–439] for more
details about motion factorization. The gpbM algorithm was applied to pro-
jective motion factorization in [12] with extensive quantitative comparisons.
Due to space constraints, only affine motion factorization is presented here to
demonstrate the improvements achieved through the additional optimization
on Grassmann manifolds.

The quantitative performance comparison of four different robust esti-
mation algorithms is discussed. The nonlinear mean shift [19] is referred to
as Ext-MS because the mean shift computation is performed in the tan-
gent space extrinsic to the manifold. The remaining three algorithms are
the intrinsic nonlinear mean shift (Int-MS) [1], generalized projection based
M-estimator (gpbM) [12] and gpbM with conjugate gradient on Grassmann
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Sequence Ext-MS [19] Int-MS [1] gpbM [12] gpbM+CG [13]

arm(2) 30.65% 27.73% 7.99% 7.79%
articulated(3) 30.17% 24.50% 6.90% 6.70%

cars1(2) 20.07% 23.00% 6.51% 5.96%
cars2(2) 11.90% 9.08% 3.58% 3.55%
cars4(2) 21.60% 11.94% 7.55% 7.31%
cars5(3) 19.94% 19.41% 8.93% 8.05%
cars6(2) 5.68% 7.09% 1.86% 1.85%
cars8(2) 42.71% 35.29% 7.31% 6.97%
truck1(2) 28.56% 13.24% 6.27% 6.09%

2RT3RC(3) 12.52% 7.40% 10.92% 10.06%
Overall 17.91% 14.64% 6.58% 6.18%

Table 1 Average percentage of misclassified points. CG stands for conjugate gradient
on Grassmann manifolds. The number in the parenthesis in the first column shows
the true number of motions for each sequence. The results of gpbM and gpbM+CG
were averaged over 50 runs while those of Ext-MS and Int-MS were averaged over 20
runs.

manifolds (gpbM+CG) [13]. The input data are the point matches across the
F frames and the performance is compared using percentage of misclassified
points.

The algorithms are tested on ten video sequences containing multiple mo-
tions from Hopkins155 dataset. This dataset does not contain outliers. For
each sequence, F = 5 frames were used by picking every sixth or seventh
frame from the sequence. For gpbM with and without using conjugate gra-
dient on Grassmann manifolds, the values of M = 1000 and N = 200 were
used. The Ext-MS algorithm used 1000 randomly generated elemental subset
based hypotheses. The corresponding parameter matrices were clustered on
the Grassmann manifold G10,3 using the algorithm described in Section 3.1
with the bandwidth parameter h set to 0.1. The algorithm Int-MS used 1000
hypotheses generated as in the Ext-MS case.

Table 1 shows the comparative performance based on the percentage mis-
classification error. The results of the gpbM and gpbM+CG algorithms were
averaged over 50 independent runs, while those of Ext-MS and the Int-MS
were averaged over 20 independent runs. Neither of the methods assumed
the knowledge of the true number of motions, but the nonlinear mean shift
algorithms need the bandwidths as input from the user. It is clear that the
optimization over Grassmann manifolds improves the estimates for every se-
quence.

5 Discussion

The image formation process imposes constraints on the imaged objects, e.g.
the trajectory of points on a moving rigid body in a video sequence, hu-
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man joint angle trajectories, shape of planar regions across multiple views,
etc. Many computer vision techniques assume the pinhole camera model for
image formation, which allows us to interpret the physical constraints as
data points lying in an unknown linear subspace. The subspace parameters
characterize physical world phenomena like camera rotation, object motion,
human activity, etc. An orthonormal matrix Xn×k, lying on the Grassmann
manifold can uniquely represent a linear subspace. Therefore, the geometry
of Grassmann manifolds provides a natural mathematical framework to de-
sign subspace estimation or tracking algorithms for several computer vision
applications.

The nonlinear mean shift on Grassmann manifolds takes a clustering based
approach to solve the robust subspace estimation problem. For the applica-
tions that we presented here, both the Ext-MS [19] and Int-MS [1] produced
comparable results. However, these methods can only be used when the user
provides a correct bandwidth parameter. A new research direction could be
to make these algorithms fully automatic by employing purely data-driven
techniques for estimating the bandwidth. In [19], many other Riemannian
manifolds were analyzed - Lie groups, the space of symmetric positive definite
matrices and the essential manifold, which is a composite Lie group formed
by the product space of two special orthogonal (SO(3)) groups. Clustering-
based approaches on these manifolds were used to solve a variety of computer
vision problems.

We also discussed the generalized projection based M-estimator (gpbM),
which benefited from optimization over Grassmann manifolds. The first step
of gpbM estimates an initial set of inliers and the scale of inlier noise using a
discrete set of elemental subset-based hypotheses. The model estimation step
optimizes a robust objective function over a smaller set of hypotheses gener-
ated only from the initial inlier set. To further refine the estimate, the optimal
hypotheses are used to initialize the conjugate gradient algorithm over the
Grassmann manifold, which is a continuous space of subspace parameters. It
remains an open question if, after the scale estimation step, the Grassmann
manifold can directly be used to estimate the model and the correct inliers.
This would require a reformulation of the problem definition.

The gpbM algorithm has been used in many applications to recover mul-
tiple structures by iteratively removing inlier points associated with each
structure [12]. Without any prior knowledge about the scale of inlier noise,
it is difficult for the robust estimation algorithm to recover more than a
few structures automatically, which seems to be an easy task for the human
vision system. We believe that the capabilities of automatic estimation al-
gorithms can be significantly improved if top-down information is effectively
incorporated into existing data-driven techniques.

Data analysis on manifolds involves higher computation to account for
the non-Euclidean geometry. These problems have been somewhat mitigated
with availability of parallel processing hardware and development of effi-
cient new algorithms. For example, the Grassmannian Robust Adaptive Sub-
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space Tracking Algorithm (GRASTA) [9] uses stochastic gradient descent
on Grassmann manifolds to move along the geodesic with efficient rank one
updates. GRASTA was applied to foreground/background segmentation in
videos achieving a frame rate of about 46 fps. Such algorithmic advances have
bridged the gap between the theoretical research and practical applications
to large-scale computer vision problems that are of interest to researchers
and practitioners alike.

The computational complexity of solutions may be higher for problems
that incorporate the underlying Riemannian geometry, but it is important
to avoid heuristics and ad-hoc approximations incurred due to solutions de-
signed in Euclidean space. There is only a small amount of research work
that has used Riemannian geometry to make significant impact in computer
vision applications. Computer vision researchers could benefit from a course
on Riemannian geometry with a special focus on its applications to computer
vision problems. We hope that this book will serve as a catalyst to push for-
ward computer vision research in this direction in order to understand and
exploit the vast mathematical infrastructure of Riemannian geometry.
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