
A Framework for Performance Analysis and Tuning

in Hadoop Based Clusters

Garvit Bansal

Anshul Gupta

Utkarsh Pyne

LNMIIT, Jaipur, India

Email: [garvit.bansal

anshul.gupta

utkarsh.pyne] @lnmiit.ac.in

Manish Singhal

IIT - BHU, Varanasi, India

Email: manish.singhal.ece11@itbhu.ac.in

Subhasis Banerjee

IIIT Delhi, India

Email: subhasis@iiitd.ac.in

Abstract—Big Data computing platforms such as

MapReduce frameworks is foraying into the domain of

high performance computing with stringent non-functional

requirements namely execution times and throughputs.

Over the last couple of years, several hundreds of sequen-

tial programs in various domains like biological informat-

ics, health-care and financial domains have been converted

into parallel paradigms. Movement of such time sensitive

application will harden the problem of optimal resource

utilization on the MapReduce frameworks. Traditional

scheduling have been predominantly handling similar

workflow with pre-defined non-functional requirements on

diverse set of resources. Thanks to the Hadoop which

provides us with flexibility of varying various parameters

according to our choice but this facility proves to be

the main bottleneck as configuring too many parameters

with a perfect balance between all of them to get the

best result is a time consuming and a challenging job.

In our work,we attempt to analyze the effect of various

configuration parameters on Hadoop Map-Reduce per-

formance under various conditions, to achieve maximum

throughput. Using these methodologies we have been able

to achieve performance improvements. We study through

extensive experiments, the impact of various configuration

parameters and suggest an optimal value in each case.

I. INTRODUCTION

Parallel computing Platform such as Hadoop that

implement the MapReduce framework have become de-

facto platform for Big Data Computing. Such platform

have shown in the past to significantly help the class

of applications called embarrassingly parallel programs.

MapReduce have been extended to several domains

like bioinformatics (CloudBurst), Big-Data retention an-

alytics from IBM, advertisement campaigning, financial

sectors and many more [6], [7], [8]. This increasingly

diverse set of domain applications getting on-boarded

to this platform especially brings in additional set of

concerns. Applications especially those in finance, cus-

tomer analytics bring in the baggage of diverse and

stringent set of non-functional parameter requirements.

For example, every click in ad campaigning is associated

with handling large, complex data volumes requires sub-

millisecond latency to make optimized decisions on real

time ad placement. Unlike deploying Hadoop clusters

and implementing Hadoop applications, tuning Hadoop

clusters for performance is not a well documented and

widely-understood area.

In this paper we focus on two key performance

indicators viz., throughput and execution time. It should

be noted that these key performance are governed by

data placement characteristics which in-turn governs the

scheduling of job that act on these data. Several param-

eters control the performance of data placement. Block

placement is influenced by block sizes, cache available

in the individual machines, spill memory used etc.In this

paper, we perform extensive experiments on a well estab-

lished and widely used distributed computing platform

viz, Hadoop cluster and study throughly the impact of

the data placement and scheduling algorithms on the

non-functional parameters. We show that providing a

simple yet sophisticated data placement that considers

several aspects of the computing platform (such as cache

size, memory, spill memory etc.,) and the nature of the

jobs submitted can increase the throughput of the jobs

completed by several orders.

Our paper is organized as follows. In section II we

present the Setup of our experiments. We describe our

experimental environment and results of our approach



Fig. 1. Experimental Hadoop Cluster

in section III. A framework for performance tuning of

Hadoop cluster is given in section IV. We briefly describe

prior work in section V and conclude our work in section

VI with an outline of possible future work.

II. EXPERIMENTAL SETUP

We evaluate the performance of our system and

scheduling algorithm on a Hadoop Cluster (Hadoop

version 1.1.2) with a single master node and 4 slave

machines. Each slave machine consists of 2 core. A

dedicated switch of 10 Gbps uplink and the 1 Gbps

lateral ports were used for the connectivity of the ma-

chine. Figure 1 shows the different networking and the

computing parameters of the setup. Purdue MapReduce

Benchmark Suite (PUMA) is used to evaluate the perfor-

mance of our system [1]. Our focus is mainly on two of

the key performance metrics in cluster based systems ie.,

Execution time (both overall and average) and throughput

(number of jobs completed per unit of time).

We assume the arrival of the jobs to follow a Poisson

distribution and simulate the arrival of jobs for different

mean rates (λ=0.5, 0.2, 0.7). We choose through a uni-

form distribution a job that needs to be schedule at each

arrival time from the bucket of the PUMA benchmarks.

In other words, each job that is deemed to be scheduled

is selected from one of the PUMA benchmarks through

a uniform distribution. We observe through this process

around 70-90 jobs (uniformly picked up from the PUMA

set) that can be simulated to arrive in about 60 min of

time units. Furthermore, we experimented with different

sizes of input data starting from 1 GB upto 8 GB of data.

III. EXPERIMENTS AND RESULTS

In this section, we present our analysis on the ex-

periments performed on the Hadoop cluster. In each

experiment, we compare three scheduling algorithms

namely FIFO, Fair sharing and Capacity scheduling.

To reemphasize, our focus is on studying the effect of

different data block characteristics and their placement

on the overall execution time and throughput. Our study

also derives hints from the existing set of work on fine

tuning the Hadoop cluster for maximum performance

A. Effect of different block sizes

We vary the block sizes of the data that is used by

the HDFS file system for data distribution. Block sizes

have the following effects on the performance metrics.

Higher the block sizes it is easier for the HDFS to

manage the information in the Namenode and lesser is

the communication to the Namenode. Furthermore, when

multiple set of data blocks for different applications are

placed on a data node, accesses to the I/O (through

I/O scheduling) by different applications will have an

impact on the completion times. On the other hand,

increasing the block size reduces the parallelism that

can be exploited across the clusters. When the cluster

size is large, this will have a huge impact on the overall

execution time.

Figure 2 shows the effect of block sizes on overall

execution and average execution time. Two observations

can be inferred from these graphs: (a) Data block sizes

have a huge by indeterministic effect on the execution

times. (b) Choice of scheduler seems to have significant

impact on the execution times. The capacity scheduler

seems to be performing poorly compared to the FIFO and

Fair scheduler. FIFO yields better on average execution

time than the Fair Scheduler. This is due to fact that

individual units of jobs and get complete set of resources

and for the same data input size there the execution time

do not change. The fair scheduler performs better in the

case of overall execution time since each job irrespective

of the length of the data performs gets equal time slices

for execution. This shows that the choice of the scheduler

and the block sizes play an key role in the performance

of the Hadoop clusters.

B. Effect of copy phase

The copy phase/shuffle phase is performed when the

MAP jobs complete their execution and their output is

available to be transferred to the reducers. The reducers

(set of machines to execute the reduce jobs) are decided

based on the key output by the map programs. The

operation is expensive in terms of the time consumed



Fig. 2. Effect of varying block sizes for distribution and different

scheduling algorithms

as it involves waiting for the data to be available for the

jobs and also network to be relatively free to transfer the

data at line speed. Effect of copy phase can be shown

in fig. 3 for FIFO and Fair scheduler. It can be observed

that the execution time (overall) varies significantly on

the block sizes and the number of threads used to read the

data from the output of the MAP jobs. While increasing

the number of threads in lower block sizes (128 MB)

reduces the execution time (since the more the number

of threads, more is the data read in small amounts), it

does not reduce by similar factor using a larger block size

(256 MB). But the execute time is lesser using 256 MB

compared to 128 MB and 384 MB. Among the results for

256 MB, lower number of thread in FIFO yields better

execution times due to the fact that increasing the threads

results in queues and contentions within the I/O for

reading data blocks.While in Fair Scheduling increasing

the threads results in better execution time. High block

sizes lose on the parallelism that can be exploited and

do not yield good performance metrics. Thus we observe

that thread sizes for the number of copy operations is

also one of the main factors that effects the performance

metrics.

Fig. 3. Effect of tuning the copy phase on overall execution time

C. Effect of Map Spill

When the map function starts producing output, it

is not simply written to disk. Each map task has a

circular memory buffer that it writes the output to. The

buffer is 100 MB by default, a size which can be

tuned by changing the io.sort.mb property. When the

contents of the buffer reaches a certain threshold size



(io.sort.spill.percent, default 0.80, or 80 %), a back-

ground thread will start to spill the contents to disk.

If there is a limitation on available heap then one

should try to minimize the number of spills by tuning

io.sort.record.percent parameter values.

If the number of spilled records is greater than Map

output records then additional spilling is occurring. An

approach that can be taken to completely utilize the Map

output buffer is to determine total size of the Map output

and the total number of records contained in this output

which can then be used to compute the space required

for record buffer. The io.sort.mb property can then be

configured to accommodate both the data and record

buffer requirements. Fig. 4 shows the effects of the spill

memory limit configuration. It can be seen that as the

spill memory increases from certain threshold value, the

execution time increases.

Fig. 4. Effect of Map spill tuning on overall execution time

D. Effect of Reduce Phase

Once Map tasks start completing their work, Map

output gets sorted and partitioned per Reducer and is

written to the disks of the TaskTracker node. These

Map partitions are then copied over to the approx-

imate Reducer Task Tracker. A buffer governed by

mapred.job.shuffle.input.buffer.percent configuration pa-

rameter of mapred-site.xml, if big enough, will hold this

Map output data. Otherwise, the Map output is spilled to

the disks. The mapred.job.shuffle.input.buffer.percent is

set to 0.70 by default. This means that 70 % of the Re-

duce JVM heap space will be reserved for storing copied

Map output data. When this buffer reaches a certain

threshold (governed by mapred.job.shuffle.merge.percent

property) of occupancy the accumulated Map outputs are

merged and spilled to the disk. Fig. 5 shows the effects of

the Reduce JVM heap size on overall Execution Time.

It can be seen that as we go on increasing the JVM

heap the execution time goes on decreasing but after

reaching certain threshold value it has no effect on overall

execution time. But the execute time is lesser using 256

MB compared to 128 MB and 384 MB. Thus we observe

that JVM heap size is also one of the main factor that

effect the performance metrics.

Fig. 5. Effect of reduce phase on overall execution time

IV. FRAMEWORK FOR FINE TUNING HADOOP

CONFIGURATION PARAMETERS

One of the toughest problem in scheduling is un-

derstanding the factors contributing to the time taken

to complete the job. Almost all the DAG scheduling

algorithm heuristically predicts the time consumed and

uses them to schedule the jobs or studying the time taken

by a job from history of job executions logs. Using

heuristics have been successful when the workloads

are uniform and the underlying computing platform is

homogeneous. Our contribution through this work is to

understand the execution time of the task that belongs to



a job we progress in time. We in-turn use this time to

understand the executions required for other tasks of a

Job. Initially we schedule at least one tasks of a job to

understand the computing time and the data transfer time

required for the task to complete. By scheduling the first

task, we can set the configuration parameters that best

suits the job based on the history. We use this time to

estimate the time required to complete other tasks of the

same job. It should be noted that in Hadoop a Job is

split into several tasks and each of which is scheduled

and monitored through a scheduler. Thus our system

dynamically learns the execution time of tasks in a job

and accordingly schedule the tasks/jobs to achieve the

goals.

Measuring the computation time in the non-

homogeneous environment where every computing re-

sources is different is a non-trivial tasks. We provide an

approach by which we study the performance parameters

as properties of these resources. The value of these

properties are derived from the actual type of computing

resources. In Map/Reduce framework, a Job is split into

several tasks based on the number of data splits. These

machine independent parameters are collected for only

one task (which is scheduled first) for a job.

The values are extrapolated and computed for the

individual computing resources on which the data split

is placed. Thus the scheduler can compute the execution

time for the other splits of data. These times are used

for scheduling the job. Fig. 6 shows the details being

collected from the task tracker (at the end of the com-

pletion of the tasks). As the actual execution of task

is monitored by the Task tracker in the Map/Reduce

framework, the task tracker collects these details for the

tasks. The task tracker will have constant over head (time

taken by executing commands) to collect the information

and therefore is deterministic. In map/reduce framework,

the task tracker reports the completion of the task to

the job tracker. During the phase of reporting, the task

tracker along with the completion time also reports the

parameters and values collected for the specific tasks.

This reporting the parameters collected for the tasks does

not introduce any communication overhead. Further the

collection of information is required to be performed only

the first task that is being schedule.

Once the Job Tracker receives the parameters for

the specific tasks, it then associates the task details

to the Job details and passes this information to the

scheduler. Along with the job details, it also sends the

Fig. 6. System components reflecting the data exchanged and the

computations performed by the Job Tracker

information about the machines on which the data splits

are available for the jobs to be scheduled. It further

computes the requirements of the tasks on these machines

using the machine dependent parameters. The Job tracker

provides the information about the network topology (for

computing transfer times), task details, tasks resource

requirements on machines in which the data splits are

available to the scheduler. The scheduler consumes this

information and schedules them such that throughput can

be maximized and overall execution for the jobs can be

minimized.

V. RELATED WORK

There are several approached for performance tuning

in Hadoop [2] addresses problem faced in Terasort

benchmark. Paper present tuning methodologies and rec-

ommendations for varying workload conditions but the

tuning recommendations made in the paper are based

on optimizing the Hadoop TeraSort workload. In [3],

authors explain tuning of Hadoop Parameters which di-

rectly affect Map-Reduce job performance under various

conditions to achieve maximum performance. Similar

approach under certain constraints is discussed in [4]

where the solution stack maximizes productivity while

limiting energy consumption and total cost of ownership.

It also introduces some configuration and tuning advice

that can help improve results in Hadoop environments.

In [5], performance issues in heterogeneous Hadoop

clusters are described.

VI. CONCLUSIONS AND FUTURE WORK

We have studied extensively the parameters that af-

fects the performance of Jobs in Hadoop clusters. We

observe that several parameters along with different

scheduling mechanisms have impact on the performance

of the metrics. Our belief is that these parameters have to

be efficiently measured for individual tasks and schedules



should be generated for maximizing the performance.

We are in the process of building our framework where

the scheduler will study the parameters for each tasks

and incrementally use them to generate valid schedules.

Our future work includes, parameter collection modules,

generating valid schedules for work-flows (which are

typically directed acyclic graphs).

REFERENCES

[1] Faraz Ahmad, Seyong Lee, Mithuna Thottethodi and T. N.

Vijaykumar: PUMA: Purdue MapReduce Benchmarks Suite,

Technical report, http://docs.lib.purdue.edu/ecetr/437/

[2] Dominique Heger, Hadoop Performance Tuning - A Pragmatic

& Iterative Approach, Technical note: DH Technologies,2013,

http://www.cmg.org/wp-content/uploads/2013/04/m 97 3.pdf.

[3] Shrinivas Joshi, Hadoop Performance Tuning Guide, AMD

White Paper, 2012, http://developer.amd.com/wordpress/media/

2012/10/Hadoop Tuning Guide-Version5.pdf.

[4] Intel, Optimizing Hadoop Deployments, Intel White Pa-

per, 2010, http://www.intel.in/content/dam/doc/white-paper/

cloud-computing-optimizing-hadoop-deployments-paper.pdf

[5] B.Thirumala Rao, N.V.Sridevi, V.Krishna Reddy and

L.S.S.Reddy, Performance Issues of Heterogeneous Hadoop

Clusters in Cloud Computing, Global Journal of Computer

Science and Technology, Volume XI Issue VIII, May 2011

[6] Michael C. Schatz: CloudBurst, Bioinformatics Volume 25

Issue 11, June 2009.

[7] Slashdot report: http://slashdot.org/topic/bi/

ibm-focuses-its-data-analytics-tools-on-employee-retention/

[8] Cloudera report: http://blog.cloudera.com/blog/2010/03/

why-europes-largest-ad-targeting-platform-uses-hadoop/


