Boolean Functions: 1,2,3 and more

Debajyoti Bera

Indraprastha Inst. of Information Technology (IIIT-Delhi)

dbera@iiitd.ac.in

12th January, 2019

Outline

- 2 Query complexity
- \bigcirc Complexity of DJ
- 4 Quantum vs. Classical

Mapping from $\{0,1\}^* \to \{0,1\}^*$

Can be used to model (almost) any mapping (over discrete domain and range) This talk is about $m = 2^n$ -bit to 1-bit Boolean functions.

x	$f_1(x)$	$f_2(x)$
000	1101	0
001	0001	0
010	1101	0

Boolean functions

Where to find them?

 $f(x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8)$

Debajyoti Bera

IndoQuant 2019

S16

Examples

Consider *m*-to-1 bit f(). $x = x_1 \dots x_m$ and ||x|| = m (number of bits). |x| denotes number of ones in x.

Total functions

 $\begin{array}{l} OR(x)=1 \mbox{ if any bit of } x \mbox{ is } 1,=0 \mbox{ otherwise} \\ AND(x)=1 \mbox{ if all bits of } x \mbox{ are } 1,=0 \mbox{ otherwise} \\ PARITY(x)=1 \mbox{ if odd number of bits of } x \mbox{ are } 1,=0 \mbox{ otherwise} \\ MAJORITY(x)=1 \mbox{ if more than } \frac{m}{2} \mbox{ bits of } x \mbox{ are } 1 \\ Threshold_k(x)=1 \mbox{ if at least } k \mbox{ bits of } x \mbox{ are } 1 \\ INDEX(x)=1 \mbox{ if } x \mbox{ can be written as } x=y \cdot z \mbox{ s.t.} \\ \bullet \ \|y\| = \lfloor \log_2(\|z\|) \rfloor \\ \bullet \ z_{int(y)}=1 \\ Example: \ INDEX(10\cdot 1001)=0 \mbox{ and } \ INDEX(11\cdot 0101)=1 \end{array}$

Examples

Promise problems: Domain of f is strict subset of $\{0,1\}^*$

Partial functions

DJ: Given that $|x| \in \{0, \frac{n}{2}, n\}$, DJ(x) = 0 if $|x| = \frac{n}{2}$

EWDP: Given that
$$|x| \in \{k_l, k_u\}$$
, $EWDP_{k_l, k_u}(x) = 1$ if $|x| = k_u$

WDP: Given that $|x| \le k_l$ or $|x| \ge k_u$, $EWDP_{k_l,k_u}(x) = 1$ if $|x| \ge k_u$

Function problems

Consider inputs of length
$$2^n$$
.
 $x = \langle g(\overbrace{00\dots0}^n), g(00\dots1), \dots, g(11\dots1) \rangle$

Querying x_j is same as querying g(bit repr. of j)e.g. $x_5 \equiv g(0101)$

Given that $q(y) = a \cdot y \oplus b$, output a, b. Given $b \in \{0,1\}^n$, $\rho \in [0,2^n]$, determine if $|\sum_{y}(-1)^{g(y)\oplus b \cdot y}| \ge \rho$ 01 1011 00 yg(y)0 1 1 0 $(-1)^{g(y)}$ 1 1 -1 -1 $(-1)^{g(y)\oplus(01)\cdot y}$ 1 1 -1 -1

Push the pedal

Input g(y) denotes the "edge" function of a graph G

Suppose g(y) denotes the "edge" function of a graph G. $g(y_1 \dots y_{\frac{n}{2}} \cdot y_{\frac{n}{2}+1} \dots y_n)$: is there an edge between vertex $y_1 \dots y_{\frac{n}{2}}$ and vertex $y_{\frac{n}{2}+1} \dots y_n$ of a G with $2^{n/2}$ vertices? Does G have a Hamiltonian circuit?

Outline

2 Query complexity

3 Complexity of DJ

Debajyoti Bera IndoQuant 2019

Decision tree complexity

Input: *m*-bit $\{0,1\}^*$ -string *x*, or *n*-bit Boolean function $g: \{0,1\}^n \to \{0,1\}$ (denote 2^n by *m*)

Query Complexity

= largest number of bits/g() queried on any input

Relevant when querying is "costlier" than local operations. Trivially, query complexity is at most m.

Decision tree for $VERIFY_4(x)$

Debajyoti Bera

IndoQuant 2019

Query complexity of INDEX

$$INDEX(x) = 1$$
 if x can be written as $x = y \cdot z$ s.t.
z represents a "database" and
y is a position of database entry
yth bit of z should be 1

Quantum query complexity

Intermediate measurements can modify state. So, measure only at end!

Debajyoti Bera IndoQuant 2019

Error in computing Boolean functions

$$X_0$$
: set of inputs for which $f(x) = 0$
 X_1 : set of inputs for which $f(x) = 1$

Bounded error algorithms

For
$$x \in X_0$$
, $\Pr[Algo(x) \to 1] \le \rho_l < 1/2$
For $x \in X_1$, $\Pr[Algo(x) \to 0] \le \rho_u < 1/2$

More chance of being correct than wrong.

How good (or bad) is quantum?

D(f): optimal #bits queried by deterministic classical algo. R(f): optimal #bits queried by bounded-error classical ... $Q_E(f)$: optimal #query-gates in "exact" quantum algo. $Q_2(f)$: optimal #query-gates in bounded-error quantum ...

Questions?

For a given f, what are D(f), $Q_E(f)$ and $Q_2(f)$? Is there a general relationship between them? Are there functions for which $Q_E(f) \ll D(f)$? Are there functions for which $Q_2(f) \ll R(f)$? Are there functions for which $Q_E(f) \ll R(f)$?

Input functions could be total or partial

Reducing algorithm error

Technique of choice: Repeat algorithm several times

Amplitude Amplification (AA)

Pr[observing $|1\rangle$] = sin²[θ + 2t θ] 2t can be replaced by rt for any fixed $r \leq 2$

Using amplitude ampl. to reduce error

prob. of success $= 1/100$		prob. of success $= 1/4 = \sin^2 30$	
$\#$ calls to U_x	prob. of success	$\#$ calls to U_x	prob. of success
1	1/100	1	1/4
3	9/100	2	1 !!!
7	41/100	prob of suggess	$-1/2 - \sin^2 45$
11	80/100	μ calls to U	$-1/2 - \sin 40$
15	99.5/100	$\#$ cans to U_x	prob. of success
-		1	1/2
		2	1 !!!

Outline

1 Boolean functions

2 Query complexity

3 Complexity of DJ

4 Quantum vs. Classical

Complexity of DJ: |x| = m/2 or $|x| \in \{0, m\}$

Consider *m*-bit *y* s.t. $y_i = x_i \oplus x_0$. |x| = m/2 same as |y| = m/2 vs. $|x| \in \{0, m/2\}$ same as |y| = 0

Querying y_i requires two queries to x

Apply AA to increase prob. of $|1\rangle$

(Bera,2015)

If |y| = 0, then observe $|1\rangle$ with prob. 0. After AA, observe $|1\rangle$ with prob. 0.

If |y| = m/2, then observe $|1\rangle$ with prob. 1/2. After AA using 1 iteration, observe $|1\rangle$ with prob. 1.

Complexity of DJ

zero-error quantum algorithm using 6 query-gates

Quantum vs. Classical

zero-error deterministic algorithm needs $\frac{m}{2} + 1$ queries 6 query randomized algorithm has at least $1/2^{12}$ prob. of error

Deutsch-Jozsa's circuit

(Deutsch-Jozsa, 1992)

zero-error quantum algorithm using 1 query gate !!!

Outline

1 Boolean functions

2 Query complexity

3 Complexity of DJ

Quantum vs. Classical

Separation for partial functions

Simon's problem

IndoQuant 2019

• efficiently solvable by quantum circuit (bounded-error requires $\log m$ queries)

Debajvoti Bera

- bounded-error classical algo is bad (requires $\Omega(m)$ queries)

Deutsch-Jozsa's problem (DJ)

- efficiently solvable by quantum circuit (exactly in constant queries)
- exact classical algo is inefficient (50%) bits are queried)
- bounded-error classical algo is moderate (error $1/2^{2k}$ with k queries)

Separation for total functions

Classical is not too worse vis-a-vis. quantum

- Any q-query exact quantum algo. $\implies q^3$ -query exact classical algo.
- Any q-query bounded-error quantum algo.
 - $\implies q^6$ -query exact classical algo.

Quantum is somewhat better than classical

- OR: bounded-error quantum makes \sqrt{m} queries whereas bounded-error classical makes m/2 queries
- There exists an f for which bounded-error classical algo. makes nearly q^3 -queries whereas a bounded-error quantum algo. makes q queries

Thank you

Questions?

Join PhD@ IIIT-Delhi, New Delhi

Problems to work on ...

- Optimal quantum query complexity of combinatorial (NP-complete, ...) problems
- Fancy uses and extensions of AA (in ML?)
- Characterize query complexity based on degree, sensitivity, etc. properties of a Boolean function
- Find total functions for which quantum algo. makes q queries and optimal bounded-error algo. makes $\geq q^4$ queries
- Quantum circuit complexity of problems