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Abstract—Recent advancement of the WWW, IOT, social
network, e-commerce, etc. have generated a large volume of data.
These datasets are mostly represented by high dimensional and
sparse datasets. Many fundamental subroutines of common data
analytic tasks such as clustering, classification, ranking, nearest
neighbor search, etc. scale poorly with the dimension of the
dataset. In this work, we address this problem and propose a
sketching (alternatively, dimensionality reduction) algorithm –
BinSketch (Binary Data Sketch) – for sparse binary datasets.
BinSketch preserves the binary version of the dataset after
sketching and maintains estimates for multiple similarity mea-
sures such as Jaccard, Similarity, Inner-Product similarities, and
Hamming Distance, on the same sketch. We present a theoretical
analysis of our algorithm and complement it with extensive
experimentation on several real-world datasets. We compare the
performance of our algorithm with the state-of-the-art algorithms
on the task of mean-square-error and ranking. Our proposed
algorithm offers a comparable accuracy while suggesting a
significant speedup in the dimensionality reduction time, with
respect to the other candidate algorithms. Our proposal is simple,
easy to implement, and therefore can be adopted in practice.

I. INTRODUCTION

Due to technological advancement, recent year have wit-
nessed a dramatic increase in our ability to collect data from
various sources like WWW, IOT, social media platforms,
mobile applications, finance, and biology. For example, in many
web applications, the volume of datasets are of the terascale
order, with trillions of features [1]. The high dimensionality
incurs high memory requirements and computational cost
during the training. Further, most of such high dimensional
datasets are sparse, owing to a wide adaption of “Bag-of-words”
(BoW) representations. For example: in the case of document
representation, word frequency within a document follows
power law – most of the words occur rarely in a document,
and higher order shingles occur only once. We focus on the
binary representation of the datasets which is quite common
in several applications [9], [10], [16], [20].

Measuring similarity score of data points under various
similarity measures is a fundamental subroutine in several ap-
plications such as clustering, classification, identifying nearest
neighbors, ranking, and it play an important role in various
data mining, machine learning, and information retrieval tasks.
However, due to the “curse of dimensionality” a brute-force
way of computing the similarity scores in the high dimensional
dataset is in-feasible, and at times impossible. In this work, we
address this question and propose an efficient dimensionality
reduction algorithm for sparse binary datasets that generates a

succinct sketch of the dataset while preserving estimates for
computing the similarity score between data objects.

A. Our Contribution

We first informally describe our sketching algorithm.
BinSketch: (Binary Data Sketching) Given a d-dimensional

binary vector a ∈ {0, 1}d, our algorithm reduces it to a N-
dimensional binary vector as ∈ {0, 1}N, where N is specified
later. It randomly maps each bit position (say) {i}di=1 to an
integer {j}Nj=1. To compute the j-th bit of as, it checks
which bit positions have been mapped to j, computes the
bitwise− OR of the bits located at those positions and assigns
it to as[j].

A simple and exact solution to the problem is to represent
each binary vector by a (sorted) list (or vector) of the indices
with value one. In this representation, the space required in
storing a vector is O(ψ log d) bits – as we need O(log d) bits
for storing each index, and there are at most ψ indices with
non-zero value. Further, the time complexity of computing the
(say) inner product of two originally ψ-sparse binary vectors
is O(ψ log d). Therefore, both the storage as well as the time
complexity of calculating similarity depend on the original
dimension d and does not scale for large values of d. For high
dimensional sparse binary data, we show how to construct
highly compressed binary sketches whose length depends only
on the data sparsity. Furthermore, we present techniques to
compute similarity between vectors from their sketches alone.
Our main technique is presented in Algorithm 1 for inner
product similarity and the following theorem summarizes it.

Theorem 1 (Estimation of inner product). Suppose we want
to estimate the Inner Product of d-dimensional binary vectors,
whose sparsity is at most ψ, with probability at least 1−ρ. We
can use BinSketch to construct N-dimensional binary sketches
where N = ψ

√
ψ
2 ln 2

ρ . If as and bs denote the sketches of
vectors a and b, respectively, then IP(a, b) can be estimated
with accuracy O(

√
ψ ln 6

ρ ) using Algorithm 1.

We also present Algorithm 2 for estimating Hamming
Distance, Algorithm 3 for estimating Jaccard Similarity and
Algorithm 4 for estimating Cosine Similarity; all these algo-
rithms are designed based on Algorithm 1 and so follow similar
accuracy guarantees.

Extension for categorical data compression. Our result
can be easily extended for compressing Categorical datasets.
The categorical dataset consists of several categorical features.



Examples of categorical features are sex, weather, days in a
week, age group, educational level, etc. We consider a type
of Hamming distance for defining the distance between two
categorical data points. For two d dimensional categorical data
points u and v, the distance between them is defined as follows:
D(u, v) = Σdi=1dist(u[i], v[i]), where

dist(u[i], v[i]) =

{
1, if u[i] 6= v[i],

0, otherwise.

In order to use BinSketch, we need to preprocess the
datasets. We first encode categorical feature via label-encoding
followed by one-hot-encoding. In the label encoding step,
features are encoded as integers. For a given feature, if it
has m possible values, we encode them with integers between
0 and m− 1. In one-hot-encoding step, we convert the feature
value into a m length binary string, where 1 is located at
the position corresponding to the result of the label-encoding
step. 1 This preprocessing convert categorical dataset to a
binary dataset. Please note that after preprocessing Hamming
distance between the binary version of the data points is
equal to the corresponding categorical distance D(, ), stated
above. We can now compress the binary version of the dataset
using BinSketch and due to Algorithm 2, the compressed
representation maintains the Hamming distance.

In Section III we present the proof of Theorem 1 where
we explain the theoretical reasons behind the effectiveness
of BinSketch. As is usually the case for hash functions,
practical performance often outshines theoretical bounds; so
we conduct numerous experiments on public datasets. Based
on our experiment results reported in Section IV we make
the claim that BinSketch is the best option for compressing
sparse binary vectors while retaining similarity for many of the
commonly used measures. The accuracy obtained is comparable
with the state-of-the-art sketching algorithms, especially at
high similarity regions, while taking almost negligible time
compared to similar sketching algorithms proposed so far.

B. Related work

Our proposed algorithm is very similar in nature to the BCS
algorithm [25], [26], which suggests a randomized bucketing
algorithm where each index of the input is randomly assigned
to one of the O(ψ2) buckets; ψ denotes the sparsity of
the dataset. The sketch of an input vector is obtained by
computing the parity of the bits fallen in each bucket. We
offer a better compression bound than theirs. For a pair of
vectors, their compression bounds are O(ψ2), while ours is
O(ψ
√
ψ). This is also reflected in our empirical evaluations,

on small values of compression length, we outperform as
compare to their algorithms. However, the compression times
(or dimensionality reduction time) of both the algorithms are
somewhat comparable.

For Jaccard Similarity, we compare the performance of our
algorithms with MinHash [5], DOPH [27] – a faster variant

1Both label-encoder and one-hot-encoder are available in sklearn as
labelEncoder and OneHotEncoder packages.

of MinHash, and OddSketch [23]. We would like to point
out some key differences between OddSketch and BinSketch.
OddSketch is two-step in nature that takes the sketch obtained
by running MinHash on the original data as input, and outputs
binary sketch which maintains an estimate of the original
Jaccard similarity. Due to this two-step nature, its compression
time is higher (see Table I and Figure 3). The number of
MinHash functions used in OddSketch (denoted by k) is
a crucial parameter and the authors suggested using k such
that the pairwise symmetric difference is approximately N/2.
Empirically they suggest using k = N/(4(1 − J)), where J
is the similarity threshold. We argue that not only tuning k
is an important step but it is unclear how this condition will
be satisfied for a diverse dataset, on the contrary, BinSketch
requires no such parameter. Furthermore, OddSketch doesn’t
provide any closed form expression to estimate accuracy and
confidence. However, the variance of the critical term of their
estimator is linear in the size of the sketch, i.e. N. Whereas
our confidence interval is of the order of

√
ψ which could be

far smaller compared to N, even for non-sparse data. Finally,
compared to the Poisson approximation based analysis used in
OddSketch, we employed a tighter martingale-based analysis
leading to (slightly) better concentration bounds (compare, e.g.,
the concentration bounds for estimating the size of a set from
its sketch).

For Cosine Similarity, we compare BinSketch with
SimHash [11], CBE [31] – a faster variant of SimHash,
MinHash [29], DOPH on the sketch obtained by
MinHash [29]. For the Inner Product, BCS [26], Asymmetric
MinHash [29], and Asymmetric DOPH – DOPH [27] on the
sketch obtained by [29], were the competing algorithms. In
all these similarity measures, for sparse binary datasets, our
proposed algorithm is faster, while simultaneously offering
almost a similar performance as compared to the baselines. We
experimentally compare the performance on several real-world
datasets and observed the results that are in line with these
observations. Further, in order to get a sketch of size N, our
algorithm requires a lesser number of random bits, and require
only one pass to the datasets. These are the major reasons
due to which we obtained good speedup in compression time.
We summarize this comparison in Table I. Finally, a major
advantage of our algorithm, similar to [25], [26], is that it
gives one-shot sketching by maintaining estimates of multiple
similarity measures in the same sketch; this is is contrast to
usual sketches that are customized for a specific similarity.

a) Connection with Bloom Filter.: BinSketch appears
structurally similar to a Bloom filter with one hash function.
The standard Bloom filter is a space-efficient data-structure
for set-membership queries; however, there is an alternative
approach that can be used to estimate the intersection between
two sets [6]. However, it is unclear how estimates for other
similarity measures can be obtained. We answer this question
positively and suggests estimates for all the four similarity
measures in the same sketch. We also show that our estimates
are strongly concentrated around their expected values.



TABLE I
A COMPARISON AMONG THE CANDIDATE ALGORITHMS, ON THE NUMBER

OF RANDOM BITS AND THE COMPRESSION TIME, TO GET A SKETCH OF
LENGTH N OF ONE DATA OBJECT. COMPRESSION TIME INCLUDES BOTH (I)
TIME REQUIRED TO GENERATE HASH FUNCTION, WHICH IS OF ORDER THE
NUMBER OF RANDOM BITS, (II) TIME REQUIRED TO GENERATE THE SKETCH

USING THE HASH FUNCTIONS. THE PARAMETER k FOR OddSketch
DENOTES THE NUMBER OF PERMUTATIONS REQUIRED BY AN

INTERMEDIATE MinHash STEP.

Algorithm No of random bits Compression time
BinSketch O(d log N) O(d log N + ψ)

BCS [25], [26] O(d log N) O(d log N + ψ)
DOPH [27] O(d log d) O(d log d+ ψ +N)
CBE [31] O(d) O(d log d)

OddSketch [23] O(k(d log d+N)) O(k(d log d+N+ ψ))
SimHash [11] O(dN) O((d+ ψ)N)
MinHash [5] O((d log d)N) O((d log d+ ψ)N)

C. Applicability of our results

For high dimensional sparse binary datasets, BinSketch due
to its simplicity, efficiency, and performance, can be used in
numerous applications that require a sketch preserving Jaccard,
cosine, Hamming distance or inner product similarity.

Scalable Ranking and deduplication of documents.:
Given a corpus of documents and a set of query docu-
ments, a goal is to find all documents in the corpus that
are “similar” to query documents under a given similarity
measure (e.g., Jaccard, cosine, inner product). This problem
is a fundamental sub-routine in many applications like near-
duplicate data detection [4], [17], [22], [30], efficient document
similarity search [19], [29], plagiarism detection [4], [7],
etc. and dimensionality reduction is one way to address this
problem. In Subsection IV-B we provide empirical validation
that BinSketch offers significant speed-up in dimensionality
reduction while offering a comparable accuracy.

Scalable Clustering of documents.: BinSketch can be
used in scaling up the performance of several clustering
algorithms, in the case of high-dimensional and sparse datasets.
For instance, in the case of Spherical k-means clustering, which
is the problem of clustering data points using Cosine Similarity,
one can use [13], [24]; and for k-mode clustering, which is
clustering using Hamming Distance, one can use k-mode [18],
on the sketch obtained by BinSketch.

Other Applications.: Beyond the above-noted applications,
sketching techniques have been used widely in application such
as Spam detection [3], compressing social networks [12] all
pair similarity [2], Frequent Itemset Mining [8]. As BinSketch
offers significant speed-up in dimensionality reduction time and
simultaneously provides a succinct and accurate sketch, it helps
in scaling up the performance of the respective algorithms.

II. BACKGROUND

Notations
N dimension of the compressed data.
ψ sparsity bound.
u[i] i-th bit position of binary vector u.
|u| number of 1’s in the binary vector u.

Cos(u, v) Cosine similarity between u and v.
JS(u, v) Jaccard similarity between u and v.

Ham(u, v) Hamming distance between u and v.
IP(u, v) Inner product between u and v.

a) SimHash for cosine similarity [11], [14].: The cosine
similarity between a pair of vectors u, v ∈ Rd is defined
as 〈u, v〉/‖u‖2 · ‖v‖2. To compute a sketch of a vector u,
SimHash [11] generates a random vector r ∈ {−1,+1}d, with
each component chosen uniformly at random from {−1,+1}
and a 1-bit sketch is computed as

SimHash(r)(u) =

{
1, if 〈u, r〉 ≥ 0.

0, otherwise.

SimHash was shown to preserve inner product in the
following manner [14]. Let θ be an angle such that cos θ =
〈u, v〉/‖u‖ · ‖v‖. Then,

Pr[SimHash(r)(u) = SimHash(r)(v)] = 1− θ

π
,

b) MinHash for Jaccard and cosine similarity.: The
Jaccard similarity between a pair of set u, v ⊆ {1, 2, . . . d}
is defined as JS(u, v) = |u∩v|

|u∪v| . Broder et al. [5] suggested
an algorithm – MinHash – to compress a collection of sets
while preserving the Jaccard similarity between any pair of
sets. Their technique includes taking a random permutation of
{1, 2, . . . , d} and assigning a value to each set which maps to
minimum under that permutation.

Definition 2 (Minhash [5]). Let π be a random permutation
over {1, . . . , d}, then for a set u ⊆ {1, . . . d} hπ(u) =
arg mini π(i) for i ∈ u.

It was then shown by Broder et al. [4], [5] that

Pr[hπ(u) = hπ(v)] =
|u ∩ v|
|u ∪ v|

.

Exploiting a similarity between Jaccard similarity of sets
and cosine similarity of binary vectors, it was shown how to
use MinHash for constructing sketches for cosine similarity
in the case of sparse binary data [28].

c) BCS for sparse binary data [25], [26].: For sparse
binary dataset, BCS offers a sketching algorithm that simulta-
neously preserves Jaccard similarity, Hamming distance and
inner product.

Definition 3 (BCS). Let N be the number of buckets. Choose a
random mapping b from {1 . . . d} to {1, . . . N}. Then a vector
u ∈ {0, 1}d is compressed to a vector us ∈ {0, 1}N as follows:

us[j] =
∑

i:b(i)=j

u[i] (mod 2).



III. ANALYSIS OF BinSketch

Let a and b denote two binary vectors in d-dimension, and |a|,
|b| denotes the number of 1 in a and b. Let as, bs ∈ {0, 1}N
denote the compressed representation of a and b, where N
denotes the compression length (or reduced dimension). In this
section we will explain our sketching method BinSketch and
give theoretical bounds on its efficacy.

Definition 4 (BinSketch). Let π be a random mapping
from {1, . . . d} to {1, . . .N}. Then a vector a ∈ {0, 1}d is
compressed into a vector as ∈ {0, 1}N as

as[j] =
∨

i:π(i)=j

a[i]

Constructing a BinSketch for a dataset involves first, gener-
ating a random mapping π, and second, hashing each vector in
the dataset using π. There could be Nd possible mappings, so
choosing π requires O(log(Nd)) = O(d logN) time and that
many random bits. Hashing a vector a involves only looking
at the non-zero bits in a and that step takes time O(ψ) since
|a| ≤ ψ. Both these costs compete favourably with the existing
algorithms as tabulated in Table I.

A. Inner-product similarity

The sketches, as’s do not quite “preserve” inner-product by
themselves, but are related to the latter in the following sense.
We will use n to denote 1− 1

N ∈ (0, 1); it will be helpful to
note that n→ 1 as N increases.

Lemma 5.

1. E(|as|/N) = (1− n|a|)
2. E(〈as, bs〉/N) =

(1− n|a|)(1− n|b|) + n|a|+|b|

[(
1

n

)〈a,b〉
− 1

]
=

1− n|a| − n|b| + n|a|+|b|+〈a,b〉

Proof. It will be easier to identify a ∈ {0, 1}d as a subset of
{1, . . . d}. The j-th bit of as can be set only by some element
in a which can happen with probability (1− (1− 1

N )|a|). The
j-th bit of both as and bs is set if it is set by some element
in a ∩ b, or if it is set simultaneously by some element in
a \ (a ∩ b) = a \ b and by another element in b \ (a ∩ b). This
translates to the following probability that some particular bit
is set in both as and bs.(

1− n|a∩b|
)

+ n|a∩b|
(

1− n|a\b|
)(

1− n|b\a|
)

= 1− n|a| − n|b| + n|a|+|b|−|a∩b|

= (1− n|a|)(1− n|b|) + n|a|+|b|
(

1

n|a∩b|
− 1

)
The lemma follows from the above probabilities using the
linearity of expectation.

Note that the above lemma allows us to express 〈a, b〉 as

〈a, b〉 = |a|+ |b| − 1
lnn ln

(
n|a| + n|b| +

E(〈as, bs〉)
N

− 1

)

Algorithm 1 now explains how to use this result to approxi-
mately calculate 〈a, b〉 using their sketches as and bs.

Algorithm 1 BinSketch estimation of IP(a, b)

Input: Sketches as of a and bs of b
1: Estimate E[|as|] as nas = |as|, E[|bs|] as nbs = |bs|
2: Estimate E[〈as, bs〉] as nas,bs = 〈as, bs〉
3: Approximate |a| as na = ln(1 − nas

N )/ ln(n) and
|b| as nb = ln(1− nbs

N )/ ln(n)
4: return approximation of 〈a, b〉 as

na,b = na + nb − 1
lnn ln

(
nna + nnb +

nas,bs
N
− 1
)

We will prove that Algorithm 1 estimates 〈a, b〉 with high

accuracy and confidence if we use N = ψ
√

ψ
2 ln 2

δ ; δ can be
set to any desired probability of error and we assume that the
sparsity ψ is not too small, say at least 20. Our first result
proves that the nas estimated above is a good approximation
of E[|as|]; exactly identical result holds for bs and nbs too.

Lemma 6. With probability at least 1− δ, it holds that∣∣∣nas − E[|as|]
∣∣∣ <√ψ

2
ln

2

δ

Proof. The proof of this lemma is a simple adaptation of the
computation of the expected number of non-empty bins in a
balls-and-bins experiment that is found in textbooks and done
using Doob’s martingale. Identify the random mapping π(a),
where the number of 1’s in a is denoted by |a|, as throwing
|a| black balls (and d − |a| “no”-balls), one-by-one, into N
bins chosen uniformly at random. Supposing we only consider
the black balls in the bins, then as[j] is an indicator variable
for the event that the j-th bin is non-empty and the number of
non-empty bins can be shown to be concentrated around their
expectation 2. Since the number of non-empty bins correspond
to |as|, this concentration bound can be directly applied for
proving the lemma.

Let E denote the event in the statement of the lemma. Then,

Pr[Ē ] ≤ Pr

[∣∣∣|as| − E
[
|as|
]∣∣∣ ≥√ |a|

2
ln

2

δ

]
≤ δ

where |a| ≤ ψ is used for the first inequality and the stated
bound, with m = |a|, is used for the second inequality.

Similar, but more involved, approach can be used to prove
that nas,bs = 〈as, bs〉 is a good estimation of E[〈as, bs〉].

Lemma 7. With probability at least 1− δ, it holds that∣∣∣nas,bs − E[〈as, bs〉]
∣∣∣ <√ψ

2
ln

2

δ
2Using F to denote the number of non-empty bins and m the number

of balls, Azuma-Hoeffding inequality states that Pr
[
|F − E[F ]| ≥ λ

]
≤

2 exp(−2λ2/m) (see Probability and Computing, Mitzenmacher and Upfal,
Cambridge Univ. Press).



Proof. For a given a, b ∈ {0, 1}d, lets partition {1, . . . d} into
parts C (consisting of positions at which both a and b are 1),
D (positions at which a is 1 and b is 0), E (positions at which
a is 0 and b is 1) and F (the rest). Any random mapping π can
treated as throwing |C| grey balls, |D| white balls, |E| black
balls, and d−|C|− |D|− |E| “no”-balls randomly into N bins.
Suppose we say that a bin is “greyish” if it either contains
some grey ball or both a white and a black ball. The number of
common 1-bits in as and bs (that is nas,bs = 〈as, bs〉) is now
equal to the number of greyish bins. Observe that when any
ball lands in some bin, say j, the number of greyish bins either
remains same or increases by 1; therefore, we can say that the
count of the greyish bins satisfies Lipschitz condition. This
allows us to apply Azuma-Hoeffding inequality as above and
prove the lemma; we will also need the fact that the number
of greyish bins is at most ψ.

The next lemma allows us to claim that our estimation of
|a| is also within reasonable bounds. It should be noted that
our sketches |as| do not explicitly save the number of 1’s in a,
so it is necessary to compute this number from our sketches;
furthermore, since this estimate is not used elsewhere, we do
not mandate it to be an integer either.

Lemma 8. With probability at least 1− δ, it holds that∣∣∣|a| − na∣∣∣ < 4

ψ ln 1
n

= 4

√
ψ

2
ln

2

δ

Proof. Based on Lemma 5 and Algorithm 1, n|a| − nna =
[nas−E(|as|)]/N . For the proof we use the upper bound given
in Lemma 6 that holds with probability at least 1− δ. We need
a few results before proceeding that are based on the standard
inequality ln(1− x) ≤ −x for 0 < x < 1.

Observation 9. ln 1
n ≥

1
N (∵ lnn = ln(1− 1/N) ≤ − 1

N )

Observation 10. na = ln(1− nas
N )/ lnn ≤ nas

N / ln( 1
n ). Since

nas ≤ N , we get that na ≤ N .

Observation 11. nna ≥ 1
2 (proved in Appendix A).

We use these observations for proving two possible cases
of the lemma. We will use the notation ∆ =

∣∣∣na − |a|∣∣∣.
case (i) |a| ≤ na: In this case ∆ = na − |a| and

n|a| − nna = [nas − E(|as|)]/N

For the R.H.S., [nas − E(|as|)]/N ≤ 1/ψ by Lemma 6.
For the L.H.S., we can write n|a|−nna = n|a|(1−nna−|a|) ≥
nψ(1 − n∆) as |a| ≤ ψ. Furthermore, nψ = (1 − 1

N )ψ ≥
1− ψ

N > 1
2 since ψ

N = 1/
√

ψ
2 ln 2

δ <
1
2 for reasonable values

of ψ and δ.
Combining the bounds above we get the inequality
1
2 (1− n∆) < 1/ψ that we will further process below.
case (ii) na ≤ |a|: In this case ∆ = |a| − na and

nna − n|a| = [E(|as|)− nas ]/N

As above, R.H.S. is at most 1/ψ using Lemma 6 and L.H.S.
can be written as nna(1− n∆). Further using Observation 11
we get the inequality, 1

2 (1− n∆) ≤ 1/ψ.
For both the above cases we obtained that 1

2 (1−n∆) ≤ 1/ψ,
i.e., 1−n∆ ≤ 2/ψ. This gives us that ∆ lnn ≥ ln(1−2/ψ) ≥
−2/ψ
1−2/ψ = −2

ψ−2 employing the known inequality ln(1 + x) ≥
x
x+1 for any x > −1. Since n ∈ (0, 1), we get the desired
upper bound ∆ ≤ 2

ψ−2
1

ln 1
n

≤ 4
ψ ln 1

n

(since ψ
2 ≤ ψ − 2 for

ψ ≥ 4) ≤ 4
√

ψ
2 ln 2

δ (using Observation 11).

Of course a similar result holds for |b| and nb as well. The
next lemma similarly establishes the accuracy of our estimation
of 〈a, b〉.

Lemma 12. With probability at least 1− 3δ, it holds that∣∣∣〈a, b〉 − na,b∣∣∣ < 14

√
ψ

2
ln

2

δ

We get the following from Algorithm 1 and Lemma 5.

〈a, b〉 = |a|+ |b|+ 1

ln
1
n

ln

[
n|a| + n|b| +

E[〈as, bs〉]
N

− 1

]
na,b = na + nb + 1

ln
1
n

ln
(
nna + nnb +

nas,bs
N
− 1
)

in which |a| ≈ na (Lemma 8), |b| ≈ nb (similarly), and
E[〈as, bs〉] ≈ nas,bs (Lemma 7), each happening with proba-
bility at least 1 − δ. The complete proof that na,b is a good
approximation of 〈a, b〉 is mostly algebraic analysis of the
above facts and is included in Appendix B.

Theorem 1 is a direct consequence of Lemma 12 for
reasonably large ψ (say, beyond 20) and small δ (say, less
than 0.1).

B. Hamming distance

The Hamming distance and the inner product similarity of
two binary vectors a and b are related as

Ham(a, b) = |a|+ |b| − IP(a, b)

The technique used in the earlier subsection can be used to
estimate the Hamming distance in a similar manner.

Algorithm 2 BinSketch estimation of Ham(a, b)

Input: Sketches as of a and bs of b
1: Calculate na, nb, na,b as done in Algorithm 1
2: return approx. of Ham(a, b) as hama,b = na +nb−na,b

C. Jaccard similarity

The Jaccard similarity between a pair of binary vectors a
and b can be computed from their Hamming distance and their
inner product.

JS(a, b) =
IP(a, b)

Ham(a, b) + IP(a, b)

This paves way for an algorithm to compute Jaccard
similarity from BinSketch.



Algorithm 3 BinSketch estimation of JS(a, b)

Input: Sketches as of a and bs of b
1: Calculate na,b using Algorithm 1
2: Calculate hama,b using Algorithm 2
3: return approx. of JS(a, b) as JSa,b =

na,b
na,b + hama,b

D. Cosine similarity

The cosine similarity between a pair binary vectors a and b
is defined as:

Cos(a, b) = IP(a, b)
/√
|a| · |b|

An algorithm for estimating cosine similarity from binary
sketches is straight forward to design at this point.

Algorithm 4 BinSketch estimation of Cos(a, b)

Input: Sketches as of a and bs of b
1: Calculate na, nb, na,b as done in Algorithm 1
2: return approx. of Cos(a, b) as cosa,b = na,b

/√
na · nb

It should be possible to prove that Algorithms 2, 3 and 4
are accurate and low-error estimations of Hamming distance,
Jaccard similarity and cosine similarity, respectively; however,
those analysis are left out of this paper.

IV. EXPERIMENTS

a) Hardware description.: We performed our experiments
on a machine having the following configuration: CPU: Intel(R)
Core(TM) i5-3320M CPU @ 2.60GHz x 4; Memory: 7.5 GB;
OS: Ubuntu 18.04; Model: Lenovo Thinkpad T430.

To reduce the effect of randomness, we repeated each exper-
iment several times and took the average. Our implementations
did not employ any special optimization.

Datasets.: The experiments were performed on publicly
available datasets - namely, NYTimes news articles (number of
points = 300000, dimension = 102660), Enron Emails (number
of points = 39861, dimension = 28102), and KOS blog entries
(number of points = 3430, dimension = 6906) from the UCI
machine learning repository [21]; and BBC News Datasets
(number of points = 2225, dimension = 9635 ) [15]. We
considered the entire corpus of KOS and BBC News datasets,
while for NYTimes, ENRON datasets we sampled 5000 data
points.

b) Competing Algorithms: : For our experiments we have
used three similarity measures: Jaccard Similarity, Cosine
Similarity, and Inner Product. For the Jaccard Similarity,
MinHash [5], Densified One Permutation Hashing (DOPH)
– a faster variant of MinHash – [27], BCS [26], and
OddSketch [23] were the competing algorithms. OddSketch is
two-step in nature, which takes the sketch obtained by running
MinHash on the original data as input, and outputs binary
sketch which maintains an estimate of the original Jaccard
similarity. As suggested by authors, we use the number of

Fig. 1. Comparison of MSE measure on NYTimes datasets. A lower value
is an indication of better performance.

MinHash permutations k = N/(4(1 − J)), where J is the
similarity threshold. For the Cosine Similarity, SimHash [11],
Circulant Binary Embedding (CBE) – a faster variant of
SimHash – [31], MinHash [28], and DOPH [27] on
the sketch obtained by MinHash [28], were the competing
algorithms. For the Inner Product, BCS [26], Asymmetric
MinHash [29], and Asymmetric DOPH (DOPH [27] on the
sketch obtained by [29]), were the competing algorithms.

A. Experiment 1: Accuracy of Estimation

In this task, we evaluate the fidelity of the estimate of
BinSketch on various similarity regimes.

a) Evaluation Metric.: To understand the behavior of
BinSketch on various similarity regimes, we extract similar
pairs – pair of data objects whose similarity is higher than
certain threshold –from the datasets. We used Cosine, Jaccard,



and Inner Product as our measures. For example: for Jac-
card/Cosine case for the threshold value 0.95, we considered
only those pairs whose similarities are higher than 0.95. We
used mean square error (MSE) as our evaluation criteria. Using
BinSketch and other candidate algorithms, we compressed the
datasets to various values of compression length N. We then
calculated the MSE for all the algorithms, for different values
of N. For example, in order to calculate the MSE of BinSketch
with respect to the ground truth result, for every pair of data
points, we calculated the square of the difference between their
estimated similarities after the result of BinSketch, and the
corresponding ground truth similarity. We added these values
for all such pairs and calculated its mean. For Inner Product,
we used this absolute value, and for Jaccard/Cosine similarity
we computed its negative logarithm base e. A smaller MSE
corresponds to a larger − log(MSE), therefore, a higher value
− log(MSE) is an indication of better performance.

b) Insights.: We summarize our results in Figures 2, and
1 for Cosine/Jaccard Similarity and Inner Product, respec-
tively. For Cosine Similarity, BinSketch consistently remain
to be better than the other candidates. While for Jaccard
Similarity, it significantly outperformed w.r.t. BCS, DOPH
and OddSketch, while its performance was comparable w.r.t.
MinHash. Moreover, for Inner product 1 results, BinSketch
significantly outperformed w.r.t. BCS. We observed a similar
pattern on the other datasets as well.

B. Experiment 2: Ranking

Evaluation Metric.: In this experiment, given a dataset
and a set of query points, the aim is to find all the points that are
similar to the query points, under the given similarity measure.
To do so, we randomly, partition the dataset into two parts –
90% and 10%. The bigger partition is called as the training
partition, while the smaller one is called as querying partition.
We call each vector of the querying partition as a query vector.
For each query vector, we compute the points in the training
partition whose similarities are higher than a certain threshold.
For Cosine and Jaccard Similarity, we used the threshold
values from the set {0.95, 0.9, 0.85, 0.8, 0.6, 0.5, 0.2, 0.1}. For
Inner Product, we first found out the maximum existing Inner
product in the dataset, and then set the thresholds accordingly.
For every query point, we first find all the similar points
in the uncompressed dataset, which we call as ground truth
result. We then compress the dataset, using the candidate
algorithms, on various values of compression lengths. To
evaluate the performance of the competing algorithms, we used
the accuracy-precision-recall ratio as our standard measure.
If the set O denotes the ground truth result (result on the
uncompressed dataset), and the set O′ denotes the results on
the compressed datasets, then accuracy = |O ∩ O′|/|O ∪ O′|,
precision = |O ∩ O′|/|O′| and recall = |O ∩ O′|/|O|.

Insights.: We summarize Accuracy results in Figure 4.
For Jaccard Similarity, BinSketch significantly outperformed
BCS, DOPH, and OddSketch while its performance was
comparable w.r.t. MinHash. For cosine similarity, on higher
and intermediate threshold values, BinSketch outperformed all

the other candidate algorithms. However, on the lower threshold
values, MinHash offered the most accurate sketch followed by
BinSketch. We observed a similar pattern on the other datasets
as well.

a) Efficiency of BinSketch.: We comment on the effi-
ciency of BinSketch with the other competing algorithms and
summarize our results in Figure 3. We noted the time required
to compress the original dataset using all the competing
algorithms. For a given compression length, the compression
time of OddSketch varies based on the similarity threshold.
Therefore, we consider taking their average. We notice that
the time required by BinSketch and BCS is negligible for
all values of N and on all the datasets. Compression time
of CBE is very higher than ours, however, it is independent
of the compression length N. After excluding some initial
compression lengths, the compression time of OddSketch is
the highest, and grows linearly with N, as it requires running
MinHash on the original dataset. For the remaining algorithms,
their respective compression time grows linearly with N.

V. SUMMARY AND OPEN QUESTIONS

In this work, we proposed a simple dimensionality reduction
algorithm – BinSketch – for sparse binary data. BinSketch
offer an efficient dimensionality reduction/sketching algorithm,
which compresses a given d-dimensional binary dataset to a
relatively smaller N-dimensional binary sketch, while simulta-
neously maintaining estimates for multiple similarity measures
such as Jaccard Similarity, Cosine Similarity, Inner Product,
and Hamming Distance, on the same sketch. The performance
of BinSketch was significantly better than BCS [25], [26]
while the compression (dimensionality reduction) time of these
two algorithms were somewhat very comparable. BinSketch
obtained a significant speedup in compression time w.r.t other
candidate algorithms (MinHash [5], [28], SimHash [11],
DOPH [27], CBE [31]) while it simultaneously offered a
comparable performance guarantee.

We want to highlight the error bound presented in Theorem 1
is due to a worst-case analysis, which potentially can be
tightened. We state this as an open question of the paper. Our
experiments on real datasets establish this. For example, for the
inner product (see Figure 1), we show that the Mean Square
Error (MSE) is almost zero even for compressed dimensions
that are much lesser than the bounds stated in the Theorem.
Another important open question is to derive a lower bound
on the size of a sketch that is required for efficiently and
accurately derive similarity values from compressed sketches?
Given the simplicity of our method, we hope that it will get
adopted in practice.
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APPENDIX A
PROOF OF OBSERVATION 11

In this section we prove that nna ≥ 1/2. For this first we
derive an upper bound of 1

2 on nas/N .

Let P denote the expression
√

ψ
2 ln 2

δ appearing in Lemma 6.
Using this lemma, nas ≤ E(|as|) + P . First note that P

N = 1
ψ

which is at most 1
4 for ψ ≥ 4.

Next observe that E(|as|)/N = (1−n|a|) ≤ (1−nψ) since
|a| ≤ ψ and n ∈ (0, 1). Furthermore nψ = (1 − 1

N )ψ ≥
1− ψ

N = 1− 1√
ψ
2 ln 2

δ

≥ 3
4 for practical values of δ and ψ.

Thus we get the upper bound nas/N ≤ 1
N (E(|as|) + P ) ≤

1
4 + 1

4 = 1
2 .

Algorithm 1 sets nna = 1− nas/N which leads us to our
required bound that nna ≥ 1

2 .

APPENDIX B
PROOF OF LEMMA 12

In this section we derive an upper bound on

B =

∣∣∣∣∣|a| − na + |b| − nb +

1

ln
1
n

ln

[
n|a| + n|b| +

E[〈as, bs〉]
N

− 1

]
−

1

ln
1
n

ln
[
nna + nnb +

nas,bs
N
− 1
] ∣∣∣∣∣

Proof. We first apply triangle inequality and Lemma 8 to obtain

B ≤ 4/ψ

ln 1
n

+
4/ψ

ln 1
n

+
1

ln 1
n

∣∣∣∣∣ln nna + nnb +
nas,bs

N − 1

n|a| + n|b| + E[〈as,bs〉]
N − 1

∣∣∣∣∣
Next we derive an upper bound for the last term. Let U

denote nna+nnb+
nas,bs

N −1, V denote n|a|+n|b|+E[〈as,bs〉]
N −1,

and W denote | ln U
V |.

By using nna = (1− nas
N ) (and a similar identity for nnb ) as

set by Algorithm 1 we obtain that U = nna+nnb+
nas,bs

N −1 =

1 − |as|+|bs|−〈as,bs〉N . Observe that 〈as, bs〉 is the number of
common ones in as and bs and therefore, |as|+ |bs| − 〈as, bs〉
denotes the number of indices at which at least one of as or
bs is one. This number being at most N , we get that U ≥ 0 3.

Using Lemma 5, n|a|+n|b|+ E[〈as,bs〉]
N −1 = n|a|+|b|+〈a,b〉 >

0 for non-zero a and b.
The last two observations ensure that the terms inside the

logarithm are indeed positive.
Moving forward, now we use triangle inequality to compute

|U − V | ≤ |nna − n|a||+ |nnb − n|b||+ |E[〈as, bs〉]− nas,bs |
N

≤ 3
1

ψ
( using Lemma 7 and the next observation)

3We ignore the U = 0 case in good faith since that will happen with
extremely low probability; however, this could have been easily tackled by
using additional bits in the sketch that are never set to one.

Observation 13. These claims appear in the proof of Lemma 8:
|n|a|−nna | < 1

ψ and nna ≥ n|a|− 1
ψ . Similarly, |n|b|−nnb | <

1
ψ and nnb ≥ n|b| − 1

ψ .

Next we show how to lower bound max(U, V ) by using the
following observation.

Observation 14. Using Lemma 7, nas,bsN ≥ E(〈as,bs〉)
N − 1

ψ .

Based on the last two observations we can compute

U =nna + nnb +
nas,bs
N

− 1

≥n|a| + n|b| +
E(〈as, bs〉)

N
− 3

ψ
− 1

=V − 3

ψ
= n|a|+|b|+〈a,b〉 − 3

ψ

Therefore, if U ≥ V , then max(U, V ) = U ≥ V − 3
ψ and if

V > U , then max(U, V ) = V ≥ V − 3
ψ . This leads to:

max(U, V ) ≥ V − 3

ψ
= (1− 1

N
)|a|+|b|+〈a,b〉 − 3

ψ

≥ 1− |a|+ |b|+ 〈a, b〉
N

− 3

ψ
≥ 1− 3ψ

N
− 3

ψ

≥ 1− 3√
ψ
2 ln 2

δ

− 3

ψ

which is at least 1
2 for reasonable values of ψ and δ.

Next we upper bound W by employing the inequality∣∣ln A
B

∣∣ ≤ |A−B|
max(A,B) that holds for non-negative A,B and can

be derived from the standard inequality lnx ≤ x−1 for x > 0.
Here, set A = U and B = V and obtain that W ≤ 3/ψ

1/2 = 6
ψ .

Now we gather all the upper bounds of the expressions
appearing in B and compute the final upper bound.

B ≤ 4/ψ

ln 1
n

+
4/ψ

ln 1
n

+
6/ψ

ln 1
n

=
14/ψ

ln 1
n

≤ 14N

ψ
= 14

√
ψ

2
ln

2

δ

Of course this bound holds when the upper bounds on (|a|−
na), (|b| − nb) and (E[〈as, bs〉]− nas,bs) are correct and each
of them is incorrect with probability at most δ. Therefore, using
Union-bound, we can say that our upper bound as required in
the lemma can be incorrect with probability at most 3δ.



APPENDIX C
EXTENDED EXPERIMENTAL RESULTS

Fig. 5. Comparison of − log(MSE) measure on ENRON and KOS datasets.



Fig. 6. Comparison of MSE on KOS dataset for Inner Product, and comparison of Precision and Recall on ENRON dataset for Cosine
Similarity.



Fig. 7. Comparison of Accuracy, Precision, Recall measure on KOS datasets for Cosine Similarity.



Fig. 8. Comparison of Accuracy, Precision, Recall measure on BBC datasets for Cosine Similarity.



Fig. 9. Comparison of Accuracy, Precision, Recall measure on BBC datasets for Jaccard Similarity.



Fig. 10. Comparison of Accuracy, Precision, Recall measure on KOS datasets for Jaccard Similarity.



Fig. 11. Comparison of Precision, Recall on NYTimes and Precision on ENRON datasets for Jaccard Similarity.



Fig. 12. Comparison of Accuracy, Precision, Recall measure on NYTimes datasets for Inner Product.



Fig. 13. Comparison of Recall measure on ENRON for Jaccard Similarity and ENRON and KOS for Inner Product.
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