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ABSTRACT

Many species in the wild exhibit a visual pattern that can

be used to uniquely identify an individual. This observa-

tion has recently led to visual animal biometrics become a

rapidly growing application area of computer vision. Cus-

tomized software tools for animal biometrics already employ

vision based techniques to recognize individuals in images

taken in uncontrolled environments. However, most exist-

ing tools require the user to localize the animals for accurate

identification. In this work, we propose a figure/ground seg-

mentation method that automatically extracts out the animal

in an image. Our method relies on a semi-supervised metric

learning algorithm that uses a small amount of training data

without compromising generalization performance. We de-

sign a simple pipeline comprising of superpixel segmentation,

texture based feature extraction followed by mean shift clus-

tering using the learned metric. We show that our approach

can yield competitive results for figure/ground segmentation

of patterned animals in images taken in the wild, often under

extreme illumination conditions.

Index Terms— Metric learning, figure/ground segmenta-

tion, patterned species

1. INTRODUCTION
Visual animal biometrics [1, 2, 3] is an upcoming and im-

portant application area of computer vision. Many species

exhibit a visual pattern, which can be used to identify individ-

uals. For instance tigers can be identified uniquely by their

stripes [2] and leopards can be identified by their rosettes. Bi-

ologists prefer such non-invasive methods for identification

as these lead to minimal stress for the animals, while reduc-

ing cost and risks of field trips, animal capture and mount-

ing/dismounting of tracking devices.

For endangered species like tigers, identification of in-

dividuals from camera trap images are crucial for monitor-

ing and tracking population, localization of an individual and

forensics to control poaching. Customized software tools ex-

ist that perform identification of individuals [2], however, they

require intensive interaction to achieve reasonable accuracy.

For each query image, manual effort is needed to mark sev-

eral keypoints around the animal’s silhouette, which is tedious

Thanks to WII for providing camera trap images of tigers.

Fig. 1: Example camera trap images of tigers depicting illu-

mination variations.

considering several thousand query images are generated dur-

ing a typical population census drive.

Segmenting out the animal’s silhouette can be done by

figure-ground segmentation, for which several techniques ex-

ist, both in unsupervised and the (semi-)supervised category.

These techniques have been studied well as they play a key

role in vision based tasks like object recognition [4]. The

goal is to produce a binary segmentation separating the fore-

ground object from its background. To cope with variability

in images, many of the semi-supervised techniques take an in-

teractive approach while others rely on classifiers trained on

extensive training data.

Fig. 1 shows typical images from our camera trap tiger

dataset, where the use of external lighting sources often re-

sult in similar color and texture properties for the tiger and

ground regions. In case of camera trap images, unsupervised

techniques typically fail due to background clutter, complex

illumination effects, nonrigid variations in animal pose and

occlusions. Supervised approaches use training data to learn

classifiers that are robust to these variations. However, the

performance is crucially dependent on the quantity of train-

ing data. Since large amounts of training data is expensive

to collect, fully supervised methods are not suitable for this

application.

In this work, we take a semi-supervised approach that re-

lies on limited training data (1-2 images). We first generate a

superpixel representation of the image, which allows efficient

processing at query time. As our domain comprises images of

patterned animals, we creating a feature space that captures

the texture properties. The training data is used to learn a

discriminative Mahalanobis distance based metric offline. At

query time the learned metric is used with mean shift cluster-

ing [5] to perform an automatic figure-ground segmentation.

Using a combination of mean shift and metric learning in-

creases the robustness of our figure-ground segmentation pro-



cess against clutter and illumination variations. Our method

does not require any user input for the query image and relies

only on a few training images for metric learning.

The paper is organized as follows. In Section 2, we briefly

review the existing approaches for figure-ground segmenta-

tion. In Section 3, we discuss our preprocessing and metric

learning strategy. We present our overall figure-ground seg-

mentation technique in Section 4, followed by experimental

results and comparisons for three different patterned species

in Section 5. Finally, we conclude our work in Section 6.

2. LITERATURE REVIEW
Many figure-ground segmentation techniques work with an

interactive framework [6, 7, 8, 9, 10, 11], which requires man-

ual input from the user to guide the segmentation process. In

[6], a bounding box around the object of interest is drawn to

define the region outside the box as background while the part

within the box is considered as a combination of foreground

and background. An iterative algorithm based on graph cuts

is used to obtain the final segmentation result. Since these

methods use manual input in each query image, this approach

becomes tedious when the query set is large.

Recently, Li et al. [10] proposed an interactive figure-

ground segmentation approach by employing metric learning

repeatedly in the feature space. The user provides scribbles

indicating foreground and background pixels, which are then

used to identify superpixels to be used as training data for the

metric learning algorithm. Using the learned metric, previ-

ously unlabeled superpixels are added to the training set and

the metric learning process is repeated. While empirical re-

sults in [10] are promising, the stopping criteria for iterative

metric learning is not discussed. Such an approach may not

converge, especially in case of camera trap images, which are

often affected by high noise or extreme illumination as shown

in Fig. 1.

Several techniques like [12, 4] avoid manual input by

training a classifier like SVM on different low-level features

extracted from training images to classify test image as fig-

ure/ground. In [4], a supervised approach is proposed for ob-

ject recognition, which learns both geometric and appearance

based priors to partition a superpixel graph using graph-cut

based energy minimization. The authors take a two-step ap-

proach in [13], where first a set of overlapping windows in

the query image are assigned a label based on their nearest

neighbors in the training set. The second step minimizes an

energy function using a graph-cut based approach to obtain

the optimal segmentation. These methods perform well in

terms of segmentation results, however, they rely heavily on

large training sets for which several features are combined

like local phase quantization (LPQ) texture feature and GIST

features along with spatial information.

Unlike the techniques discussed above that train classi-

fiers using large amounts of data, we use very less training

data to learn a distance metric. Our mean shift clustering

based approach leverages the learned metric for automatic

figure/ground segmentation. While any metric learning al-

gorithm can be introduced in our pipeline, we compare our

segmentation results using two popular metric learning ap-

proaches [15, 16]. We also develop a modified version of a

recent metric learning technique proposed in [17] and show

its benefits for our application.

3. FEATURE EXTRACTION AND METRIC
LEARNING

For segmenting camera trap images of patterned species, we

rely mainly on the texture features. In this section, we de-

scribe our feature space representation followed by the metric

learning approach.

3.1. Feature Extraction
All the images used for testing and training are first overseg-

mented using SLIC superpixels [18]. The texture features

are extracted using a filter bank [19] of 48 filters at differ-

ent scales and orientations. Thus, every pixel in the image

has a 48-dimensional response vector. We use the labeled

training images and map pixels from each class to this fea-

ture space and perform k-means clustering with k = 20. The

cluster centers from each class are then concatenated for vec-

tor quantization of the feature space.

Each superpixel in the oversegmented image is repre-

sented by a histogram of texture features. The texture fea-

tures corresponding to each constituent pixel is assigned to a

histogram bin based on its closest cluster center. This texture

histogram is normalized to have unit �1-norm and is our final

feature vector.

3.2. Metric Learning Background
We represent figure and ground feature vectors by a set X =
{x1,x2, . . . ,xm}, with xi ∈ R

n, i = 1, . . . ,m. A Maha-

lanobis distance metric between two feature vectors xi,xj ∈
R

n, is given by

dM(xi,xj) =
√

(xi − xj)TM(xi − xj) (1)

where, M � 0 is a symmetric positive semidefinite (PSD)

matrix. The PSD constraint ensures that dM(·, ·) is a valid

distance metric.

Mahalanobis metric learning algorithms search for a M �
0 that captures a linear transformation of the feature space

such that similar points have small distances, while dissimi-

lar points have large distances between them. This problem

is formulated as an optimization problem with a semidefinite-

ness constraint on M.

Large Margin Nearest Neighbor (LMNN) [16] takes a

margin maximization approach and learns a low-rank M
that is tuned for k-NN classification, and hence does not

perform well with mean shift based segmentation. Informa-

tion Theoretic Metric Learning (ITML) [15], on the other

hand, optimizes a log det based objective, which implicitly

maintains the positive definiteness of M. Since the log det
function does not permit a low-rank M, the learned metric



turns out to be sensitive to noise and does not generalize well.

Our empirical comparisons in Section 5 support this intuition.

3.3. Metric Learning Algorithm
In order to overcome the difficulties with LMNN and ITML,

we use a modified version of a recent approach, Stiefel

Manifold based Metric Learning (SMML) proposed in [17].

SMML parametrizes the rank-p matrix M = UWU� using

its diagonal eigenvalue matrix Wp×p and orthonormal eigen-

vector matrix Un×p. This parametrization permits learning a

low-rank M, by driving some of its eigenvalues to zero. Intu-

itively, the eigenvectors corresponding to nondiscriminative

directions in the feature space are assigned zero eigenvalues,

thus promoting discriminative metric learning and feature

selection.

We denote the set of similar and dissimilar feature point

pairs as Cs and Cd respectively. The similarity set Cs con-

tains feature point pairs, both coming from the same class

(foreground or background). The dissimilarity set Cd con-

tains point pairs that come from different classes (one from

foreground and one from background). The combined set

C = Cs ∪ Cd is used to generate constraints for the metric

learning problem.

We modify the metric learning formulation of [17] and

formulate an unconstrained optimization problem. The two-

term objective contains a hinge loss function to control dis-

tance constraint violations and a �2-norm regularizer to ensure

smoothness. The formulation is given by

min
U∈Sn,p,w∈R

p
+

m∑
i,j=1

[
yij(z

�
ijUDiag(w)U�zij − bij)

]
+

+ α ‖w −w0‖22 (2)

Here, the term [x]+ = max(0, x) is the hinge loss term

that captures the degree of violation of constraints, and

w = Diag(W), with the initial value w = 1 correspond-

ing to M = I. The vectors zij = xi − xj represent the

difference vectors for the constraint pairs (i, j) ∈ C and bij
are the corresponding target distances. The constants yij are

indicator variables identifying similarity or dissimilarity pairs

by respectively taking 1 or -1 and α > 0 is a regularization

parameter. The domains for w and U are R
p
+, the nonnega-

tive orthant of Rp and Sn,p as the space of all n× p matrices

with orthonormal columns (a.k.a. Stiefel Manifold).

Due to space limitations, we are unable to describe the

detailed algorithm for optimizing (2). We use an alternating

strategy similar to [20]. Therefore, keeping U fixed, we solve

the subproblem for w

min
w∈R

p
+

m∑
i,j=1

[
yij(a

�
ijDiag(w)aij − bij)

]
+

+ α ‖w −w0‖22 (3)

where we replace U�zij = aij for notational convenience.

The objective function in (3), is sum of two terms and can be

(a) (b) (c) (d)

Fig. 2: Steps involved in Segmentation. (a) Test Image (b)

Mean Shift Segmentation (different colors denote different

clusters). (c) Distance Map (d) Segmentation Result after

morphological operations on cluster with minimum distance

solved efficiently by using an ADMM based approach as in

[20]. Next, we solve the following subproblem for U

min
U∈Sn,p

m∑
i,j=1

[
yij(z

�
ijUDiag(w)U�zij − bij)

]
+

(4)

For solving (4), we follow the approach of [17] to solve U
as an instance of optimization on the Stiefel Manifold. The

two steps (3) and (4) are repeated until convergence. M̂ =
UDiag(w)U� is the learned metric.

4. SEGMENTATION STRATEGY
In this section, we describe the steps involved in processing a

query image. The oversegmentation and feature extraction is

done as explained in Section 3.1.

4.1. Mean Shift Segmentation
The feature vectors representing the superpixels are concate-

nated with the centroid of the superpixel in image space.

Mean shift clustering is used in this concatenated feature

space, with the learned metric M̂ used to compute distance

between texture feature vectors, while the spatial distance is

computed as the �2 distance. For all experiments, we use a

variable bandwidth mean shift with the pointwise bandwidth

as the 3-nearest neighbor distance. The step forms clusters

of superpixels exhibiting texture and spatial similarity. An

example of a test image after mean shift clustering is shown

in Fig 2b.

4.2. Distance Map Generation
To identify the cluster that corresponds to patterned species,

we generate a distance map by computing the average Maha-

lanobis distance of each cluster with the foreground feature

vector extracted from the training images. An example of an

inverted distance map for a test image is shown in Fig. 2c,

where darker pixels have larger distances. The cluster with

the least average distance is marked as the region containing

animal while others are marked as background to generate a

binary mask.

4.3. Morphological Operations
The cluster marked as animal is often effected by illuminated

vegetation and clutter of some background superpixels. We

perform two morphological operations on the binary image

to obtain the final segmentation mask [21]. The binary image

is first operated with a dilation operation then a connected

component operation is performed on the dilated image.

The largest connected component corresponds to the animal,

while other connected components occur due to illuminated

background superpixels and hence are discarded.



Tiger (30 images) Zebra (30 images)

Method Precision

(%)

Recall

(%)

Segmentation

Accuracy(%)

Precision

(%)

Recall

(%)

Segmentation

Accuracy(%)

GrabCut [6] 69.11 90.04 93.51 98.10 92.74 96.43
RW [22] 36.58 89.27 69.57 97.59 65.23 60.39

Graph Cut[23] 32.48 81.87 72.17 94 59.26 57.03

ITML [15] 30.71 64.57 65.01 64.92 92.77 66.76

LMNN [16] 51.75 67.93 72.19 50.03 70.93 73.14

Euclidean 26.37 33.98 71.51 75.86 80.95 78.61

ml-FigSeg 78.04 93.49 93.61 90.33 93.72 94.59

Table 1: Average Precision/Recall and Segmentation Accuracy on Tiger and Zebra Dataset (best in bold)

5. EXPERIMENTAL EVALUATION
We evaluate the performance of our approach on three pat-

terned species: tiger, leopard and zebra and compare with

other segmentation techniques : Graph cut [24], GrabCut [6]

and Random Walker [22]. We compare the effectiveness of

our learned distance metric with Euclidean distance as a base-

line and metrics learned by two popular approaches ITML

[15] and LMNN [16].

Datasets: We evaluate our metric learning based figure-

ground segmentation approach (ml-FigSeg) on 30 tiger and

30 zebra [25] images. The leopard images for training and

testing are collected from the web. The ground truths for all

the images are created using interactive segmentation tool 1.

Feature Representation: Since, both zebras and tigers have

characteristic pattern of stripes. We use texture features based

on LM filter bank to represent our feature vectors as discussed

in Section 3.1. In case of leopards, we follow the same feature

extraction and representation while images are operated with

a Gabor filter bank 2 instead.

Training Data and Metric learning: The distance metric

learning for leopard and zebra is formulated as a two class

problem: figure and ground. We use only one labeled image

to extract 20 feature vectors from each class and generate sim-

ilarity and dissimilarity pair constraints for metric learning.

For tiger images, these feature vectors are selected from two

labeled images and metric learning is formulated as a three

class problem : figure, upper background and lower back-

ground. We divide background in two subcategories to han-

dle the similarity between tiger and illuminated lower back-

ground.

Evaluation metric: We report average pixel-wise preci-

sion/recall and segmentation accuracy for tiger and zebra

images in Table 1. Since a large database of leopard images

was not publicly available, we only report qualitative results

in Fig 3.

GrabCut [6] and Random Walker [22]: We use interactive

tools for GrabCut 3 and Random Walker 4. GrabCut is initial-

1Available at http://kspace.cdvp.dcu.ie/public/interactive-segmentation
2Available at http://in.mathworks.com/matlabcentral/fileexchange/44630-

gabor-feature-extraction
3Available at http://grabcut.weebly.com/code.html
4Available at http://fastrw.cs.sfu.ca/

ized by marking a rectangle around the animal. For RW, we

provide 40 seeds for ground and figure regions each. These

methods however, do not complement our aim of automatic

figure-ground separation since user input is required to pro-

cess every image.

ITML [15] and LMNN [16]: We follow the same experi-

mental setup to evaluate the performance of these approaches

in our application. The results indicate that our approach out-

performs the two. We inspected the eigenvalues for the three

learned metrics and observed that our approach led to a very

sparse vector w, whereas the other two methods had signifi-

cant number of nonzero eigenvalues. This possibly limits the

generalization of the learned metric to new noisy images.

Fig. 3: Qualitative segmentation results.

6. CONCLUSION

In this work, we proposed a novel figure-ground segmenta-

tion approach to aid visual identification of pattern species by

automatically separating the animal from its background. We

used a small training set to learn a discriminative metric to

guide the segmentation process. First, the learned metric is

used in mean shift clustering to partition the image into clus-

ters, where similar superpixels cluster together. In the second

step, the animal is detected by localizing the cluster that is

most similar (least distance) to the animal features used for

training. The proposed approach performed effectively in im-

ages with extreme illumination conditions and achieved better

performance than popularly used metric learning algorithms.

We also showed that generic figure ground segmentation tech-

niques are not effective and fail due to similarity between the

animal’s pattern and the background.



7. REFERENCES

[1] S. Hoque, MA Azhar, and F. Deravi, “Zoometrics-

biometric identification of wildlife using natural body

marks,” International Journal of Bio-Science and Bio-
Technology, 2011.

[2] L. Hiby, P. Lovell, N. Patil, N. S. Kumar, A. M.

Gopalaswamy, and K. U. Karanth, “A tiger cannot

change its stripes: using a three-dimensional model to

match images of living tigers and tiger skins,” 2009.

[3] A. Zhelezniakov, T. Eerola, M. Koivuniemi, M. Aut-

tila, R. Levänen, M. Niemi, M. Kunnasranta, and
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