Efficient Quantum Algorithms Related to Autocorrelation Spectrum

Debajyoti Bera ${ }^{1}$ Subhamoy Maitra ${ }^{2}$ Tharrmashastha SAPV ${ }^{1}$

${ }^{1}$ IIIT-D
${ }^{2}$ ISI Calcutta

18 December 2019

The second author would like to acknowledge the support from the project "Cryptography \& Cryptanalysis: How far can we bridge the gap between Classical and Quantum paradigm", awarded under DAE-SRC, BRNS, India.

Boolean Functions

Walsh and Autocorrelation Spectrum

Walsh function of a function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is defined as the following function from $\{0,1\}^{n}$ to $\mathbb{R}[-1,1]$

$$
\text { for } y \in\{0,1\}^{n}, \quad \hat{f}(y)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}(-1)^{x \cdot y}
$$

where $x \cdot y$ stands for the $0-1$ valued expression $\oplus_{i=1 \ldots n} x_{i} y_{i}$:
Autocorrelation function of the function f is defined as the following transformation from $\{0,1\}^{n}$ to $\mathbb{R}[-1,1]$.

Walsh and Autocorrelation Spectrum

Walsh function of a function $f:\{0,1\}^{n} \longrightarrow\{0,1\}$ is defined as the following function from $\{0,1\}^{n}$ to $\mathbb{R}[-1,1]$

$$
\text { for } y \in\{0,1\}^{n}, \quad \hat{f}(y)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}(-1)^{x \cdot y}
$$

where $x \cdot y$ stands for the $0-1$ valued expression $\oplus_{i=1 \ldots n} x_{i} y_{i}$:
Autocorrelation function of the function f is defined as the following transformation from $\{0,1\}^{n}$ to $\mathbb{R}[-1,1]$.

$$
\text { for } a \in\{0,1\}^{n}, \quad \breve{f}(a)=\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}(-1)^{f(x)}(-1)^{f(x \oplus a)}
$$

Walsh and Autocorrelation Spectrum

- Shannon in his paper ${ }^{1}$ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.
- Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.
- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

[^0]
Walsh and Autocorrelation Spectrum

- Shannon in his paper ${ }^{1}$ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.

■ Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.

- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

[^1]
Walsh and Autocorrelation Spectrum

- Shannon in his paper ${ }^{1}$ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.

■ Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.

- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

[^2]
Quantum in a Page

- Qubits are the quantum version of classical bits. E.g., $|0\rangle,|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket
- A fundamental principle in quantum computing is superposition
- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_{f}. They act as $U_{f}|x\rangle|a\rangle \longrightarrow|x\rangle|a \oplus f(x)\rangle$

Quantum in a Page

- Qubits are the quantum version of classical bits. E.g., $|0\rangle,|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.
- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_{f}. They act as

Quantum in a Page

- Qubits are the quantum version of classical bits. E.g., $|0\rangle,|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle .
$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state
- Oracles are quantum black-boxes and are denoted by Uf. They act as

Quantum in a Page

- Qubits are the quantum version of classical bits. E.g., $|0\rangle,|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle .
$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_{f}. They act as

Quantum in a Page

- Qubits are the quantum version of classical bits. E.g., $|0\rangle,|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$
|\psi\rangle=\frac{1}{\sqrt{2}}|0\rangle+\frac{1}{\sqrt{2}}|1\rangle .
$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
■ Oracles are quantum black-boxes and are denoted by U_{f}. They act as

$$
U_{f}|x\rangle|a\rangle \longrightarrow|x\rangle|a \oplus f(x)\rangle .
$$

Quantum Algorithm for Walsh Spectrum

- Due to Parseval's identity which is

$$
\sum_{x \in\{0,1\}^{n}}(\hat{f}(x))^{2}=1
$$

it was easy to design a quantum algorithm for the Walsh sepctrum.

- It was indeed readily available as Deutsch-Jozsa algorithm.

Quantum Algorithm for Walsh Spectrum

■ Due to Parseval's identity which is

$$
\sum_{x \in\{0,1\}^{n}}(\hat{f}(x))^{2}=1
$$

it was easy to design a quantum algorithm for the Walsh sepctrum.

- It was indeed readily available as Deutsch-Jozsa algorithm.

Quantum Algorithm for Walsh Spectrum

$$
\begin{aligned}
& \left|q_{0}\right\rangle=\left|0^{n}\right\rangle-H \\
& \left|q_{1}\right\rangle=|1\rangle
\end{aligned}
$$

- The state of the system post the gate operations is given by

- So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

Quantum Algorithm for Walsh Spectrum

$$
\begin{aligned}
& \left|q_{0}\right\rangle=\left|0^{n}\right\rangle-H \\
& \left|q_{1}\right\rangle=|1\rangle
\end{aligned}
$$

- The state of the system post the gate operations is given by

$$
|\psi\rangle=\frac{1}{2^{n}} \sum_{y \in\{0,1\}^{n}}\left[\sum_{x \in\{0,1\}^{n}}(-1)^{f(x) \oplus x \cdot y}\right]|y\rangle|-\rangle=\sum_{y \in\{0,1\}^{n}} \hat{f}(y)|y\rangle|-\rangle
$$

- So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

Quantum Algorithm for Walsh Spectrum

$$
\begin{aligned}
& \left|q_{0}\right\rangle=\left|0^{n}\right\rangle-H \\
& \left|q_{1}\right\rangle=|1\rangle-H
\end{aligned}
$$

- The state of the system post the gate operations is given by

$$
|\psi\rangle=\frac{1}{2^{n}} \sum_{y \in\{0,1\}^{n}}\left[\sum_{x \in\{0,1\}^{n}}(-1)^{f(x) \oplus x \cdot y}\right]|y\rangle|-\rangle=\sum_{y \in\{0,1\}^{n}} \hat{f}(y)|y\rangle|-\rangle
$$

- So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

Problem with Autcorrelation Spectrum

■ However, there was no study on quantum algorithms for Autocorrelation spectrum.

- This was due to the fact that

- Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult.

Problem with Autcorrelation Spectrum

■ However, there was no study on quantum algorithms for Autocorrelation spectrum.

- This was due to the fact that

$$
\sum_{a} \breve{f}(a)^{2} \in\left[1,2^{n}\right] .
$$

- Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult

Problem with Autcorrelation Spectrum

■ However, there was no study on quantum algorithms for Autocorrelation spectrum.

- This was due to the fact that

$$
\sum_{a} \breve{f}(a)^{2} \in\left[1,2^{n}\right] .
$$

- Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult.

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

\square In particular, $\sigma_{f}=1$ if f is a Bent function and $\sigma_{f}=2^{n}$ if f is a linear function.

- A small σ_{f} indicates that a function satisfies the global avalanche criteria (GAC)

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

- In particular, $\sigma_{f}=1$ if f is a Bent function and $\sigma_{f}=2^{n}$ if f is a linear function.
- A small σ_{f} indicates that a function satisfies the global avalanche criteria (GAC)

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

- In particular, $\sigma_{f}=1$ if f is a Bent function and $\sigma_{f}=2^{n}$ if f is a linear function.
- A small σ_{f} indicates that a function satisfies the global avalanche criteria (GAC).

Preliminaries: Derivative of a Boolean Function

- Given a point $a \in\{0,1\}^{n}$, the (first-order) derivative of an n-bit function f at a is defined as

$$
\Delta f_{a}(x)=f(x \oplus a) \oplus f(x)
$$

- For a list of points $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ (where $\left.k \leq n\right)$ the k-th derivative of f at $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is recursively defined as

where $\Delta f_{a_{1}, a_{2}, \ldots, a_{k-1}}^{(k-1)}(x)$ is the $(k-1)$-th derivative of f at points
$\left(a_{1}, a_{2}, \ldots, a_{k-1}\right)$.

Preliminaries: Derivative of a Boolean Function

- Given a point $a \in\{0,1\}^{n}$, the (first-order) derivative of an n-bit function f at a is defined as

$$
\Delta f_{a}(x)=f(x \oplus a) \oplus f(x)
$$

■ For a list of points $\mathcal{A}=\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ (where $\left.k \leq n\right)$ the k-th derivative of f at $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is recursively defined as

$$
\Delta f_{\mathcal{A}}^{(k)}(x)=\Delta f_{a_{k}}\left(\Delta f_{a_{1}, a_{2}, \ldots, a_{k-1}}^{(k-1)}(x)\right)
$$

where $\Delta f_{a_{1}, a_{2}, \ldots, a_{k-1}}^{(k-1)}(x)$ is the $(k-1)$-th derivative of f at points $\left(a_{1}, a_{2}, \ldots, a_{k-1}\right)$.

Preliminaries: Derivative of a Boolean Function

The i-th derivative of f at $\mathcal{A}=\left(a_{1}, a_{2}, \ldots a_{i}\right)$ can be shown ${ }^{2}$ to be

$$
\Delta f_{\mathcal{A}}^{(i)}(x)=\bigoplus_{S \subseteq A} f(x \oplus S)
$$

where $X_{s}=\bigoplus_{a \in S} a, f(x \oplus S)=f\left(x \oplus X_{s}\right)$ and $S \subseteq A$ indicates all possible sub-lists of \mathcal{A} (including duplicates, if any, in \mathcal{A}).

[^3]
Preliminaries: Derivative of a Boolean Function

■ Higher-order derivatives form the basis of many cryptographic attacks, especially those that generalize the differential attack technique against block ciphers such as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

- If the non-trivial $i^{t h}$ derivatives of the function are constant for small i, then we can use that fact to mount attacks on the cryptosystem

Preliminaries: Derivative of a Boolean Function

■ Higher-order derivatives form the basis of many cryptographic attacks, especially those that generalize the differential attack technique against block ciphers such as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

- If the non-trivial $i^{t h}$ derivatives of the function are constant for small i, then we can use that fact to mount attacks on the cryptosystem.

Quantum Algorithm for Walsh-Hadamard $1^{\text {st }}$ Derivative Sampling

The final state of this circuit is given as

Quantum Algorithm for Walsh-Hadamard $1^{\text {st }}$ Derivative Sampling

The final state of this circuit is given as

$$
\begin{aligned}
|\psi\rangle= & |1\rangle \sum_{y}\left[\frac{1}{2^{n}} \sum_{x}(-1)^{(x \cdot y)}(-1)^{f(x) \oplus f(x \oplus a)}\right]|y\rangle|a\rangle \\
& =|1\rangle \sum_{y} \widehat{\Delta f_{a}}(y)|y\rangle|a\rangle
\end{aligned}
$$

Autocorrelation Sampling

Lemma

$\breve{f}(a)=\widehat{\Delta f_{a}^{(1)}}\left(0^{n}\right)$

Proof.

LHS is equal to $\frac{1}{2^{n}} \sum_{x}(-1)^{f(x)}(-1)^{f(x \oplus a)}=\frac{1}{2^{n}} \sum_{x} \Delta f_{a}^{(1)}(x)$. Now observe that $\Delta f_{a}^{(1)}\left(0^{n}\right)=\frac{1}{2^{n}} \sum_{x} \Delta f_{a}^{(1)}(x)$ and this proves the lemma.

Quantum Algorithm for Autocorrelation Sampling

1: Start with three registers initialized as $|1\rangle,\left|0^{n}\right\rangle$, and $\left|0^{n}\right\rangle$.
2: Apply H^{n} to R_{3} to generate the state $\frac{1}{\sqrt{2^{n}}} \sum_{b \in \mathbb{F}_{2}^{n}}|1\rangle\left|0^{n}\right\rangle|b\rangle$.
3: Apply $H o D J_{n}^{1}$ on the registers R_{1}, R_{2} and R_{3} to generate the state

$$
|\Phi\rangle=\frac{1}{\sqrt{2^{n}}}|1\rangle \sum_{b \in \mathbb{F}_{2}^{n}} \sum_{y \in \mathbb{F}_{2}^{n}} \widehat{\Delta f_{b}^{(1)}}(y)|y\rangle|b\rangle .
$$

4: Apply fixed-point amplitude amplification ${ }^{3}$ on $|\Phi\rangle$ to amplify the probability of observing R_{2} in the state $|0\rangle$ to $1-\delta$ for any given constant δ
5: Measure R_{3} in the standard basis and return the observed outcome

[^4]
Quantum Algorithm for Autocorrelation Sampling

The final state of the circuit is given as

$$
|\psi\rangle=|1\rangle \otimes\left|0^{n}\right\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \breve{f}(b)|b\rangle\right)+\sum_{y}|1\rangle|y\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \widehat{\Delta f_{b}}(y)|b\rangle\right)
$$

Quantum Algorithm for Autocorrelation Sampling

Theorem

The observed outcome returned by the above algorithm is a random sample from the distribution $\left\{\breve{f}(a)^{2} / \sigma_{f}\right\}_{a \in \mathbb{F}_{2}^{n}}$ with probability at least $1-\delta$. The algorithm makes $O\left(\frac{2^{n / 2}}{\sqrt{\sigma_{f}}} \log \frac{2}{\delta}\right)$ queries to U_{f} and uses $O\left(n \frac{2^{n / 2}}{\sqrt{\sigma_{f}}} \log \frac{2}{\delta}\right)$ gates altogether.

Classical Autocorrelation Estimation at a point a

- Observe that $\breve{f}(a)=\frac{1}{2^{n}} \sum_{x}(-1)^{f(x)}(-1)^{f(x \oplus a)}=\mathbb{E}_{x}\left[X_{x}\right]$ where the ± 1-valued random variable $X_{x}=(-1)^{f(x) \oplus f(x \oplus a)}$ is defined for x chosen uniformly at random from $\{0,1\}^{n}$.
- The number of samples needed if we were to classically estimate $\breve{f}($ a) with accuracy ϵ and error δ is $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.

Classical Autocorrelation Estimation at a point a

- Observe that $\breve{f}(a)=\frac{1}{2^{n}} \sum_{x}(-1)^{f(x)}(-1)^{f(x \oplus a)}=\mathbb{E}_{x}\left[X_{x}\right]$ where the ± 1-valued random variable $X_{x}=(-1)^{f(x) \oplus f(x \oplus a)}$ is defined for x chosen uniformly at random from $\{0,1\}^{n}$.
- The number of samples needed if we were to classically estimate $\breve{f}(a)$ with accuracy ϵ and error δ is $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.

Quantum Autocorrelation Estimation at a point a

Quantum Autocorrelation Estimation at a point a I

Require: Parameters: ϵ (confidence), δ (error)
1: Start with four registers of which R_{1} is initialized to $|a\rangle, R_{2}$ to $|0\rangle$, and R_{3}, R_{4} to $\left|0^{n}\right\rangle$.
2: Apply these transformations.

$$
\begin{aligned}
& |a\rangle|0\rangle\left|0^{n}\right\rangle\left|0^{n}\right\rangle \\
& \xrightarrow{H^{n} \otimes H^{n}}|a\rangle|0\rangle\left(\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle\right)\left(\frac{1}{\sqrt{2^{n}}} \sum_{y}|y\rangle\right) \\
& \xrightarrow{\text { CNOT }}|a\rangle|0\rangle\left(\frac{1}{\sqrt{2^{n}}} \sum_{x}|x\rangle\right)\left(\frac{1}{\sqrt{2^{n}}} \sum_{y}|y \oplus a\rangle\right) \\
& \xrightarrow{U_{f} \otimes U_{f}}|a\rangle|0\rangle\left(\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{f(x)}|x\rangle\right)\left(\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{f(y \oplus a)}|y \oplus a\rangle\right) \\
& \xrightarrow{\text { CNOT }}|a\rangle|0\rangle\left(\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{f(x)}|x\rangle\right)\left(\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{f(y \oplus a)}|y\rangle\right) \quad \triangleright \text { Uses reusable }|-\rangle
\end{aligned}
$$

Quantum Autocorrelation Estimation at a point a II

$$
=|a\rangle|0\rangle|\psi\rangle\left|\phi_{a}\right\rangle
$$

■ Normalized state $\frac{1}{\sqrt{2^{n}}} \sum_{x}(-1)^{f(x)}|x\rangle$ denoted ψ
■ Normalized state $\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{f(y \oplus a)}|y\rangle$ denoted ϕ_{a}
3: Apply $S T$ on R_{2}, R_{3} and R_{4} to obtain

$$
|a\rangle\left[|0\rangle \otimes \frac{1}{2}\left(|\psi\rangle\left|\phi_{a}\right\rangle+\left|\phi_{a}\right\rangle|\psi\rangle\right)+|1\rangle \otimes \frac{1}{2}\left(|\psi\rangle\left|\phi_{a}\right\rangle-\left|\phi_{a}\right\rangle|\psi\rangle\right)\right]
$$

4: $\ell \leftarrow$ estimate the probability of observing R_{2} in the state $|0\rangle$ with accuracy $\pm \frac{\epsilon}{2}$ and error δ
5: Return $2 \ell-1$ as the estimate of $|\breve{f}(a)|^{2}$

Quantum Autocorrelation Estimation at a point a

Theorem

The QAE algorithm makes $\Theta\left(\frac{\pi}{\epsilon} \log \frac{1}{\delta}\right)$ calls to U_{f} and returns an estimate α such that

$$
\operatorname{Pr}\left[\alpha-\epsilon \leq \breve{f}(a)^{2} \leq \alpha+\epsilon\right] \geq 1-\delta
$$

Estimation of Sum-of-Squares Indicator

- The sum of squares indicator is given as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

- Note that $1 \leq \sigma_{f} \leq 2^{n}$

■ Objective is to obtain an estimate of σ_{f} with ϵ accuracy and δ probability of error

Estimation of Sum-of-Squares Indicator

- The sum of squares indicator is given as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

■ Note that $1 \leq \sigma_{f} \leq 2^{n}$.
■ Objective is to obtain an estimate of σ_{f} with ϵ accuracy and δ probability of error.

Estimation of Sum-of-Squares Indicator

- The sum of squares indicator is given as

$$
\sigma_{f}=\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}
$$

■ Note that $1 \leq \sigma_{f} \leq 2^{n}$.
■ Objective is to obtain an estimate of σ_{f} with ϵ accuracy and δ probability of error.

Classical Estimation of Sum-of-Squares Indicator

Let a, b, c be three random variables chosen uniformly at random from \mathbb{F}_{2}^{n} such that $b \neq c$ and let $X_{a, b, c}$ be the ± 1-valued random variable $(-1)^{f(a \oplus b)}(-1)^{f(a \oplus c)}$. Then,

Classical Estimation of Sum-of-Squares Indicator

Let a, b, c be three random variables chosen uniformly at random from \mathbb{F}_{2}^{n} such that $b \neq c$ and let $X_{a, b, c}$ be the ± 1-valued random variable $(-1)^{f(a \oplus b)}(-1)^{f(a \oplus c)}$. Then,

$$
\begin{aligned}
\sigma_{f} & =\sum_{a \in \mathbb{F}_{2}^{n}} \breve{f}(a)^{2}=\sum_{a \in \mathbb{F}_{2}^{n}}\left[\frac{1}{2^{n}} \sum_{b \in \mathbb{F}_{2}^{n}}(-1)^{f(b) \oplus f(b \oplus a)}\right]^{2} \\
& =\frac{1}{2^{2 n}} \sum_{a \in \mathbb{F}_{2}^{n}}\left[2^{n}+\sum_{\substack{b \neq c \\
b, c \in \mathbb{F}_{2}^{n}}}(-1)^{f(a \oplus b) \oplus f(a \oplus c)]}\right. \\
& =1+\frac{1}{2^{2 n}} \sum_{\substack{a \in \mathbb{F}_{2}^{n} \\
b \neq c}}(-1)^{f(a \oplus b) \oplus f(a \oplus c)} \\
& =1+\left(2^{n}-1\right) \mathbb{E}_{a, b, c}\left[X_{a, b, c}\right]
\end{aligned}
$$

Classical Estimation of Sum-of-Squares Indicator

- We estimate $\mathbb{E}\left[X_{a, b, c}\right]$ using multiple independent samples of a, b, c.
- Note that $\mathbb{E}\left[X_{a, b, c}\right]=\frac{\sigma_{f}-1}{2^{n}-1} \approx \frac{\sigma_{f}}{2^{n}}$
- We can estimate $\mathbb{E}\left[X_{a, b, c}\right]$ with ϵ^{\prime} accuracy and δ error in $O\left(\frac{1}{\epsilon^{\prime 2}} \log \frac{1}{\delta}\right)$ calls to $f()$.
- To estimate σ_{f} with accuracy ϵ, we set $\epsilon^{\prime}=\frac{\epsilon}{2^{n}-1} \approx \frac{\epsilon}{2^{n}}$
- Hence, the number of calls to $f()$ would be $O\left(\frac{2^{2 n}}{\epsilon^{2}} \log \frac{1}{\delta}\right)$

Classical Estimation of Sum-of-Squares Indicator

- We estimate $\mathbb{E}\left[X_{a, b, c}\right]$ using multiple independent samples of a, b, c.
- Note that $\mathbb{E}\left[X_{a, b, c}\right]=\frac{\sigma_{f}-1}{2^{n}-1} \approx \frac{\sigma_{f}}{2^{n}}$.
- We can estimate $\mathbb{E}\left[X_{a, b, c}\right]$ with ϵ^{\prime} accuracy and δ error in $O\left(\frac{1}{\epsilon^{\prime 2}} \log \frac{1}{\delta}\right)$ calls to $f()$.
- To estimate σ_{f} with accuracy ϵ, we set $\epsilon^{\prime}=\frac{\epsilon}{2^{n}-1} \approx \frac{\epsilon}{2^{n}}$
- Hence, the number of calls to $f()$ would be $O\left(\frac{2^{2 n}}{\epsilon^{2}} \log \frac{1}{\delta}\right)$

Classical Estimation of Sum-of-Squares Indicator

- We estimate $\mathbb{E}\left[X_{a, b, c}\right]$ using multiple independent samples of a, b, c.
- Note that $\mathbb{E}\left[X_{a, b, c}\right]=\frac{\sigma_{f}-1}{2^{n}-1} \approx \frac{\sigma_{f}}{2^{n}}$.
- We can estimate $\mathbb{E}\left[X_{a, b, c}\right]$ with ϵ^{\prime} accuracy and δ error in $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ calls to $f()$.
- To estimate σ_{f} with accuracy ϵ, we set $\epsilon^{\prime}=\frac{\epsilon}{2^{n}-1} \approx \frac{\epsilon}{2^{n}}$
- Hence, the number of calls to $f()$ would be $O\left(\frac{2^{2 n}}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.

Classical Estimation of Sum-of-Squares Indicator

- We estimate $\mathbb{E}\left[X_{a, b, c}\right]$ using multiple independent samples of a, b, c.
- Note that $\mathbb{E}\left[X_{a, b, c}\right]=\frac{\sigma_{f}-1}{2^{n}-1} \approx \frac{\sigma_{f}}{2^{n}}$.
- We can estimate $\mathbb{E}\left[X_{a, b, c}\right]$ with ϵ^{\prime} accuracy and δ error in $O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$ calls to $f()$.
- To estimate σ_{f} with accuracy ϵ, we set $\epsilon^{\prime}=\frac{\epsilon}{2^{n}-1} \approx \frac{\epsilon}{2^{n}}$.
- Hence, the number of calls to $f()$ would be $O\left(\frac{2^{2 n}}{\epsilon^{2}} \log \frac{1}{\delta}\right)$

Classical Estimation of Sum-of-Squares Indicator

- We estimate $\mathbb{E}\left[X_{a, b, c}\right]$ using multiple independent samples of a, b, c.
- Note that $\mathbb{E}\left[X_{a, b, c}\right]=\frac{\sigma_{f}-1}{2^{n}-1} \approx \frac{\sigma_{f}}{2^{n}}$.
- We can estimate $\mathbb{E}\left[X_{a, b, c}\right]$ with ϵ^{\prime} accuracy and δ error in $O\left(\frac{1}{\epsilon^{\prime 2}} \log \frac{1}{\delta}\right)$ calls to $f()$.

■ To estimate σ_{f} with accuracy ϵ, we set $\epsilon^{\prime}=\frac{\epsilon}{2^{n}-1} \approx \frac{\epsilon}{2^{n}}$.

- Hence, the number of calls to $f()$ would be $O\left(\frac{2^{2 n}}{\epsilon^{2}} \log \frac{1}{\delta}\right)$.

Quantum Estimation of Sum-of-Squares Indicator

- Remember that the final state of this circuit is

$$
|\psi\rangle=|1\rangle \otimes\left|0^{n}\right\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \breve{f}(b)|b\rangle\right)+\sum_{y}|1\rangle|y\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \widehat{\Delta f_{b}}(y)|b\rangle\right) .
$$

- Since the probability of observing the output $\left|0^{\otimes n}\right\rangle$ in R_{2} is $\sigma_{f} / 2^{n}$, we ca estimate
σ_{f} with an accuracy ϵ and error δ in $\Theta\left(\frac{2^{n}}{\epsilon} \log \frac{1}{\delta}\right)$ calls to U_{f}

Quantum Estimation of Sum-of-Squares Indicator

- Remember that the final state of this circuit is

$$
|\psi\rangle=|1\rangle \otimes\left|0^{n}\right\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \breve{f}(b)|b\rangle\right)+\sum_{y}|1\rangle|y\rangle \otimes\left(\frac{1}{\sqrt{2^{n}}} \sum_{b} \widehat{\Delta f_{b}}(y)|b\rangle\right) .
$$

■ Since the probability of observing the output $\left|0^{\otimes n}\right\rangle$ in R_{2} is $\sigma_{f} / 2^{n}$, we ca estimate σ_{f} with an accuracy ϵ and error δ in $\Theta\left(\frac{2^{n}}{\epsilon} \log \frac{1}{\delta}\right)$ calls to U_{f}.

Conclusion

- Autocorrelation is an important tool in constructing Boolean functions with good cryptographic properties and in performing differential attacks.
- We presented an extension of Deutsch-Jozsa algorithm that can be used to sample the Walsh spectrum of any higher order derivatives.
■ We presented an algorithm to sample according to the distribution of normalized autocorrelation spectral values.
- We presented techniques to estimate the autocorrelation coefficient value at a point a and to estimate the Sum-of-Squares indicator of any given Boolean function.

Thank you for your attention! Any questions?

Hope you slept comfortably!

[^0]: ${ }^{1}$ Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

[^1]: ${ }^{1}$ Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

[^2]: ${ }^{1}$ Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

[^3]: ${ }^{2}$ The proof is present in Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. Springer US, 1994.

[^4]: ${ }^{3}$ Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113:210501, Nov 2014.

