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Random Bits

Classical randomized algorithms are efficient

Quicksort, Monte-Carlo sampling, … 

Satisfiability of 3SAT Boolean formula

Brute force O(2n)

Deterministic O(1.439n)

Randomized O(1.321n)
Classical randomized algorithms
use classical coins (random bits).



From Bits to Qubits

Quantum ≈ Randomized +++++

(different rules of randomization)

HEAD / 0 TAIL / 1

Quantum operations are inherently probabilistic.
● Spin is observed to be clockwise/anti-clockwise with 

equal probability.
● Photon can be observed in only one of the paths, 

with equal probability.

equal chance

Photon polarization, Electron spin,

direction of current in Josephson junction, ...

1
0



Organization for this lecture

1. (Recap) The basic principles of quantum computing
a. Qubits
b. Operations

2. Designing quantum algorithms
3. Emerging techniques



1 qubit

Basic datatype. Can be observed to be in state-0 and state-1.

1. var b = 0
2. b = random(0,1)

// Q: what is b?
3. if b=0, print(“0”)
4. if b=1, print(“1”)

If 0 is printed, b must have been 0.
If 1 is printed, b must have been 1.

b = 0 b = 1OR

Behaviour of a random bit

    0       1



1 qubit

Basic datatype. Can be observed to be in state-0 and state-1.

1. qubit |b> = |0>
2. Apply H on |b>

// Q: what is state of b?
3. if b=0, print(“0”)
4. if b=1, print(“1”)

b = 0 b = 1AN
D

Behaviour of a qubit

1. var b = 0
2. b = random(0,1)

// Q: what is b?
3. if b=0, print(“0”)
4. if b=1, print(“1”)

Exercise
Determine the state |b> 
by only observing the 
output of the code.

    0       1



First interesting 1-qubit state

Notation for a 
state of a qubit

Notation for state-0 ≡ vector 

Notation for state-1≡ vector

    0       1

Amplitude

Vector 
addition

Basis states
for a 

2-dimensional 

vector space 

over complex 
numbers

1-qubit state can be mathematically represented as a complex 

combination of two basis states of a 2-dimensional Hilbert space

2-qubit state can be mathematically represented as a complex 

combination of four basis states

2-D Hilbert 
space



Stochastic vector

Classical randomized algorithms use random variables

b = random bit from { 0:½ , 1:½ }

Mathematical representation of b   

Another representation of b 

represents b=0

represents b=1

not clear what can be be 
done with alternative 

representations using a 
different basis

Algorithms using random bits can be analysed using L1 norm unit vectors over ℜ



Return to “First interesting 1-qubit state”

Notation for a 
state of a qubit

Notation for state-0 ≡ vector 

Notation for state-1≡ vector

    0       1

Amplitude

Vector 
addition

Basis states
for a 

2-dimensional 

vector space 

over complex 
numbers

2-D Hilbert 
space

Algorithms using qubits can be analysed using L2 norm unit vectors over ℭ



“Value” of a qubit (state vector)

Observation/measurement changes the state of a qubit !

Linear algebraically, 
measurement is a projection 
onto a set of basis states.

Measuring in 0/1 basis Measuring in +/- basis

● Observe |0⟩ with probability

● Observe |1⟩ with probability

● Observe |+⟩ with probability

● Observe |-⟩ with probability

State changes to |0⟩

State changes to |1⟩

State changes to |+⟩

State changes to |-⟩



qubit
Has intrinsic state.

State is a continuum from 2-dimensional numbers.
Observation reveals partial information.
Observation changes (collapses) states.



Single bit operation

Classical deterministic operations

0 → 0

1 → 0

0 → 1

1 → 1

0 → 1

1 → 0

0 → 0

1 → 1

f(x) = constant f(x) = not(x) f(x) = x

Classical randomized operations

If x=0, f(x) =  

If x=1, f(x) =

value 0 1

prob. ½ ½ 

value 0 1

prob. ⅓  ⅔ 
Multiplication by a stochastic matrix



Qubit operation

Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

Linear operation

Hadamard gate “H”

|0⟩  → √(½) |0⟩  +  √(½)  |1⟩

|1⟩  → √(½) |0⟩  -  √(½)  |1⟩

a|0⟩ + b|1⟩  → ?

var b1 = 0
var b2 = 0
var pair1 = (b1,b2)

b1 = randomize (b1)
var pair2 = (b1,b2)

Exercise:



Qubit operation

Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

Linear operation

controlled-NOT gate “CNOT”

|0⟩|0⟩  → |0⟩|0⟩            |0⟩|1⟩  → |0⟩|1⟩

|1⟩|0⟩  → |1⟩|1⟩            |1⟩|1⟩  → |1⟩|0⟩

a|0⟩|0⟩ + b|1⟩|0⟩  → ?

var b1 = 0
var b2 = 0
var pair1 = (b1,b2)

b1 = randomize (b1)
var pair2 = (b1,b2)

if b1=0, b2 = b2
if b1=1, b2 = 1-b2
var pair3 = (b1,b2)

Exercise:



Qubit operation

Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

Linear operation

var b1 = 0
var b2 = 0
var pair1 = (b1,b2)

b1 = randomize (b1)
var pair2 = (b1,b2)

if b1=0, b2 = b2
if b1=1, b2 = 1-b2
var pair3 = (b1,b2)

Measurement outcomes in 00-01-11-10 basis
● |0⟩|0⟩ with probability ½ 
● |1⟩|1⟩ with probability ½  

1st and 2nd qubits are always same !Entanglement

b1 and b2 are always same



First magic

|+⟩ = √(½) |0⟩  +  √(½)  |1⟩

● Observe |0⟩ with probability ½ 
● Observe |1⟩ with probability ½ 

|0⟩ |+⟩ |0⟩
H H Suppose |+⟩ is a state that is randomly 

chosen between |0⟩ and |1⟩ with equal 
probability.

● |0⟩ with prob. ½ 
○ After 2nd H is applied…
○ |0⟩ → √(½) |0⟩  +  √(½)  |1⟩
○ Observation will yield
○ |0⟩ and |1⟩ with probability ½ 

● |1⟩ with prob. ½
○ After 2nd H is applied…
○ |1⟩ → √(½) |0⟩  -  √(½)  |1⟩
○ Observation will yield
○ |0⟩ and |1⟩ with probability ½ 

● Overall …
○ Prob. of observing |0⟩ = ¼+¼=½ 
○ Prob. of observing |1⟩ = ¼+¼=½  

|+⟩ is not |0⟩ OR |1⟩

|+⟩ is a 
superposition 

of |0⟩ and |1⟩



state evolution operation
Specify action only on basis states

Linearly extrapolate on all other states
Unitary, hence reversible

Qubits cannot be copied!



Searching

Input is an binary array A of size 100.

Find any index i for which A[i ] = 1

var b = random index from { 1 … 100 }
// b = 1 with prob. 0.01
// b = 2 with prob. 0.01
                … 
// b = 100 with prob. 0.01

var c = A[b]
if c = 1:

print (b)
else:

print (“not found”)

Makes 1 probe to A
Success probability = m/100
Where, m = number of 1s in A

Run the code k times.

Prob. of getting “not found” in all 10 
runs = (1 - m/100)k

Prob. of finding good index ≅ 
k*(m/100)  (linear in k)

k = 100/m iterations ensure success



Quantum searching

Define UA gate on two “registers”:
1. 10-qubit register 1 to store position
2. 1-qubit register 2 to store value

|p⟩ |0⟩ → |p⟩ | A[p] ⟩
|p⟩ |1⟩ → |p⟩ | 1-A[p] ⟩

var |b⟩ =  1/10 [ |1⟩ + |2⟩ + … + |100⟩ ]

Apply UA on |b⟩|0⟩ ?
1/10 [ |1⟩|A[1]⟩ + |2⟩|A[2]⟩ + … ]

Input is an binary array A of size 100.

Find any index i for which A[i ] = 1

1/10 [ |1⟩|A[1]⟩ + |2⟩|A[2]⟩ + … ]
Observation yields any |b⟩|A[b]⟩ with 
probability 1/100

Do not observe (yet).
Run Grover’s search algorithm on 
this state and then observe.

Constant success probability can be 
achieved using √(100/m) probes.

1 probe to A

1 probe to A

Not better than 
classical



Programming a QC

Early style of designing 
(efficient) solvers

Current style of designing 
efficient quantum solvers

High-level wrapper and 
subroutines to run 

Grover’s search, etc.



Linear system of equations

Given N equation in the form of Ax = b.

● Classical : conjugate gradient descent ~ O(N)
● Quantum algorithm by HHL : O( log(N))

Gives the solution vector x

Gives a random sample 
from the solution vector x



Variational Quantum Eigensolver

Used to obtain eigenvalue 
(with lowest absolute value) 
and eigenvector of an 
operator



Quantum Approximate Optimization Algorithms

Objective function of the 
optimization problem



Quantum neural network



Quantum annealing



Promises and Prospects

● 1981 Feynman proposed quantum computer to efficiently 

simulate many-body quantum systems

● 1984 Bennett and Brassard designed quantum protocol for 

secret key sharing

● 1991 Another QKD protocol by Ekert

QKD networks : DARPA, Tokyo, Vienna, Japan, … 

moonshot

BB84 running on 2000KM 

fiber-optic cable in China



● 1985 Deutsch proposed a general purpose programmable 

quantum computer

● 1992 Deutsch and Jozsa solved a (toy) problem in half the 

time taken by the best classical algorithm

● 1993 Simon designed algorithm that is efficient on 

quantum computer but inefficient classically

● 1996 Grover designed algorithm to search in a database of 

N elements using √N “lookups” (classical best is N/2)

… better-than-classical algorithms for problems on 

numbers, graphs, geometric objects, strings, statistics, 

communication, data structures, … but limited speedup

Technology 

not clear

Quantum

supremacy

race

1994 √N 

is the best

Promises and Prospects



● 1994 Shor designed algorithms to factor n-bit number in 

O(n2) time (classical best is O(exp(n1/3)))

● 1995 Shor and Steane designed error-correcting codes

● 1998 Gottesman and Knill showed how to efficiently 

simulate certain quantum algorithms classically

● 2017 Microsoft releases 40-qubit classical simulator

● 2009 Harrow+ designed linear system “solver”

● 2015 Grassl showed 3000-7000 qubits needed to search 

AES key using Grover’s algorithm

● 2016 Google simulated a Hydrogen molecule with 9 qubits

2001 15 factored using 1018 

identical molecules

Requires

high-precision

Oops!

ODE, PDE, 

machine learning

Promises and Prospects

Attacks on 

cryptography

Quantum ML



PORTFOLIO OPTIMIZATION on D-Wave

SIMULATION OF HYDROGEN MOLECULE by 
Google 

(simulation of quantum-mechanical systems was 
the initial motivation  of Richard Feynman to 

propose a quantum computer)

TRAFFIC OPTIMIZATION & EXPLORE MATERIAL 
STRUCTURE FOR E-VEHICLE BATTERY by 
Volkswagen Group and Google



Summary

Quantum mechanics that drive quantum computing is mysterious

But if you are a believer … (*) 

Quantum algorithm design and analysis possible using knowledge 

of algorithms, probability and linear algebra.

Thanks to physicists, material scientists, engineers, 

mathematicians, … in universities, R&D labs and corporates ...

These algorithms can be implemented on real quantum computers 

and experimented with.

Too early to say how and where QC will become useful … 

Just the right time to enter the game.

* Maybe you  believe in the experiments yet disagree with the meaning



Thank you for listening.
Questions?

dbera@iiitd.ac.in


