Efficient Quantum Algorithms Related to Autocorrelation Spectrum

Debajyoti Bera¹ Subhamoy Maitra² Tharrmashastha SAPV¹

 1 IIIT-D

²ISI Calcutta

18 December 2019

The second author would like to acknowledge the support from the project "Cryptography & Cryptanalysis: How far can we bridge the gap between Classical and Quantum paradigm", awarded under DAE-SRC, BRNS, India.

Boolean Functions

Walsh function of a function $f: \{0,1\}^n \longrightarrow \{0,1\}$ is defined as the following function from $\{0,1\}^n$ to $\mathbb{R}[-1,1]$

for
$$y \in \{0,1\}^n$$
, $\hat{f}(y) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{x \cdot y}$

where $x \cdot y$ stands for the 0 - 1 valued expression $\bigoplus_{i=1...n} x_i y_i$:

Autocorrelation function of the function f is defined as the following transformation from $\{0,1\}^n$ to $\mathbb{R}[-1,1]$. for $a \in \{0,1\}^n$, $\check{f}(a) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{f(x \oplus a)}$

Walsh function of a function $f : \{0,1\}^n \longrightarrow \{0,1\}$ is defined as the following function from $\{0,1\}^n$ to $\mathbb{R}[-1,1]$

for
$$y \in \{0,1\}^n$$
, $\hat{f}(y) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{x \cdot y}$

where $x \cdot y$ stands for the 0 - 1 valued expression $\bigoplus_{i=1...n} x_i y_i$:

Autocorrelation function of the function f is defined as the following transformation from $\{0,1\}^n$ to $\mathbb{R}[-1,1]$. for $a \in \{0,1\}^n$, $\check{f}(a) = \frac{1}{2^n} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} (-1)^{f(x \oplus a)}$

- Shannon in his paper¹ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.
- Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.
- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

¹Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

- Shannon in his paper¹ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.
- Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.
- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

¹Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

- Shannon in his paper¹ related Walsh spectra and Autocorrelation spectra to confusion and diffusion of cryptosystems respectively.
- Boolean functions with low absolute Walsh sprectral values resist linear cryptanalysis.
- Boolean function with low absolute autocorrelation values resist differential cryptanalysis.

¹Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.

• Qubits are the quantum version of classical bits. E.g., $|0\rangle$, $|1\rangle$.

• A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.

A fundamental principle in quantum computing is superposition.

$$\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle.$$

The squares of the amplitudes add up to one. Normalization is very important in a quantum state.

• Oracles are quantum black-boxes and are denoted by U_f . They act as $U_f |x\rangle |a\rangle \longrightarrow |x\rangle |a \oplus f(x)\rangle.$

- Qubits are the quantum version of classical bits. E.g., $|0\rangle$, $|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.

A fundamental principle in quantum computing is superposition.

$$\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle.$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_f . They act as $U_f |x\rangle |a\rangle \longrightarrow |x\rangle |a \oplus f(x)\rangle.$

- Qubits are the quantum version of classical bits. E.g., $|0\rangle$, $|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle.$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_f . They act as

$$U_f |x\rangle |a\rangle \longrightarrow |x\rangle |a \oplus f(x)\rangle.$$

- Qubits are the quantum version of classical bits. E.g., $|0\rangle$, $|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$|\psi
angle = rac{1}{\sqrt{2}} |0
angle + rac{1}{\sqrt{2}} |1
angle.$$

The squares of the amplitudes add up to one. Normalization is very important in a quantum state.

• Oracles are quantum black-boxes and are denoted by U_f . They act as $U_f |x\rangle |a\rangle \longrightarrow |x\rangle |a \oplus f(x)\rangle.$

- Qubits are the quantum version of classical bits. E.g., $|0\rangle$, $|1\rangle$.
- A quantum state is a configuration of the qubits. It is denoted by a ket $|\cdot\rangle$.
- A fundamental principle in quantum computing is superposition.

$$|\psi\rangle = \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle.$$

- The squares of the amplitudes add up to one. Normalization is very important in a quantum state.
- Oracles are quantum black-boxes and are denoted by U_f . They act as

$$U_f |x\rangle |a\rangle \longrightarrow |x\rangle |a \oplus f(x)\rangle.$$

Due to Parseval's identity which is

$$\sum_{\in \{0,1\}^n} \left(\widehat{f}(x)
ight)^2 = 1$$
 ,

it was easy to design a quantum algorithm for the Walsh sepctrum.

x

It was indeed readily available as Deutsch-Jozsa algorithm.

Due to Parseval's identity which is

$$\sum_{x\in\{0,1\}^n} \left(\hat{f}(x)\right)^2 = 1,$$

it was easy to design a quantum algorithm for the Walsh sepctrum.

It was indeed readily available as Deutsch-Jozsa algorithm.

The state of the system post the gate operations is given by

$$|\psi\rangle = \frac{1}{2^{n}} \sum_{y \in \{0,1\}^{n}} \left[\sum_{x \in \{0,1\}^{n}} (-1)^{f(x) \oplus x \cdot y} \right] |y\rangle |-\rangle = \sum_{y \in \{0,1\}^{n}} \hat{f}(y) |y\rangle |-\rangle$$

So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

$$\begin{aligned} |q_0\rangle &= |0^n\rangle - H \\ |q_1\rangle &= |1\rangle - H \end{aligned} \qquad U_{f(x)} \end{aligned}$$

• The state of the system post the gate operations is given by

$$|\psi
angle = rac{1}{2^n}\sum_{y\in\{0,1\}^n}\left[\sum_{x\in\{0,1\}^n}(-1)^{f(x)\oplus x\cdot y}
ight]|y
angle|-
angle = \sum_{y\in\{0,1\}^n}\hat{f}(y)\left|y
angle\left|-
ight
angle$$

So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

$$\begin{aligned} |q_0\rangle &= |0^n\rangle - H \\ |q_1\rangle &= |1\rangle - H \end{aligned} \qquad U_{f(x)} \end{aligned}$$

• The state of the system post the gate operations is given by

$$\left|\psi\right\rangle = \frac{1}{2^{n}} \sum_{y \in \{0,1\}^{n}} \left[\sum_{x \in \{0,1\}^{n}} (-1)^{f(x) \oplus x \cdot y} \right] \left|y\right\rangle \left|-\right\rangle = \sum_{y \in \{0,1\}^{n}} \hat{f}(y) \left|y\right\rangle \left|-\right\rangle$$

So, on sampling a constant number of times and with linear number of gates, we can obtain points with high Walsh coefficient value.

Problem with Autcorrelation Spectrum

• However, there was no study on quantum algorithms for Autocorrelation spectrum.

This was due to the fact that

$$\sum_{a} \breve{f}(a)^2 \in [1, 2^n].$$

Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult.

Problem with Autcorrelation Spectrum

• However, there was no study on quantum algorithms for Autocorrelation spectrum.

This was due to the fact that

 $\sum_{a} \breve{f}(a)^2 \in [1, 2^n].$

Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult.

Problem with Autcorrelation Spectrum

• However, there was no study on quantum algorithms for Autocorrelation spectrum.

This was due to the fact that

$$\sum_{a} \check{f}(a)^2 \in [1, 2^n].$$

 Unlike Deutsch-Jozsa algorithm, it appears that obtaining a quantum algorithm as an immediate corollary would be difficult.

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$\sigma_f = \sum_{\mathbf{a} \in \mathbb{F}_2^n} \breve{f}(\mathbf{a})^2$$

In particular, $\sigma_f = 1$ if f is a Bent function and $\sigma_f = 2^n$ if f is a linear function.

• A small σ_f indicates that a function satisfies the global avalanche criteria (GAC).

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$\sigma_f = \sum_{\pmb{a} \in \mathbb{F}_2^n} \breve{f}(\pmb{a})^2$$

In particular, $\sigma_f = 1$ if f is a Bent function and $\sigma_f = 2^n$ if f is a linear function.

• A small σ_f indicates that a function satisfies the global avalanche criteria (GAC).

Preliminaries: Sum of Squares

The sum-of-squares indicator for the characteristic of f is defined as

$$\sigma_f = \sum_{\mathbf{a} \in \mathbb{F}_2^n} \breve{f}(\mathbf{a})^2$$

In particular, $\sigma_f = 1$ if f is a Bent function and $\sigma_f = 2^n$ if f is a linear function.

• A small σ_f indicates that a function satisfies the global avalanche criteria (GAC).

Given a point $a \in \{0,1\}^n$, the (first-order) derivative of an *n*-bit function f at a is defined as

$$\Delta f_a(x) = f(x \oplus a) \oplus f(x)$$

■ For a list of points A = (a₁, a₂,..., a_k) (where k ≤ n) the k-th derivative of f at (a₁, a₂,..., a_k) is recursively defined as

$$\Delta f_{\mathcal{A}}^{(k)}(x) = \Delta f_{a_k}(\Delta f_{a_1, a_2, \dots, a_{k-1}}^{(k-1)}(x)),$$

where $\Delta f_{a_1,a_2,\ldots,a_{k-1}}^{(k-1)}(x)$ is the (k-1)-th derivative of f at points (a_1,a_2,\ldots,a_{k-1}) .

Given a point $a \in \{0,1\}^n$, the (first-order) derivative of an *n*-bit function f at a is defined as

$$\Delta f_a(x) = f(x \oplus a) \oplus f(x)$$

• For a list of points $\mathcal{A} = (a_1, a_2, \dots, a_k)$ (where $k \leq n$) the k-th derivative of f at (a_1, a_2, \dots, a_k) is recursively defined as

$$\Delta f_{\mathcal{A}}^{(k)}(x) = \Delta f_{a_k}(\Delta f_{a_1,a_2,...,a_{k-1}}^{(k-1)}(x)),$$

where $\Delta f_{a_1,a_2,\ldots,a_{k-1}}^{(k-1)}(x)$ is the (k-1)-th derivative of f at points $(a_1, a_2, \ldots, a_{k-1})$.

The *i*-th derivative of f at $\mathcal{A} = (a_1, a_2, \dots a_i)$ can be shown² to be

$$\Delta f_{\mathcal{A}}^{(i)}(x) = \bigoplus_{S \subseteq \mathcal{A}} f(x \oplus S)$$

where $X_s = \bigoplus_{a \in S} a$, $f(x \oplus S) = f(x \oplus X_s)$ and $S \subseteq A$ indicates all possible sub-lists of \mathcal{A} (including duplicates, if any, in \mathcal{A}).

²The proof is present in Xuejia Lai. Higher Order Derivatives and Differential Cryptanalysis. Springer US, 1994.

 Higher-order derivatives form the basis of many cryptographic attacks, especially those that generalize the differential attack technique against block ciphers such as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.

If the non-trivial ith derivatives of the function are constant for small i, then we can use that fact to mount attacks on the cryptosystem.

- Higher-order derivatives form the basis of many cryptographic attacks, especially those that generalize the differential attack technique against block ciphers such as Integral attack, AIDA, cube attack, zero-sum distinguisher, etc.
- If the non-trivial *ith* derivatives of the function are constant for small *i*, then we can use that fact to mount attacks on the cryptosystem.

Quantum Algorithm for Walsh-Hadamard 1^{st} Derivative Sampling

The final state of this circuit is given as

$$\begin{split} |\psi\rangle &= |1\rangle \sum_{y} \left[\frac{1}{2^{n}} \sum_{x} (-1)^{(x \cdot y)} (-1)^{f(x) \oplus f(x \oplus a)} \right] |y\rangle |a\rangle \\ &= |1\rangle \sum_{y} \widehat{\Delta f_{a}}(y) |y\rangle |a\rangle \end{split}$$

Quantum Algorithm for Walsh-Hadamard 1^{st} Derivative Sampling

The final state of this circuit is given as

$$\begin{split} |\psi\rangle &= |1\rangle \sum_{y} \left[\frac{1}{2^{n}} \sum_{x} (-1)^{(x \cdot y)} (-1)^{f(x) \oplus f(x \oplus a)} \right] |y\rangle |a\rangle \\ &= |1\rangle \sum_{y} \widehat{\Delta f_{a}}(y) |y\rangle |a\rangle \end{split}$$

Autocorrelation Sampling

Lemma $\check{f}(a) = \widehat{\Delta f_a^{(1)}}(0^n)$

Proof.

LHS is equal to
$$\frac{1}{2^n} \sum_x (-1)^{f(x)} (-1)^{f(x \oplus a)} = \frac{1}{2^n} \sum_x \Delta f_a^{(1)}(x)$$
. Now observe that $\widehat{\Delta f_a^{(1)}}(0^n) = \frac{1}{2^n} \sum_x \Delta f_a^{(1)}(x)$ and this proves the lemma.

Quantum Algorithm for Autocorrelation Sampling

- 1: Start with three registers initialized as $|1\rangle$, $|0^n\rangle$, and $|0^n\rangle$.
- ^{2:} Apply H^n to R_3 to generate the state $\frac{1}{\sqrt{2^n}} \sum_{b \in \mathbb{F}_2^n} |1\rangle |0^n\rangle |b\rangle$.
- ^{3:} Apply $HoDJ_n^1$ on the registers R_1 , R_2 and R_3 to generate the state $|\Phi\rangle = \frac{1}{\sqrt{2^n}} |1\rangle \sum_{b \in \mathbb{F}_2^n} \sum_{y \in \mathbb{F}_2^n} \widehat{\Delta f_b^{(1)}}(y) |y\rangle |b\rangle.$
- ^{4:} Apply fixed-point amplitude amplification³ on $|\Phi\rangle$ to amplify the probability of observing R_2 in the state $|0\rangle$ to 1δ for any given constant δ
- 5: Measure R_3 in the standard basis and return the observed outcome

³Theodore J. Yoder, Guang Hao Low, and Isaac L. Chuang. Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett., 113:210501, Nov 2014.

Quantum Algorithm for Autocorrelation Sampling

The final state of the circuit is given as

$$\ket{\psi} = \ket{1} \otimes \ket{0^n} \otimes \left(rac{1}{\sqrt{2^n}} \sum_b \check{f}(b) \ket{b}
ight) + \sum_y \ket{1} \ket{y} \otimes \left(rac{1}{\sqrt{2^n}} \sum_b \widehat{\Delta f_b}(y) \ket{b}
ight)$$

Quantum Algorithm for Autocorrelation Sampling

Theorem

The observed outcome returned by the above algorithm is a random sample from the distribution $\{\breve{f}(a)^2/\sigma_f\}_{a\in\mathbb{F}_2^n}$ with probability at least $1-\delta$. The algorithm makes $O(\frac{2^{n/2}}{\sqrt{\sigma_f}}\log\frac{2}{\delta})$ queries to U_f and uses $O(n\frac{2^{n/2}}{\sqrt{\sigma_f}}\log\frac{2}{\delta})$ gates altogether.

Classical Autocorrelation Estimation at a point a

- Observe that $\check{f}(a) = \frac{1}{2^n} \sum_x (-1)^{f(x)} (-1)^{f(x \oplus a)} = \mathbb{E}_x[X_x]$ where the ± 1 -valued random variable $X_x = (-1)^{f(x) \oplus f(x \oplus a)}$ is defined for x chosen uniformly at random from $\{0, 1\}^n$.
- The number of samples needed if we were to classically estimate $\check{f}(a)$ with accuracy ϵ and error δ is $O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$.

Classical Autocorrelation Estimation at a point a

- Observe that $\check{f}(a) = \frac{1}{2^n} \sum_x (-1)^{f(x)} (-1)^{f(x \oplus a)} = \mathbb{E}_x[X_x]$ where the ± 1 -valued random variable $X_x = (-1)^{f(x) \oplus f(x \oplus a)}$ is defined for x chosen uniformly at random from $\{0, 1\}^n$.
- The number of samples needed if we were to classically estimate $\check{f}(a)$ with accuracy ϵ and error δ is $O(\frac{1}{\epsilon^2} \log \frac{1}{\delta})$.

Quantum Autocorrelation Estimation at a point a

Quantum Autocorrelation Estimation at a point a I

Require: Parameters: ϵ (confidence), δ (error)

- ^{1:} Start with four registers of which R_1 is initialized to $|a\rangle$, R_2 to $|0\rangle$, and R_3 , R_4 to $|0^n\rangle$.
- 2: Apply these transformations.

Quantum Autocorrelation Estimation at a point a II

- $= |a\rangle |0\rangle |\psi\rangle |\phi_{a}\rangle$ $= \text{Normalized state } \frac{1}{\sqrt{2^{n}}} \sum_{x} (-1)^{f(x)} |x\rangle \text{ denoted } \psi$ $= \text{Normalized state } \frac{1}{\sqrt{2^{n}}} \sum_{y} (-1)^{f(y \oplus a)} |y\rangle \text{ denoted } \phi_{a}$ 3: Apply *ST* on *R*₂, *R*₃ and *R*₄ to obtain $|a\rangle \left[|0\rangle \otimes \frac{1}{2} (|\psi\rangle |\phi_{a}\rangle + |\phi_{a}\rangle |\psi\rangle \right] + |1\rangle \otimes \frac{1}{2} (|\psi\rangle |\phi_{a}\rangle |\phi_{a}\rangle |\psi\rangle \right]$
- 4: $\ell \leftarrow$ estimate the probability of observing R_2 in the state $|0\rangle$ with accuracy $\pm \frac{\epsilon}{2}$ and error δ
- 5: Return $2\ell-1$ as the estimate of $|ec{f}(a)|^2$

Quantum Autocorrelation Estimation at a point a

Theorem

The QAE algorithm makes $\Theta\left(\frac{\pi}{\epsilon}\log\frac{1}{\delta}\right)$ calls to U_f and returns an estimate α such that $\Pr\left[\alpha - \epsilon \leq \check{f}(a)^2 \leq \alpha + \epsilon\right] \geq 1 - \delta$

Estimation of Sum-of-Squares Indicator

• The sum of squares indicator is given as

$$\sigma_f = \sum_{\mathbf{a} \in \mathbb{F}_2^n} \breve{f}(\mathbf{a})^2$$

• Note that $1 \leq \sigma_f \leq 2^n$.

• Objective is to obtain an estimate of σ_f with ϵ accuracy and δ probability of error.

.

Estimation of Sum-of-Squares Indicator

The sum of squares indicator is given as

$$\sigma_f = \sum_{\mathbf{a} \in \mathbb{F}_2^n} \breve{f}(\mathbf{a})^2$$

• Note that $1 \leq \sigma_f \leq 2^n$.

• Objective is to obtain an estimate of σ_f with ϵ accuracy and δ probability of error.

.

Estimation of Sum-of-Squares Indicator

The sum of squares indicator is given as

$$\sigma_f = \sum_{\pmb{a} \in \mathbb{F}_2^n} \breve{f}(\pmb{a})^2$$

• Note that
$$1 \leq \sigma_f \leq 2^n$$
.

• Objective is to obtain an estimate of σ_f with ϵ accuracy and δ probability of error.

.

Let a, b, c be three random variables chosen uniformly at random from \mathbb{F}_2^n such that $b \neq c$ and let $X_{a,b,c}$ be the ± 1 -valued random variable $(-1)^{f(a \oplus b)}(-1)^{f(a \oplus c)}$. Then,

$$\sigma_f = \sum_{a \in \mathbb{F}_2^n} \breve{f}(a)^2 = \sum_{a \in \mathbb{F}_2^n} \left[\frac{1}{2^n} \sum_{b \in \mathbb{F}_2^n} (-1)^{f(b) \oplus f(b \oplus a)} \right]$$
$$= \frac{1}{2^{2n}} \sum_{a \in \mathbb{F}_2^n} \left[2^n + \sum_{\substack{b \neq c \\ b, c \in \mathbb{F}_2^n}} (-1)^{f(a \oplus b) \oplus f(a \oplus c)} \right]$$
$$= 1 + \frac{1}{2^{2n}} \sum_{\substack{a \in \mathbb{F}_2^n \\ b \neq c}} (-1)^{f(a \oplus b) \oplus f(a \oplus c)}$$
$$= 1 + (2^n - 1) \mathbb{E}_{a,b,c} [X_{a,b,c}]$$

Let a, b, c be three random variables chosen uniformly at random from \mathbb{F}_2^n such that $b \neq c$ and let $X_{a,b,c}$ be the ± 1 -valued random variable $(-1)^{f(a \oplus b)}(-1)^{f(a \oplus c)}$. Then,

$$\sigma_f = \sum_{\boldsymbol{a} \in \mathbb{F}_2^n} \check{f}(\boldsymbol{a})^2 = \sum_{\boldsymbol{a} \in \mathbb{F}_2^n} \left[\frac{1}{2^n} \sum_{\boldsymbol{b} \in \mathbb{F}_2^n} (-1)^{f(\boldsymbol{b}) \oplus f(\boldsymbol{b} \oplus \boldsymbol{a})} \right]$$
$$= \frac{1}{2^{2n}} \sum_{\boldsymbol{a} \in \mathbb{F}_2^n} \left[2^n + \sum_{\boldsymbol{b} \neq c \ \boldsymbol{b}, c \in \mathbb{F}_2^n} (-1)^{f(\boldsymbol{a} \oplus \boldsymbol{b}) \oplus f(\boldsymbol{a} \oplus c)} \right]$$
$$= 1 + \frac{1}{2^{2n}} \sum_{\boldsymbol{a} \in \mathbb{F}_2^n \atop \boldsymbol{b} \neq c} (-1)^{f(\boldsymbol{a} \oplus \boldsymbol{b}) \oplus f(\boldsymbol{a} \oplus c)}$$
$$= 1 + (2^n - 1) \mathbb{E}_{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}} [X_{\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}}]$$

2

• We estimate $\mathbb{E}[X_{a,b,c}]$ using multiple independent samples of a, b, c.

• Note that $\mathbb{E}[X_{a,b,c}] = \frac{\sigma_f - 1}{2^n - 1} \approx \frac{\sigma_f}{2^n}$.

- We can estimate $\mathbb{E}[X_{a,b,c}]$ with ϵ' accuracy and δ error in $O(\frac{1}{\epsilon'^2} \log \frac{1}{\delta})$ calls to f().
- To estimate σ_f with accuracy ϵ , we set $\epsilon' = \frac{\epsilon}{2^n 1} \approx \frac{\epsilon}{2^n}$.

• We estimate $\mathbb{E}[X_{a,b,c}]$ using multiple independent samples of a, b, c.

• Note that
$$\mathbb{E}[X_{a,b,c}] = rac{\sigma_f - 1}{2^n - 1} pprox rac{\sigma_f}{2^n}$$
.

• We can estimate $\mathbb{E}[X_{a,b,c}]$ with ϵ' accuracy and δ error in $O(\frac{1}{\epsilon'^2} \log \frac{1}{\delta})$ calls to f().

• To estimate σ_f with accuracy ϵ , we set $\epsilon' = \frac{\epsilon}{2^n - 1} \approx \frac{\epsilon}{2^n}$.

• We estimate $\mathbb{E}[X_{a,b,c}]$ using multiple independent samples of a, b, c.

• Note that
$$\mathbb{E}[X_{a,b,c}] = rac{\sigma_f - 1}{2^n - 1} pprox rac{\sigma_f}{2^n}$$
.

- We can estimate $\mathbb{E}[X_{a,b,c}]$ with ϵ' accuracy and δ error in $O(\frac{1}{\epsilon'^2} \log \frac{1}{\delta})$ calls to f().
- To estimate σ_f with accuracy ϵ , we set $\epsilon' = \frac{\epsilon}{2^n 1} \approx \frac{\epsilon}{2^n}$.

• We estimate $\mathbb{E}[X_{a,b,c}]$ using multiple independent samples of a, b, c.

• Note that
$$\mathbb{E}[X_{a,b,c}] = rac{\sigma_f - 1}{2^n - 1} pprox rac{\sigma_f}{2^n}$$
.

- We can estimate $\mathbb{E}[X_{a,b,c}]$ with ϵ' accuracy and δ error in $O(\frac{1}{\epsilon'^2} \log \frac{1}{\delta})$ calls to f().
- To estimate σ_f with accuracy ϵ , we set $\epsilon' = \frac{\epsilon}{2^n 1} \approx \frac{\epsilon}{2^n}$.

• We estimate $\mathbb{E}[X_{a,b,c}]$ using multiple independent samples of a, b, c.

• Note that
$$\mathbb{E}[X_{a,b,c}] = rac{\sigma_f - 1}{2^n - 1} pprox rac{\sigma_f}{2^n}$$
.

- We can estimate $\mathbb{E}[X_{a,b,c}]$ with ϵ' accuracy and δ error in $O(\frac{1}{\epsilon'^2} \log \frac{1}{\delta})$ calls to f().
- To estimate σ_f with accuracy ϵ , we set $\epsilon' = \frac{\epsilon}{2^n 1} \approx \frac{\epsilon}{2^n}$.

Quantum Estimation of Sum-of-Squares Indicator

• Remember that the final state of this circuit is $|\psi\rangle = |1\rangle \otimes |0^n\rangle \otimes \left(\frac{1}{\sqrt{2^n}}\sum_b \breve{f}(b) |b\rangle\right) + \sum_y |1\rangle |y\rangle \otimes \left(\frac{1}{\sqrt{2^n}}\sum_b \widehat{\Delta f_b}(y) |b\rangle\right).$

Since the probability of observing the output $|0^{\otimes n}\rangle$ in R_2 is $\sigma_f/2^n$, we can estimate σ_f with an accuracy ϵ and error δ in $\Theta\left(\frac{2^n}{\epsilon}\log\frac{1}{\delta}\right)$ calls to U_f .

Quantum Estimation of Sum-of-Squares Indicator

• Remember that the final state of this circuit is $|\psi\rangle = |1\rangle \otimes |0^n\rangle \otimes \left(\frac{1}{\sqrt{2^n}}\sum_b \breve{f}(b) |b\rangle\right) + \sum_y |1\rangle |y\rangle \otimes \left(\frac{1}{\sqrt{2^n}}\sum_b \widehat{\Delta f_b}(y) |b\rangle\right).$

Since the probability of observing the output $|0^{\otimes n}\rangle$ in R_2 is $\sigma_f/2^n$, we can estimate σ_f with an accuracy ϵ and error δ in $\Theta\left(\frac{2^n}{\epsilon}\log\frac{1}{\delta}\right)$ calls to U_f .

Conclusion

- Autocorrelation is an important tool in constructing Boolean functions with good cryptographic properties and in performing differential attacks.
- We presented an extension of Deutsch-Jozsa algorithm that can be used to sample the Walsh spectrum of any higher order derivatives.
- We presented an algorithm to sample according to the distribution of normalized autocorrelation spectral values.
- We presented techniques to estimate the autocorrelation coefficient value at a point *a* and to estimate the Sum-of-Squares indicator of any given Boolean function.

Thank you for your attention! Any questions?

Hope you slept comfortably!