## QANSAS 2010

## COMPUTATIONAL COMPLEXITY OF THE QUANTUM CIRCUIT MODEL



Debajyoti Bera IIIT-Delhi

## Computational Complexity Theory

## PROBLEMS

Compute XOR of n binary inputs

Multiply two n-bit integers
 integers between 1 and 100 in incr. order


Solve a linear system of n
equations with integer
values

## Complexity Theory



## Complexity Theory

```
quicksort(int a[], int l, int r)
    *
        int v, i, j, t;
        if (r>l)
        {
        v =a[r]; i = 1-1; j = r;
        for (;;)
                while (a[++i] < v) ;
                while (a[-j] > v) ;
                if (i >= j) break;
                t = a[i]; a[i] = a[j]; a[j] = t;
            }
        t =a[i]; a[i] = a[r];a[r]=t;
        quicksort(a, l, i-1);
        quicksort(a, i+1, r);
        }
    }
```

> Turing Machine

## Random Access

Machine

## Boolean Circuit

> Communication Network

## Complexity Theory

Integer sorting in Word RAM model: $O\left(n \sqrt{\log \frac{w}{\log n}}\right)$

- Y. Han, M. Thorup:

Integer Sorting in O(n V(log logn)) Expected Time and Linear Space, FOCS 2002

- D.G. Kirkpatrick, S. Reisch:

Upper Bounds for Sorting Integers on Random Access Machines, Theoretical Computer Science 28, 1984
1 and 100

Boolean Circuit

## Communication Network

## Complexity Theory

Sorting of n integers between 1 and 100

| Step 1 | Step 2 | Step 3 <br> $\min =2$ | Step 4 <br> $\min =3$ | Step 5 <br> $\min =4$ |
| :---: | :---: | :---: | :---: | :---: |
| $2 \rightarrow-1$ | 1 | 2 | 2 | 1 |

## Turing <br> Machine

Random Access
Machine

Boolean Circuit

Communication Network

# Complexity Theory 

Sorting of n integers between
1 and 100

## Distributed selectsort sorting algorithms on broadcast communication networks

Jau-Hsiung HUANG * and Leonard KLEINROCK **

* Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
** Computer Science Department, University of California, Los Angeles, California, USA

Received 14 May 1990
Revised 16 July 1990

## Turing <br> Machine

Random
Access
Machine

## Boolean Circuit

Communication Network

## Complexity Theory

TM for $\left\{a^{k} b^{k} c^{k} \mid k \geq 1\right\}$


## Complexity Theory

Aim:
Comparison of computations
Analysis of properties of computations

## Measure:

$\checkmark$ Define "hardness"/complexity
$\checkmark$ Use complexity metrics, e.g.,

- running time
- size of local variables
- amount of randomness
- \# communication bits
$\checkmark$ "Equivalence" of models


## Outline

- (Classical) Boolean Circuit model
- Quantum Circuit model
- Interesting upper bounds
- What all are possible ?
- Currently known lower bounds
- What are not possible ?
- Challenges for tomorrow


## Boolean Circuit Model

- (Acyclic) network of Boolean gates
- Gates connected by wires
- "Equivalent" to Turing Machine
- Computes a Boolean function of its inputs



## Boolean Circuit Model

Complexity of circuit computation : parameters ?

- circuit family $\left\{C_{n}\right\}$ to compute some function
- one circuit for each input length
- circuit $C_{n}$ computes function on $n$ inputs
- parameter as a function of $n$ (no. of inputs)
- Multiplication of two $n$-bit integers $-\mathrm{O}\left(n^{2}\right)$ gates


## Boolean Circuit Model

- Parameters to measure complexity
- Types of gates
- Number of gate input wires
- Number of gates in circuit
- "Depth" of circuit


## Boolean Circuit Model

- Parameters to measure complexity
- Types of gates
- Number of gate input wires
- Number of gates in circuit
- "Depth" of circuit

Fanin<br>(max no. of input)<br>- Constant (2)<br>- Unbounded

## Boolean Circuit Model

- Parameters to measure complexity
- Types of gates
- Number of gate input wires
- Number of gates in circuit
- "Depth" of circuit


## Boolean Circuit Model

- Parameters to measure complexity
- Types of gates
- Number of gate input wires
- Number of gates in circuit
- "Depth" of circuit


## Boolean Circuit Model

? $\mathrm{NP}=\mathrm{P}$

- Polynomial time algorithm for Integer Programming, Satisfiability, TSP
? NP $\subseteq$ P/poly
- Polynomial size circuits for NP problems
? NEXP $\subseteq \mathrm{ACC} 0$ (disproved 1 month ago)
- Poly size circuits with MOD gates for N-EXP problems

We believe the answer is NO!
Mainly used for proving lower bounds

## Boolean Circuit Model

Interesting results (lower bounds)!

- Computing CLIQUE requires super-polynomial size circuits using unbounded (fanin) AND, OR, NOT gates
- Computing PARITY requires exponential size circuits of constant-depth and using unbounded (fanin) AND, OR, NOT gates
- Computing Mod-3 requires exponential size circuits of constant-depth and using unbounded (fanin) AND, XOR (Mod-2), NOT gates


## Outline

- (Classical) Boolean Circuit model
- Quantum Circuit model
- 


-

## Motivation:

(1) Lower bounds for computational problems

- Cha
(2) comparison with classical circuits


## Quantum Circuit Model

Notations

- H-2-dimensional Hilbert space
- 2 computational basis states $\{|0\rangle,|1\rangle\}$
- $B^{n}-2^{n}$-dimensional Hilbert space
- $2^{n}$ computational basis states $\left\{|0\rangle, \cdots,\left|2^{n}-1\right\rangle\right\}$
- State over $n$ qubits - state in $B^{n}$
- quantum gate $G$ - unitary operator acting on states in $B^{n}$
- Circuits compute "classical" functions : $\left(x_{i} \in\{0,1\}\right)$
- Input $x_{1} \cdots x_{n}$ - initial state $\left|x_{1}\right\rangle \cdots\left|x_{n}\right\rangle$
- Output $f\left(x_{1} \cdots x_{n}\right)$ - state of output qubit after measurement


## Quantum Circuit

Parameters for complexity

- Types of gates

- Number of gate input wires
- Number of gates in circuit
- "Depth" of circuit
- Number of ancilla

- Extra workspace qubits, initialised to $|0\rangle$
- Unlike classical circuits, cannot reuse/overwrite
- Clean circuits: ancilla returned to initial state
- Robust circuits: accepts ancilla in any initial state


## Quantum Gates

- Fixed family
- Single qubit gates - any reasonable set
- Hadamard ( $H$ ), Phase, $\pi / 8, Z$ gate etc.
- Provide "quantum" behaviour
- Multi-qubit (classical) gates - unbounded fanin
- Generalized Toffoli ( $T$ )
- Generalized Z
- Parity gate
- Threshold gate
- "Fanout" gate!
- $T, H, \pi / 8$ - "universal" family


## Multi Qubit Gates

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow\{0,1\} \\
\left|x_{1}, \cdots, x_{n}, b\right\rangle \xrightarrow{G}\left|x_{1}, \cdots, x_{n}, b \oplus f\left(x_{1}, \cdots, x_{n}\right)\right\rangle
\end{gathered}
$$

- (Generalized) Toffoli - AND
- Parity - MOD2
- MODq
- Threshold
- Generalized Z
- "Fanout"

$$
f=\bigwedge_{i=1}^{n} x_{i}
$$



## Multi Qubit Gates

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow\{0,1\} \\
\left|x_{1}, \cdots, x_{n}, b\right\rangle \xrightarrow{G}\left|x_{1}, \cdots, x_{n}, b \oplus f\left(x_{1}, \cdots, x_{n}\right)\right\rangle
\end{gathered}
$$

- (Generalized) Toffoli - AND
- Parity - MOD2
- MODq
- Threshold
- Generalized Z
- "Fanout"

$$
f=\bigoplus_{i=1}^{n} x_{i}
$$



## Multi Qubit Gates

$$
\begin{gathered}
f:\{0,1\}^{n} \rightarrow\{0,1\} \\
\left|x_{1}, \cdots, x_{n}, b\right\rangle \xrightarrow{G}\left|x_{1}, \cdots, x_{n}, b \oplus f\left(x_{1}, \cdots, x_{n}\right)\right\rangle
\end{gathered}
$$

- (Generalized) Toffoli - AND
- Parity - MOD2
- MODq
- Threshold ${ }_{k}$
- Generalized Z
- "Fanout"

$$
\begin{aligned}
& f\left(x_{1}, \cdots, x_{n}\right)= \\
& \left\{\begin{array}{cc}
1 & \sum_{i} x_{i} \geq k \\
0 & \sum_{i} x_{i}<k \\
\hline
\end{array}\right] \\
& \boxed{\square \mathrm{Th}_{\mathrm{k}}}
\end{aligned}
$$

## Multi Qubit Gates

$$
\left|x_{1}, \cdots, x_{n}, b\right\rangle \xrightarrow{G}(-1)^{x_{1} \cdots x_{n}}\left|x_{1}, \cdots, x_{n}, b\right\rangle
$$

- (Generalized) Toffoli - AND
- Parity - MOD2
- MODq
- Threshold
- Generalized Z
- "Fanout"



## Multi Qubit Gates

$$
\left|x_{1}, \cdots, x_{n}, b\right\rangle \xrightarrow{G}\left|b \oplus x_{1}, \cdots, b \oplus x_{n}, b\right\rangle
$$

- (Generalized) Toffoli - AND
- Parity - MOD2
- MODq
- Threshold
- Generalized Z
- Fanout gate!
- Only copies basis states



## MOD2 function

Power of fanout gate


QUANTUM
single qubit gate + Toffoli
gate + fanout gate
in
constant depth, linear size

CLASSICAL
Not gate + unbounded
AND gate requires at least exponential gates and constant depth

## MOD $q$ function

$U_{l}, \ldots, U_{n}$ are simultaneously diagonalizable: $U_{i}=V D_{i} V^{\dagger}$


QUANTUM
MODq function = constant depth using polynomial number exponentially many MODp gates, of single qubit, T and MODp for constant-depth circuits, for gates primes $p, q$

## Arithmetic functions

Constant-depth poly size circuit with bounded fanin gates


## QUANTUM

Threshold, parity, QFT, addition, multiplication, division, sorting can be approximated

## CLASSICAL

Even with unbounded fanout, the output bit can depend on only a constant number of inputs


## Limitations : Parity / MOD2

MOD2 cannot be computed in constant depth

## QUANTUM

MOD2 requires more than constant-depth using single qubit and Toffoli gates and linearly many ancilla

CLASSICAL
MOD2 requires exponentially many AND, OR, NOT gates for constant-depth circuits

- Fanout gates seems too powerful. Yet necessary to adhere to our understanding.
- Better replacement?
- Is fanout really that powerful ?
- Compute fanout using unbounded Toffoli and unlimited ancilla?
- Can one compute Threshold using fanout and vice versa?
- Approximate Threshold/MOD in constant depth with bounded fanin gates with exponentially small error?


## Work to do...

- Fanout is equivalent to constructing a cat state in constant depth: $\frac{1}{\sqrt{2}}(|00 \cdots 0\rangle+|11 \cdots 1\rangle)$
- Useful measure of entanglement to prove circuit lower bounds?
- Ancilla - important resource - Constant / Linear / Polynomial ancilla ?
- Circuit computing probabilistic functions ?

Thank you. Questions?


