

Quantum
 Computing Simplified

Debajyoti Bera IIIT-Delhi www.iiitd.ac.in Hyderabad, 6th October 2020

Random Bits

Classical randomized algorithms use classical coins (random bits).

Classical randomized algorithms are efficient

Quicksort, Monte-Carlo sampling, ...
Satisfiability of 3SAT Boolean formula
Brute force $O\left(2^{n}\right)$
Deterministic O(1.439 ${ }^{n}$)
Randomized $\mathrm{O}\left(1.321^{\mathrm{n}}\right)$

From Bits to Qubits

Photon polarization, Electron spin, direction of current in Josephson junction, ...

Quantum \approx Randomized +++++ (different rules of randomization)

Organization for this lecture

1. (Recap) The basic principles of quantum computing
a. Qubits
b. Operations
2. Designing quantum algorithms
3. Emerging techniques

1 qubit

Basic datatype. Can be observed to be in state-0 and state-1.

1. $\operatorname{var} \mathrm{b}=0$
2. $b=\operatorname{random}(0,1)$
// Q: what is b?
3. if $b=0$, print("0")
4. if $b=1$, print(" 1 ")

If 0 is printed, b must have been 0 . If 1 is printed, b must have been 1 .

1 qubit

Basic datatype. Can be observed to be in state-0 and state-1.

```
1. var b = 0
2. b = random(0,1)
    // Q: what is b?
3. if b=0, print("0")
4. if b=1, print("1")
```

Behaviour of a qubit

1. qubit |b> $=|0\rangle$
2. Apply H on |b>
// Q: what is state of b?
3. if $b=0$, print(" 0 ")
4. if $b=1$, print(" 1 ")

Exercise

Determine the state |b> by only observing the output of the code.

First interesting 1-qubit state

Notation for a state of a qubit

Basis states for a

2-dimensional
vector space
over complex numbers

2-D Hilbert space

1-qubit state can be mathematically represented as a complex combination of two basis states of a 2-dimensional Hilbert space

2-qubit state can be mathematically represented as a complex combination of four basis states

Stochastic vector

Classical randomized algorithms use random variables
$\mathrm{b}=$ random bit from $\{0: 1 / 2,1: 1 / 2\}$
Mathematical representation of b

$$
\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad \begin{aligned}
& \text { represents } b=1
\end{aligned}
$$

Another representation of $\mathrm{b}\left[\begin{array}{l}1 / 2 \\ 1 / 2\end{array}\right]=\frac{1}{2}\left[\begin{array}{l}1 / 3 \\ 2 / 3\end{array}\right]+\frac{1}{2}\left[\begin{array}{l}2 / 3 \\ 1 / 3\end{array}\right] \begin{gathered}\text { not clear what can be be } \\ \text { done with alternative } \\ \text { representations using a } \\ \text { different basis }\end{gathered}$

Algorithms using random bits can be analysed using L1 norm unit vectors over \Re

Return to "First interesting 1-qubit state"

Notation for a state of a qubit

Algorithms using qubits can be analysed using L2 norm unit vectors over ©

"Value" of a qubit (state vector)

Observation/measurement changes the state of a qubit !

Linear algebraically,

measurement is a projection
onto a set of basis states.

$$
|\psi\rangle=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\frac{1}{\sqrt{2}}\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{1+i}{2}\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]+\frac{1-i}{2}\left[\begin{array}{c}
1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]
$$

Measuring in 0/1 basis

- Observe $|0\rangle$ with probability $\left|\frac{1}{\sqrt{2}}\right|^{2}$ State changes to $|0\rangle$

- Observe $|+\rangle$ with probability $\left|\frac{1+i}{2}\right|^{2}$ State changes to $|+\rangle$
- Observe $|-\rangle$ with probability $\left|\frac{1-i}{2}\right|^{2}$ State changes to $|-\rangle$

qubit

Has intrinsic state.
State is a continuum from 2-dimensional numbers.
Observation reveals partial information.
Observation changes (collapses) states.

Single bit operation

Classical deterministic operations

$$
f(x)=\text { constant }
$$

$$
0 \rightarrow 0
$$

$$
1 \rightarrow 0
$$

$0 \rightarrow 1$
$1 \rightarrow 1$

$$
f(x)=\operatorname{not}(x)
$$

$$
f(x)=x
$$

$$
1 \rightarrow 1
$$

$0 \rightarrow 1$
$1 \rightarrow 0$

$$
0 \rightarrow 0
$$

$$
1 \rightarrow 1
$$

Classical randomized operations

If $x=0, f(x)=$\begin{tabular}{|l|l|l|}
\hline value \& 0 \& 1

\hline prob. \& $1 / 2$ \& $1 / 2$

If $x=1, f(x)=$| value | 0 | 1 |
| :--- | :--- | :--- |
| prob. | $1 / 3$ | $2 / 3$ |

$.$

\end{tabular}.

$$
[f(x)]=\left[\begin{array}{ll}
1 / 2 & 1 / 3 \\
1 / 2 & 2 / 3
\end{array}\right][x]
$$

Multiplication by a stochastic matrix

Qubit operation

Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

```
var b1 = 0
var b2 = 0
var pair1 = (b1,b2)
b1 = randomize (b1)
var pair2 = (b1,b2)
```


$$
|00\rangle \quad|00\rangle+|10\rangle \quad|00\rangle+|11\rangle
$$

$$
\begin{aligned}
& {\left[\begin{array}{l}
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right] \quad \text { Hadamard gate "H" } } \\
&|0\rangle \rightarrow \sqrt{ }(1 / 2)|0\rangle+\sqrt{ }(1 / 2)|1\rangle \\
&|1\rangle \rightarrow \sqrt{ }(1 / 2)|0\rangle-\sqrt{ }(1 / 2)|1\rangle \\
& \text { Exercise: } a|0\rangle+b|1\rangle \rightarrow ?
\end{aligned}
$$

Qubit operation

Linear operation
Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

```
var b1 = 0
var b2 = 0
var pair1 = (b1,b2)
b1 = randomize (b1)
var pair2 = (b1,b2)
if b1=0, b2 = b2
if b1=1, b2 = 1-b2
var pair3 = (b1,b2)
```


$$
\begin{array}{lll}
|0\rangle|0\rangle & \rightarrow|0\rangle|0\rangle & |0\rangle|1\rangle
\end{array} \rightarrow|0\rangle|1\rangle
$$

Exercise: $\mathrm{a}|0\rangle|0\rangle+\mathrm{b}|1\rangle|0\rangle \rightarrow$?

Qubit operation

Multiplication of state vector by a unitary (L2 length-preserving complex) matrix

```
var b1 = 0
var b2 = 0
var pair1 = (b1,b2)
b1 = randomize (b1)
var pair2 = (b1,b2)
if b1=0, b2 = b2
if b1=1, b2 = 1-b2
var pair3 = (b1,b2)
```

b1 and b2 are always same

Measurement outcomes in 00-01-11-10 basis

- $|0\rangle|0\rangle$ with probability $1 / 2$
- $|1\rangle|1\rangle$ with probability $1 / 2$

Entanglement 1st and 2nd qubits are always same!

First magic

- Observe $|0\rangle$ with probability $1 / 2$
- Observe $|1\rangle$ with probability $1 / 2$

Suppose $|+\rangle$ is a state that is randomly chosen between $|0\rangle$ and $|1\rangle$ with equal probability.
- $|0\rangle$ with prob. $1 / 2$
- After $2^{\text {nd }} \mathrm{H}$ is applied...
- $|0\rangle \rightarrow \sqrt{ }(1 / 2)|0\rangle+\sqrt{ }(1 / 2)|1\rangle$
- Observation will yield
- $|0\rangle$ and $|1\rangle$ with probability $1 / 2$
- |1> with prob. $1 / 2$
- After $2^{\text {nd }} \mathrm{H}$ is applied...
- $|1\rangle \rightarrow V(1 / 2)|0\rangle-\sqrt{ }(1 / 2)|1\rangle$
- Observation will yield
- $|0\rangle$ and $|1\rangle$ with probability $1 / 2$
- Overall ...
- Prob. of observing $|0\rangle=1 / 4+1 / 4=1 / 2$
- Prob. of observing $|1\rangle=1 / 4+1 / 4=1 / 2$

state evolution operation

Specify action only on basis states Linearly extrapolate on all other states Unitary, hence reversible

Qubits cannot be copied!

```
is the code that does the bubble sort.
```

```
for (int i = ar.length - 1; i > 0; i--) {
```

for (int i = ar.length - 1; i > 0; i--) {
for (int j = 0; j < i; j++) {
for (int j = 0; j < i; j++) {
if (ar[j] > ar[j + 1]) {
if (ar[j] > ar[j + 1]) {
temp = ar[j];
temp = ar[j];
ar[j] = ar[j + 1];
ar[j] = ar[j + 1];
ar[j + 1] = temp;

```
        ar[j + 1] = temp;
```


Searching

Input is an binary array A of size 100.
Find any index i for which $\mathrm{A}[i]=1$

```
var b = random index from {1 ... 100 }
// b = 1 with prob. 0.01
// b = 2 with prob. 0.01
// b = 100 with prob. 0.01
var c = A[b]
if c = 1:
    print (b)
else:
    print ("not found")
```

Makes 1 probe to A
Success probability $=m / 100$ Where, $m=$ number of 1 s in A

Run the code k times.

Prob. of getting "not found" in all 10 runs $=(1-\mathrm{m} / 100)^{\mathrm{k}}$

Prob. of finding good index \cong k*(m/100) (linear in k)
$k=100 / m$ iterations ensure success

Quantum searching

Input is an binary array A of size 100.
Find any index i for which $\mathrm{A}[i]=1$

$$
\begin{aligned}
& \text { Define UA gate on two "registers": } \\
& \text { 1. 10-qubit register } 1 \text { to store position } \\
& \text { 2. } 1 \text {-qubit register } 2 \text { to store value } \\
& \begin{array}{l}
|p\rangle|0\rangle \rightarrow|p\rangle|\mathrm{A}[\mathrm{p}]\rangle \\
|\mathrm{p}\rangle|1\rangle \rightarrow|\mathrm{p}\rangle|1-\mathrm{A}[\mathrm{p}]\rangle \\
1 \text { probe to } \mathrm{A} \\
\operatorname{var}|\mathrm{~b}\rangle=1 / 10[|1\rangle+|2\rangle+\ldots+|100\rangle] \\
\text { Apply UA on }|\mathrm{b}\rangle|0\rangle ? \\
1 / 10[|1\rangle|\mathrm{A}[1]\rangle+|2\rangle|\mathrm{A}[2]\rangle+\ldots]
\end{array} \\
& \hline
\end{aligned}
$$

$1 / 10[|1\rangle|A[1]\rangle+|2\rangle|A[2]\rangle+\ldots]$
Observation yields any $|\mathrm{b}\rangle|\mathrm{A}[\mathrm{b}]\rangle$ with probability 1/100

Not better than classical

Do not observe (yet). Run Grover's search algorithm on this state and then observe.

Constant success probability can be achieved using $\sqrt{ }(100 / m)$ probes.

Programming a QC

input

Current style of designing efficient quantum solvers

Early style of designing (efficient) solvers

In [7]:
from qiskit import QuantumRegister, Classical Register, QuantumCircuit from qiskit.tools.visualization import circuit_drawer import humpy as np
$\mathrm{qr}=$ QuantumRegister(2)
cr $=$ ClassicalRegister(2)
qp = QuantumCircuit(qr,cr)
qp. rx(np.pi/2,qr[0])
qp.cx(qr[0],qr[1])
qp.measure(qr,cr)
High-level wrapper and subroutines to run
Grover's search, etc.

Out [7]:

Linear system of equations

Given N equation in the form of $\mathrm{Ax}=\mathrm{b}$.
Gives the solution vector x

- Classical : conjugate gradient descent $\sim \mathrm{O}(\mathrm{N})$
- Quantum algorithm by HHL : O($\log (\mathrm{N}))$

Variational Quantum Eigensolver

Used to obtain eigenvalue (with lowest absolute value)
and eigenvector of an operator

Quantum Approximate Optimization Algorithms

Objective function of the optimization problem

Quantum neural network

Quantum annealing

Promises and Prospects

- 1981 Feynman proposed quantum computer to efficiently monnshor
- 1984 Bennett and Brassard designed quantum protocol for secret key sharing
- 1991 Another QKD protocol by Ekert BB84 running on 2000 KM fiber-optic cable in China QKD networks : DARPA, Tokyo, Vienna, Japan, ...

Promises and Prospects

Technology. 1985 Deutsch proposed a general purpose programmable not clear quantum computer

- 1992 Deutsch and Jozsa solved a (toy) problem in half the Quantum supremacy race time taken by the best classical algorithm
- 1993 Simon designed algorithm that is efficient on quantum computer but inefficient classically
$1994 \sqrt{ } N^{\bullet}$ is the best 1996 Grover designed algorithm to search in a database of N elements using $\sqrt{ } \mathrm{N}$ "lookups" (classical best is $\mathrm{N} / 2$)
... better-than-classical algorithms for problems on numbers, graphs, geometric objects, strings, statistics, communication, data structures, ... but limited speedup

Promises and Prospects

Requires • 1994 Shor designed algorithms to factor n-bit number in high-precision $O\left(\mathrm{n}^{2}\right)$ time (classical best is $\mathrm{O}\left(\exp \left(\mathrm{n}^{1 / 3}\right)\right)$)

- 1995 Shor and Steane designed error-correcting codes
- 1998 Gottesman and Kill showed how to efficiently Oops! simulate certain quantum algorithms classically
- 2017 Microsoft releases 40-qubit classical simulator

2009 Harrow+ designed linear system "solver" Quantum ML

- 2015 Grass showed 3000-7000 quits needed to search
- 2016 Google simulated a Hydrogen molecule with 9 quits

PORTFOLIO OPTIMIZATION on D-Wave

SIMULATION OF HYDROGEN MOLECULE by
 Google

(simulation of quantum-mechanical systems was the initial motivation of Richard Feynman to propose a quantum computer)

TRAFFIC OPTIMIZATION \& EXPLORE MATERIAL STRUCTURE FOR E-VEHICLE BATTERY by
 Volkswagen Group and Google

Summary

Quantum mechanics that drive quantum computing is mysterious
But if you are a believer ... (*)
Quantum algorithm design and analysis possible using knowledge of algorithms, probability and linear algebra.

Thanks to physicists, material scientists, engineers, mathematicians, ... in universities, R\&D labs and corporates ...

These algorithms can be implemented on real quantum computers and experimented with.

Too early to say how and where QC will become useful ...
Just the right time to enter the game.

Thank you for listening. Questions?

dбera@iiitd.ac.in

