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Abstract. In high-utility itemset mining (HUIM), the utility of a set of
items is calculated as the sum of the utilities of the individual items. In
this paper, we describe scenarios where utility may be less than this sum
for multi-item itemsets. To overcome the limitation of the current itemset
mining algorithms for such scenarios, we introduce the SMIM framework
for itemset mining in which utilities are constrained to be non-negative
subadditive and monotone functions over itemsets. SMIM generalizes
HUIM, can be used to analyse transaction databases with multi-item
discount schemes, and can further be used to mine interesting patterns
in a social network dataset. Finally, we explain how to design algorithms
for SMIM with any general subadditive mototone utility function.

1 Introduction

High-utility itemset mining (HUIM) involves a transactional database, in which
every transaction consists of a set of weighted items, and the objective is to
identify a set of items (aka. itemsets) whose total weight in the entire database
crosses a threshold [7,24]. The weight of an itemset X = {x1, x2, . . . , xk} in the
database D is the sum of the weights of X in all transactions of D that contain
X, and the weight of X in such a transaction T , usually denoted u(X,T ) for
utility, has been traditionally computed as the sum of the weights (or utilities)
of the individual items of X in T , denoted u(x, T ).

uD(X) =
∑

T⊂D,X⊆T

u(X,T ) =
∑

T⊂D,X⊆T

Sumx∈Xu(x, T )

Current state-of-the-art algorithms employ highly optimized data structures
to process large number of transactions at breathtaking speed on modest hard-
ware. However, they are unsuitable in the scenarios where utility of an itemset
in a transaction is not defined as the sum of the itemized weights, but some
different function.

For example, consider a utility function that defines the utility of an itemset
as the sum of its individual utilities discounted by the lowest utility:

u({x1, x2, . . . xk}, T ) =

k∑
i=1

u(xi, T ) − min{x1, . . . , xk}. This situation can arise
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during discount seasons (“buy 1 shirt and 1 trouser, get the lowest free”), or
when hampers are created consisting of items of different nature. Even though
HUIM algorithms were proposed for transactions consisting of discounted items,
the discounts considered were applicable on only single items (“buy 2 tooth-
pastes, get another toothpaste free”) [12,2]. These algorithms are difficult to
extend to the former scenario where utility is no longer a simple sum of itemwise
utilities. Ad-hoc adjustments to HUIM become difficult if the discount schemes
are numerous, complex, and use complicated formulæ involving many items.

The focus of this work is not HUIM for discounted transactions, but how far
can the idea of a “non-addition” utility function be pushed? Quite far, as can
be seen in the list of contributions below.

– We propose an itemset mining problem named SMIM in which the utility
function is not necessarily Sum, but any subadditive and monotone (SM)
function on itemsets. This means that the utility of an itemset X in some
transaction T cannot decrease when a new item from T , say a, is added to
X, and when it increases, it does so by at most the utility of a in T .

– We show that SM utility functions have mathematically helpful properties,
and can model HUIM, as well as multi-item discounted itemsets in retail
transactions. Further, they can be used to identify active and popular users
in a Twitter dataset. Treating a Twitter dataset as transactional is easy (e.g.,
each transaction can include the users active on each day), but identification
of complex patterns requires more general utility functions than Sum.

– We design an algorithm named SM-Miner for SMIM where u(·, T ) is given as
a blackbox. We show how to adapt the existing HUIM algorithms for SMIM,
but empirically show that SM-Miner delivers better performance.

One novelty of our solution is a single algorithm for any utility function that
can be proved to be subadditive and monotone.

Our framework for SMIM allows us to capture extraneous interactions among
the items in an itemset in their joint utility which is not possible in the HUIM
framework. Another novelty of our solutions for SMIM is the use of the superfast
HUIM algorithms [7] which show that they are still relevant and applicable
towards non-trivial utility functions. Future improvements on HUIM algorithms
can possibly speedup SMIM too.

2 Problem Statement

Consider a set U of items where each item has a positive real weight (we do not
consider “negative utility”) denoted w(x).

Definition 1 (subadditive and monotone function). A function f : U →
R+ is defined as subadditive if ∀X,Y ⊆ U , f(X ∪ Y ) ≤ f(X) + f(Y ), and is
defined as monotone if ∀X ⊆ Y ⊆ U , f(X) ≤ f(Y ).

The Sum() function, defined as Sum(X) =
∑
x∈X w(x), is a well-known

example of such a function. However, Min(X) = minx∈X w(x) is not monotone
(e.g., say X = {x1, x2}, w(x1) = 4 and w(x2) = 2).
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Now, let T be some transaction in a database D with positive weights on
items that are denoted wT (x). We define the utility of a singleton itemset {x}
as u({x}, T ) = wT (x). We consider the general scenario where utility over the
items in T is some monotone and subadditive function over T , denoted u(X,T ).
The utility of an itemset X in the entire database D, denoted uD(X), is defined
as the sum of u(X,T ), summed over all T that contains X. We do not require
the monotone and subadditive property to hold for uD(.).

The SMIM problem considers a transaction database D, and a utility function
u(·, ·) defined as above, and wants to know the itemsets whose utility over D is at
least a given threshold θ. SMIM generalizes HUIM since Sum is an SM function,
and variations of HUIM that were studied by Yao [23] for similar reasons.

3 Related work

Several algorithms have been proposed in the literature for HUIM [1,22,14,6,5,10].
Broadly these algorithms vary in terms of the number of stages they run for
(one phase and two-phase), their database representation (tree, utility list, and
projected database) and other data structures and heuristics used to prune non-
high-utility itemsets effectively. All the HUIM algorithms explore itemsets in
a branch-and-bound manner; however, to limit the number of database scans,
they use upper bounds functions on the utility function to prune itemsets and
decide exploration branches [16,15]. All the above techniques work for a specific
utility function,

∑
x∈I u({x}, T ) to be precise, and do not generalize to arbitrary

(or even subadditive monotone) utility functions. The research community has
contributed significantly to improve the efficiency of high-utility itemset mining
algorithms in the last few years. One of our objectives is to identify protocols to
adapt these algorithms to the SMIM framework. Our SMIM algorithms are de-
signed in a similar manner, but with modifications to the upper bound function
that are necessitated by the non-Sum nature of SMIM utility functions.

Declaration constraint programming has been used to generalize various no-
tions of itemset mining. In this approach the constraints are expressed in a
high-level language and a separate solver is used to identify the appropriate
itemsets. Silva et al. [18] proposed a framework for constraint pattern mining
that allowed anyone to organize and analyze different algorithms based on the
properties of constraints like anti-monotonicity, monotonicity, succinctness, etc.
Guns et al. [9] introduced a declarative framework named MiningZinc that can
express HUIM. Coussat et al. [4] defined the problem of HUIM in uncertain ten-
sors, and showed that an algorithm called multidupehack [3] could be deployed
for a version of the high-utility itemset mining problem where the utility of an
item is more general than in HUIM. However, both MiningZinc and multidupe-
hack define the utility of an itemset as the sum of utility of individual items,
akin to HUIM, and cannot be generalized to the SMIM scenario.

Subadditive monotone set functions have appeared in quite a few works on
identifying important groups of entities, however, we are aware of only one work
that is somewhat related to that of ours, but involving sequences of items. Tschi-
atschek et al. [20] introduced a utility function over a sequence of items, which is
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further defined using a submodular monotone function, that captures the ordered
preferences among items over arbitrarily long ranges. They proposed a greedy
algorithm for selecting a sequence of items under sequence length constraints
and showed an application of their algorithm for the task of recommending a
sequence of movies to a user.

Our approach is similar to that adopted by Yao et al. [23]. They unified
several forms of “utility” measures proposed for itemset mining until 2006, in-
cluding the ones used in FIM (frequent itemset mining) and HUIM, using a
common framework and then identified common mathematical properties that
can be used to design efficient pruning strategies. We not only generalize all those
utility measures, but go far beyond and present interesting examples along with
a case-study that can identify patterns in a social network.

4 Examples of SMIM

We show two scenarios that can be modelled using SMIM.

Example 1 – Discount scheme: First, consider a retail store that is running
this multi-product discount scheme: “Buy 1 pencil (P), get 1 eraser (E) free”.
Observe that utility of any itemset that does not contain both pencil(s) and
eraser(s) is once again the sum of the itemwise utilities; for the other itemsets,
its utility depends on the quantities of pencils and erasers. Let cp and ce denote
the costs of 1 pencil and 1 eraser, respectively; let np and ne denote the number
of pencils and erasers in T , respectively. We can express the utility function on
any transaction T as

u(X,T ) =

Sum(X,T ) if {P,E} 6⊂ T
Sum(X \ {P,E}, T ) + np × cp o/w, if np ≥ ne
Sum(X \ {P,E}, T ) + np × cp + (ne − np)× ce o/w, if np < ne

We now prove that the above u(X,T ) is subadditive and monotone under the
reasonable assumption that c(E) ≤ c(P ). Note that if there are np pencils in T ,
and X contains pencils, then the quantity of pencils in X is also np; in other
words, X cannot contain a partial amount of some items.

To show that u(X,T ) is monotone, consider some y 6∈ X, and define Y =
X∪{y}. Now, if y is not a pencil or an eraser, then u(Y, T ) = u(X,T )+u(y, T ) ≥
u(X,T ). When y is a pencil or eraser, u(Y, T ) may be different depending on
whether X already had the other. However, since the cost of 1 eraser is at most
that of 1 pencil, the total cost of Y cannot be less than that of X (even when
there are an unequal number of pencils and erasers).

A similar line of arguments is used to prove subadditivity for which it is
sufficient to consider two disjoint sets of items X and Y . Now, the only situation
when u(X ∪ Y, T ) would be different from u(X,T ) + u(Y, T ) is when, wlog.,
X contains pencil(s) and Y contains eraser(s). However, in that scenario, the
combined utility u(X ∪ Y, T ) would be less than u(X,T ) + u(Y, T ) since 1 or
more erasers would now be given for free.
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Even though we discuss only one discount scheme, we are hopeful that many
other common discount schemes can also be brought into the folds of SMIM.

Example 2 – Transactions along with a relationship graph: For the second sce-
nario consider a Twitter dataset containing tweets and retweets of many users
and their followers, over a period of several months. We construct a transaction
database, denoted D, by fixing (say) 3-hour intervals to construct each trans-
action that represents the active users during this time period. The weight or
utility (denoted u(x, T )) of a user x is set to the number of tweets posted by
that user in that period. Next, we constructed a directed follower-followee graph,
denoted G, on the users by adding a directed edge from a user A to user B if B
has retweeted at least one tweet posted by A in any of the time intervals.

Observe that identifying itemsets with high frequency or high utility in D
would fail to account for the “following” relationship exhibited by the retweets.
To incorporate this, we use the graph-theoretic notion of coverage of a set of
nodes in G which is defined as Co(X) = |X ∪

⋃
x∈X neighbor(x)| in which the

neighbours of x are those users that retweeted at least one tweet of X. We
interpret Co(X) as a measure of the collective influence of X. We proved that
Co() is an SM function and can be used in SMIM; however, Co() does not
capture temporal behaviour.

To further identify groups of users who are both “active and possess large
influence as a group”, an obvious utility function is the following: sumcov(X) =∑
x∈X u(x, T )×Co({x}). sumcov defines the itemset utility as sum of values for

each item, and just like Sum in HUIM, is subadditive and monotone.

Fig. 1: Comparative illustration of traditional HUIM and SMIM. u(I) denotes
the utility of an itemset I as defined in traditional HUIM, whereas ucov(I)
denotes its utility whose computation involves both the transaction database
and an external graph given below.
TID Transaction u(A) =

ucov(A)
u(C) =
ucov(C)

u(AC) ucov(AC)

T1 (A : 5) (C : 10) (D : 2) 5 10 15 5Co(AC) + 5Co(C) = 35
T2 (A : 10) (C : 6) (E : 6) (G : 5) 10 6 16 6Co(AC) + 4CO(C) = 36
T3 (A : 10) (B : 4) (D : 12) (E : 6) (F : 5) 10 0 0 0
T4 (A : 5) (B : 2) (C : 3) (D : 2) (H : 2) 5 3 8 3Co(AC) + 2Co(A) = 18
T5 (B : 8) (C : 13) (D : 6) (E : 3) 0 13 0 0
T6 (B : 4) (C : 4) (E : 3) (G : 2) 0 4 0 0
T7 (F : 1) (G : 2) 0 0 0 0
T8 (F : 4) (G : 3) 0 0 0 0

Total utility in database 30 36 39 89
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To illustrate the ability to create interesting utility functions, we designed an-
other utility function towards the same objective. For this, it will be helpful to re-
call that u({x}, T ) indicates activity of x. Let T be a transaction in D in which qi
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denotes the utility of xi in T , and the items are ordered such that qi ≤ qi+1 for all
i. Let X = {x1, x2, . . . xk} be an itemset from T. The coverage utility of X in T is

defined as ucov(X,T ) = q1×Co(X)+
∑k
j=2(qj−qj−1)×Co({xj · · ·xk}). Figure 1

illustrates ucov() and compares it with u() on an example dataset. For example,
ucov(ACD,T1) in the database in Figure 1 is 37 and sumcov({ACD}, T1) =
5× Co({A}) + 10× Co({C}) + 2× Co({D}) = 5× 4 + 10× 3 + 2× 4 = 58.

We further analysed a Twitter dataset using ucov and sumcov and showed
that the former may be a suitable utility function (see the full version for de-
tails). However, it may not be easy to identify high-utility patterns based on a
complicated function like ucov. Our strategy for this is to first prove that ucov
is subadditive and monotone, and then use the generic algorithms in the next
section that operate on any SM utility function. Proving ucov as subadditive
and monotone turned out to be quite involved. The proofs are included in the
full version of this paper 1. We discuss the algorithms in the next section.

5 Algorithmic framework for SMIM

Like the specialized HUIM algorithms where the utility function is Sum, specific
algorithms have to be designed for specific SM utility functions. Here we lay down
a general framework to design SMIM algorithms by adapting HUIM algorithms
only relying on the fact that a utility function is subadditive and monotone.

Existing HUIM algorithms can be categorized into list-based, tree-based,
and projection-based. These algorithms devise strategies to upper bound certain
utility values and employ efficient data structures to explore the space of itemsets
with clever pruning strategies using those upper bounds. We show that for SMIM
too similar data structures and exploration algorithms can be designed with
appropriate upper bound functions. The proofs of the claims in the section are
available in the full version of this paper.

5.1 Projection-based algorithms

An essential step in the projection-based algorithms like EFIM [25], D2HUP [13],
and MAHI [19] is merging two identical transactions to reduce the costly database
scans during the construction of a projected database for an itemset. We explain
why this should not be done for arbitrary utility functions.

Let T = {(A1 : q1), . . . (An : qn)} and S = {(A1 : r1), . . . (An : rn)} be two
transactions with the same items in them, but with possibly different weights.
Merging T and S to create a transaction M = {(A1 : q1 + r1), . . . (An : qn+ rn)}
does not change the utility of the itemset J = 〈A1, A2, . . . An〉 in the database
for the Sum() utility function that is used for HUIM. However, utility of J
may not satisfy the same for an arbitrary SM utility function. For example,
ucov({F,G}, T7) = 7 and ucov({F,G}, T8) = 15 for the transactions T7 and T8 in
Figure 1, but if we merge them to a single transaction M = {(F : 5), . . . (G : 5)},
then we get ucov({F,G},M) = 20. Therefore, transaction merging should be
disabled when adapting projection-based algorithms to SMIM.
1 http://www.iiitd.edu.in/~dbera/docs/2021-smim.pdf

http://www.iiitd.edu.in/~dbera/docs/2021-smim.pdf
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5.2 Tree-based algorithms

A tree-based algorithm like UP-Growth and UPGrowth+ [21] creates a tree
data structure from a transaction database which is then used to find potential
high utility candidates. They create a global tree structure before starting the
mining process. Every node of this tree stores an itemset, a pointer to its parent
node, its support, an upper-bound of its utility (like transaction-weighted utility
(TWU)), and pointers to its child nodes which are extensions of the itemset by
one more item. As the algorithm recursively visits a node, local trees are created
and used for recursively exploring its child nodes. An itemset X is unpromising
in a transaction database if TWU(X) is less than the minimum utility threshold
θ. Unpromising itemsets are removed, thereby pruning the search space, during
both the global and local tree creation; removing unpromising items have an
added advantage of deriving better estimates during exploration.

The general idea can be extended to SM utility functions. The unpromis-
ing items can be removed during a global tree creation with an additional step
to recompute the utility of a transaction after removing the unpromising items
(this is easy for Sum). However, removing unpromising items during local tree
creation may not give correct upper-bound estimates for an arbitrary function,
even though it works for the Sum function. Imagine a tree-based algorithm at
an intermediate stage and let Y denote the path to a node in the tree. Fur-
ther, consider the case where an item A appears on the path to Y and, at
that intermediate stage, A was found to be unpromising. The tree-based al-
gorithms at this point remove A from the local tree and re-adjust the utility
upper bounds of all the nodes on the path to Y . To update the utility upper
bound of some node, say Z, the algorithm simply subtracts from it

∑
T u({A}, T )

summed over all transactions that contain A. This happens to be correct when
u = Sum since the Sum(Z \ {A}, T ) = Sum(Z, T ) − Sum({A}, T ), but may
not necessarily hold for other utility functions. If we nevertheless use the same
method and update u(Z \ {A}, T ) = u(Z, T ) − u({A}, T ), we may incorrectly
prune itemsets with high-utility; this is since subadditivity only guarantees that
u(Z \{A}, T ) > u(Z, T )−u({A}, T ) which clearly shows that the updated value,
which appears on the right-hand side, could be lesser than the actual utility value
of the left.

Let T = {(A1 : q1), . . . (An : qn)} be some transaction, X denote the item-
set X = {A1} and Y denote the itemset {A2, . . . , An} with n − 1 items. Sup-
pose it happens that the item A1 is unpromising, i.e., TSMWU(A1) < θ; thus,
A1 cannot be a part of any high-utility itemset. It can be easily verified that
u(X,T ) + u(Y, T ) = u(X ∪ Y, T ) when u(·) is the Sum(·) defined for HUIM.
Therefore, u(Y, T ) = u(X ∪ Y, T ) − u(X,T ) gives a correct bound for HUIM.
However, computing tighter utility estimates by removing unpromising items can
result in incorrect upper bound estimate i.e. resulting in false negatives for those
functions where f(X,T ) + f(Y, T ) > f(X ∪ Y, T ). We found that the tree-based
algorithms for HUIM can be adapted for arbitrary subadditive monotone func-
tion without any change but for the removal of the unpromising items during
local tree creation.
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We identified an additional optimization to speed things up. The transaction
utility (TU) of a transaction is the sum of the utilities of its items. TWU of an
itemset X is the sum of TU for transactions that contain X. The transaction-
weighted downward closure property of TWU ensures that if TWU(X) is less
than the threshold, then X and its super-sets cannot be high-utility itemsets
[15]. We define related terms for SM functions.

Definition 2 (TSMU and TSMWU). The transaction subadditive monotone
utility of a transaction T is defined as TSMU(T ) = u(T, T ). The transaction
subadditive monotone weighted utility (TSMWU) of an itemset X is the sum of
TSMU(T ) for all the transactions containing X.

For example, consider transaction T1 from Figure 1. TU for T1 (using ucov for
utility) is equal to ucov({A}, T1)+ucov({C}, T1)+ucov({D}, T1) which evaluates
to 20 + 30 + 8 = 58. However, TSMU(T1) = ucov({ACD}, T1) = 37.

Observe that TSMU(T ) = TU(T ) and TSMWU = TWU when Sum() is
used as the utility function (as in HUIM). Like TWU, we were able to show
that TSMWU satisfies the downward-closure property; further, it turns out be
a tighter bound compared to TWU for an arbitrary u(·, ·).

Lemma 1. If TSMWU(X) is less than the threshold, then X and its supersets
cannot be high-utility itemsets. Further, TSMWU(X) is a tighter upper-bound
compared to TWU(X).

5.3 SM-Miner algorithm

The list-based HUIM algorithms [14,6] use the exact-utility (EU) and remaining-
utility (RU) bounds that are tighter compared to the TU bound explained earlier.
These algorithms process items according to some fixed order, and the items in
each transaction are sorted accordingly. Let X be some itemset that is being
processed, T be some transaction containing X and T/X be the items appearing
after X in T (note that X ∪ (T/X) is not T , e.g., items appearing in T before
X in the processing order are not in T/X). The exact utility EU(X,T ) is the
sum of the utilities of the items in X in T and the remaining utility RU(X,T )
is defined as the sum of the utilities of the items in T/X. It can be shown that
X and its extensions (according to the processing order) cannot be high utility
if EU−RU(X) =

∑
T⊇X EU(X,T ) + RU(X,T ) is less than the threshold [14];

this fact is used in HUIM algorithms to decide whether to examine extensions
of the currently explored itemset X. Towards this purpose, they maintain a
utility-list consisting of triples 〈Transaction id (TID), Exact-utility (EU(X,T )),
Remaining-utility (RU(X,T ))〉 with each itemset X. They scan the transaction
database to construct the utility-list for promising items, i.e., items with TWU
no less than the minimum utility threshold. The utility-list for a {k}-itemset
(an itemset consisting of k items) is constructed by intersecting lists of two
{k − 1} itemsets with the same prefix. The algorithms also store two mappings
sumEU(X) and sumRU(X) that store the sum of EU(X,T ) and RU(X,T ) for
all transactions that contain an itemset X.
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Table 1: Illustration explaining Algorithm 1 on the dataset in Figure 1.

SMI list of {A}

TID CWI RWI
1 {(A : 5)} {(C : 10), (D : 2)}
2 {(A : 10)} {(C : 6), (E : 6), (G : 5)}
3 {(A : 10)} {(B : 4), (D : 12), (E : 6), (F : 5)}
4 {(A : 5)} {(B : 2), (C : 3), (D : 2), (H : 2)}

SMI-list of {B}

TID CWI RWI
3 {(B : 4)} {(D : 12), (E : 6), (F : 5)}
4 {(B : 2)} {(C : 3), (D : 2), (H : 2)}
5 {(B : 8)} {(C : 13), (D : 6), (E : 3)}
6 {(B : 4)} {(C : 4), (E : 3), (G : 2)}

SMI-list of {A,B}
TID CWI RWI
3 {(A : 10), (B : 4)} {(D : 12), (E : 6), (F : 5)}
4 {(A : 5), (B : 2)} {(C : 3), (D : 2), (H : 2)}

We show how to define a tighter bound for utility functions that are arbitrary,
not necessarily Sum, but subadditive and monotone.

Definition 3 (Combined utility (CU)). Given an itemset X and a trans-
action T with X ⊆ T , the combined utility of X is defined as CU(X,T ) =
u(X ∪ T/X, T ) and CU(X) =

∑
T⊇X CU(X,T ).

Note that CU(X) = EU−RU(X) when Sum is used as the utility function
(as in HUIM). We were able to prove the following properties which show that
we can use TSMWU in place of TWU and CU in place of EU−RU to design
our SM-Miner algorithm. The proof of the lemma is included in the full version
of the paper.

Lemma 2. If CU(X) is less than a threshold, any extension X ′ of X in the
processing order of items is not a high-utility itemset. Further, CU(X) is a
tighter upper-bound compared to EU−RU(X).

Our algorithm uses a data structure called SMI-list to store a list of triples
of the form 〈Transaction Id (TID), Current Weighted Itemset (CWI), Remain-
ing Weighted Itemset (RWI)〉 with each itemset X. Here CWI stores the item-
quantity information for all items in X present in the transaction given by TID
and RWI stores the items with their quantities which appear after X in a transac-
tion. We associate with each item X two variables SumEU(X) and SumCU(X)
that accumulate the EU and CU values during the construction of the inverted-
list for X. A variable combined-utility (CU) stores CU(X) with the utility-list
for every itemset X. The construction of an SMI-list is described in Algorithm 1
in which we do not scan the SMI-list of the prefix while constructing the list
for a k-itemset (unlike HUIM algorithms like HUI-Miner and FHM [14,6]) since
an SMI-list for X stores the quantity information for all items in X as well as
extensions of X in a transaction. We illustrate these bounds in our example
transaction database presented in Figure 1 for ucov.
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Algorithm 1 Construct-SMI-List of a {k}-itemset from SMI-Lists of two {k −
1}-itemsets with common prefix
Input: LIx: SMI-List of a {k − 1}-itemset Ix
Input: LIy: SMI-List of a {k − 1}-itemset Iy
Global: Tables SumEU and SumCU
Output: LIxy: SMI-List of Ixy = Ix ∪ Iy
1: Ixy = [ ]
2: for each triple Ex in LIx do
3: if ∃Ey ∈ Iy such that Ex.T id = Ey.T id then
4: Exy = 〈Ex.TID,Ex.CWI ∪ Ey.CWI,Ey.RWI〉
5: Append Exy to LIxy

6: sumEU(Ixy) + = u(Ex.CWI ∪ Ey.CWI,Ex.TID)
7: sumCU(Ixy) + = u(Ex.CWI ∪ Ey.CWI ∪ Ey.RWI,Ex.TID)
8: end if
9: end for
10: Return LIxy

Algorithm 2 SM-Miner with threshold θ
Input I: Prefix itemset I
Input LI+: Set of SMI-Lists of Ix for all items x
Output: the set of high-utility itemsets with I as prefix

1: for SMI-List LIx in LI+ do . Ix denotes itemset I and item x
2: if sumEU(Ix) ≥ θ then
3: Output Ix as a high-utility itemset
4: end if
5: if sumCU(Ix) ≥ θ then . Recursively explore extensions of Ix
6: LIx+ = { }
7: for SMI-List LIy after LIx in LI+ do
8: LIxy = Construct− SMI− List(LIx, LIy) . Algorithm 1
9: LIx+ = LIx+ ∪ LIxy

10: end for
11: SM −Miner(Ix,LIx+, θ))
12: end if
13: end for

SM-Miner has an initialization phase in which the database is scanned to
compute the TSMWU of the items; TSMWU is computed since it is a tighter
bound compared to TWU (Lemma 1). Another database scan is then performed
to remove from the database the items with TSMWU less than θ (Lemma 1),
and alongside, construct the SMI-lists of individual items that remain in the
database. SM-Miner is then called on each of the items, along with the corre-
sponding list, and its procedure is described in Algorithm 2. When called on
an itemset I, it explores the search space in a depth-first manner to identify
the complete set of high-utility itemsets with prefix I; alongside it constructs
the promising extensions of I in the form of their SMI-Lists using Algorithm 1.
Pruning of an itemset Ix happens if SumCU(Ix) is less than the utility thresh-
old θ since Ix and its supersets/extensions cannot be high-utility as per Lemma
2; we use SumCU instead of EU−RU since it gives a tighter bound (Lemma 2).

5.4 Empirical observations

The objective of our experiments was to identify if there is any change in the
performance trend in SMIM compared to HUIM for a complex utility function.
In the absence of any existing algorithm for SMIM, we report the performance
of our tree-based, projection-based and list-based algorithms for SMIM (listed



SMIM framework to generalize high-utility itemset mining 11

Table 2: Implementations of SMIM
SMIM algorithm Adaptation of (HUIM algorithm) Type
SM-Miner (this work) list-based
UPG+SM UP-Growth+ [21] tree-based
EFIMSM EFIM [25] projection-based
D2HUPSM D2HUP [13] projection-based

in Table 2) using ucov, on two sparse and two dense datasets, namely Chain-
store, Kosarak, Mushroom, Accidents [8]. Due to the lack of real-life networks
on the corresponding items, we synthetically constructed graphs (for computing
coverage) by taking the items present in a database as vertices and linking them
by edges randomly such that the average degree of a vertex in a graph is four.
The detailed results are available in the full version of this paper.

The most prominent observation is that the performance trend of the SMIM
algorithms with the ucov utility function is completely different from the HUIM
scenario. Projection-based HUIM algorithms are known to perform an order of
magnitude better than the other algorithms on dense and sparse datasets; for ex-
ample, D2HUP performs the best on the sparse datasets and EFIM performs the
best on the dense datasets. However, we observe that for SMIM, the tree-based
and the list-based algorithms perform better compared to the projection-based
algorithms on the sparse datasets. Further, SM-Miner competes with EFIMSM
for the best performance on the dense datasets. Our investigations revealed that
much of this behaviour is attributed to the number of utility function calls, and
the tightness of the various bounds discussed earlier. In fact, the total execution
times of the algorithms appear to be more correlated with the number of utility
function calls than to the number of candidates generated, unlike HUIM.
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A Analysis of a Twitter dataset

To demonstrate the effectiveness of ucov over sumcov, we used them to analyse a
Twitter dataset curated from the Twitter-Dynamic-Net dataset on Aminer [17].
Following the procedure of constructing a follower-followee graph that is given
above, we construct a directed graph with 14766 followees and 20423 followers
with 46164 edges between them. The average degree of a followee is 3, and the
maximum degree is 48. We ensured that every user in the constructed graph
has at least one follower by removing nodes that do not meet this criteria. Even
though we discussed coverage on an undirected graph earlier, it is straightforward
to adapt it for directed graphs and we do the same. The transaction database
had 2631 transactions with 14766 items, with average and maximum lengths as
87 and 381, respectively.

First, it can be shown that the patterns generated by ucov will always be
a filtered subset of the patterns generated by sumcov for the same threshold;
in fact, sumcov generated 10,29,921 patterns while ucov generated only 681
patterns when the minimum utility threshold was set to 10,000.

Theorem 1. For a given threshold θ, the set of high-utility patterns generated
by ucov(·) will always be a subset of the patterns generated by sumcov(·).

Next, we generate the top 100 patterns using both ucov and sumcov. Table 3
compares them on various dimensions, and we see that ucov may be suitable for
analysing our dataset.

Table 3: Comparison of the top-100 patterns using ucov and sumcov.
Length Frequency Coverage # tweets

min max avg. median min max avg. med. min max avg. med. min max avg. med.

ucov 1 5 2.06 2 15 462 115 73 16 79 38.9 38 376 1605 808 742
sumcov 1 7 2.5 2 8 462 99.6 67.5 16 105 42.7 38 376 1605 832 778.5

B ucov vs. sumcov

Proof of Theorem 1. Consider any transaction T and let X be an itemset of T
that is represented as X = [(A1 : q1), . . . (An : qn)] where q1 ≤ · · · ≤ qn. We can
express sumcov(X,T ) as

∑n
i=1 qi×Co(Ai). For the proof refer to Table 4 where

we compare the expressions of ucov(X,T ) and sumcov(X,T ) term-by-term.
The table shows that the utility value computed by sumcov(·) is at least that

by ucov(·). In other words, all patterns with ucov(·) no less than θ will also have
sumcov(·) no less than θ and this proves the theorem; in fact, sumcov(·) can
overestimate the coverage of a pattern if the sets of vertices covered by individual
items present in a pattern have lots of common neighbors.

For example, ucov(ACD,T1) in the database in Figure 1 is 37 and sumcov({ACD}, T1) =
5× Co({A}) + 10× Co({C}) + 2× Co({D}) = 5× 4 + 10× 3 + 2× 4 = 58.
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Table 4: Comparison of ucov(X,T ) with sumcov(X,T ) for proving Theorem 1

ucov(X,T) = sumcov(X,T) =

q1×Co({A1 · · ·An}) ≤ q1× ( Co({A1}) + Co({A2}) +. . .+Co({An}) )
(q2 − q1)×Co({A2 · · ·An}) ≤ (q2 − q1)× ( Co({A2}) + Co({A3}) +. . .+Co({An}) )
...

...
...

(qn − qn−1)×Co({An}) = (qn − qn−1)×Co({An})
= q1 × Co(A1) + q2 × Co(A2) + · · · qn × Co(An)

C Proofs relating to ucov

In this subsection we first prove that Co() is a subadditive and monotone func-
tion, and then we prove that ucov(·, T ) is subadditive for every transaction T .
The proof of monotonicity of ucov has been presented earlier in Section C.2.

C.1 Co() is subadditive and monotone

A set function f() is submodular if f(A ∪ B) + f(A ∩ B) ≤ f(A) + f(B) for
any two sets A,B. It is known that submodular functions are also subadditive.
Krause et al. [11] proved that coverage of a set of nodes is submodular but
they proved it for the traditional definition of coverage that only considers the
neighbors and not the set itself. Therefore, we need to explicitly show that our
Co() function is submodular.

Theorem 2. Co() is monotone and submodular, hence, subadditive.

Proof. The fact that Co() is monotone is straightforward. Let X be a set of
nodes (items), and let there be k nodes altogether in X or in the neighborhood
of some node in X — call this set of nodes as NX . Observe that Co(X) = k. Now
let Y be a superset of X. All nodes in NX are either already in Y or neighbor of
some node in Y ; thus, Co(Y ) ≥ k which establishes the monotonicity of Co().

For submodularity we will prove a stronger property, that Co exhibits dimin-
ishing returns. f() has the property of diminishing returns if for any A ⊆ B and
any z 6∈ B, f(A ∪ {z})− f(A) ≥ f(B ∪ {z})− f(B). It is known that submod-
ularity is equivalent to possession of the property of diminishing returns. Below
we describe how the diminishing returns property is satisfied by Co().

Consider any two sets of nodes (items) X,Y such that X ⊆ B, and consider
any z not in these sets. Consider these three sets of nodes.

– NX containing X and other nodes that are neighbors of some node in X

– NY containing Y and other nodes that are neighbors of some node in Y
(note that NY contains NX)

– Nz containing z and neighbors of z
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Fig. 2: Partitioning the neighborhood of X and Y for proving submodularity of
Co

NX can be partitioned into NX \Nz and NX ∩Nz. Let n′x and nxz denote
the cardinalities of these, respectively. Similarly, divide NY into NY \ Nz and
NY ∩ Nz with cardinalities denoted n′y and nyz, respectively. Last, denote the
cardinality of Nz \ NX \ NY by n′z. A pictorial representation of these subsets
and their cardinalities is given in Figure 2 from which we can readily observe
these coverage values.

– Co(X) = n′x + nxz
– Co(Y ) = n′x + n′y + nxz + nyz
– Co(X ∪ {z}) = n′x + nxz + nyz + n′z
– Co(Y ∪ {z}) = n′x + n′y + nxz + nyz + n′z

For these values it is straightforward to verify that Co(X ∪ {z}) − Co(X) ≥
Co(Y ∪ {z})− Co(Y ). This concludes the proof of the theorem.

Table 5: Comparing the summands in ucov(Z, T ), ucov(X,T ), ucov(Y, T )
ucov(Z, T ) = ucov(X,T ) = ucov(Y, T ) =

1 MCo([B2, A1, C1, B1, A2]) ≤ 1 MCo([B2, C1, B1])
2 MCo([A1, C1, B1, A2]) ≤ 2 MCo([A1, C1, A2])
3 MCo([C1, B1, A2]) ≤ 3 MCo([C1, A2]) 3 MCo([C1, B1])
3 MCo([B1, A2]) ≤ 3 MCo([B1])
7 MCo([A2]) ≤ 7 MCo([A2])

C.2 ucov() is monotonic

We use the following notation. Let X be any itemset which is represented as
[x1, x2, . . . , xk] when ordered in the non-decreasing order. We use Xi to denote
the suffix of X starting at xi, i.e., Xi = [xi, xi+1 . . . xn]. Further, we drop braces
inside Co() to simplify readability, e.g., Co(Xi) denotes Co(xi, xi+1, . . . xk).

For monotonicity, without loss of generality, let X = [x1, . . . xn] be an itemset
in T ordered in the specified manner. Further, let z be an item from T not in X,
call Z = X ∪ {z}; note that Z can be ordered as [x1, x2, . . . , xj , z, xj+1, . . . xn]
according to the quantity of z (denoted qz), where j is some value from {0, . . . , n}.

Lemma 3. ucov(X) ≤ ucov(Z) for X and Z defined above.
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Table 6: Comparing expressions for ucov(X,T ) and ucov(Z, T ) from Lemma 3.
ucov(X,T) Comparison ucov(Z,T)

(a) = q1Co(X1) ≤ = q1Co(Z1) by Eqn. 1
+(q2 − q1)Co(X2) ≤ +(q2 − q1)Co(Z2) by Eqn. 1
...

...
...

(b) +(qj − qj−1)Co(Xj) ≤ +(qj − qj−1)Co(Zj) by Eqn. 1

(c) =
+(qz − qj)Co(z ∪ Zj+1)

+(qj+1 − qj)Co(Xj+1) +(qj+1 − qz)Co(Zj+1)

(d) +(qj+2 − qj+1)Co(Xj+2) = +(qj+2 − qj+1)Co(Zj+2) by Eqn. 2
...

...
...

(e) +(qn − qn−1)Co(Xn) = = (qn − qn−1)Co(Zn) by Eqn. 2

Proof. The proof is best understood from Table 6 where we expand ucov(X,T )
and ucov(Z, T ) using their suffixes and compare the terms in the expansions.

For i = 1 to j, Co(Xi) ≤ Co(Zi) since, Xi ⊂ Zi (1)

For i = j + 1 to n, Co(Xi) = Co(Zi) since, Xi = Zi (2)

It can be seen in the table that all the terms from (a)–(b) and (d)–(e) of
ucov(X,T ) are less than or equal to those in ucov(Z, T ). We only need to estab-
lish the equality of (c) that we prove below.

(qj+1 − qj)Co(Xj+1)

=(qz − qj)Co(z ∪ Zj+1) + (qj+1 − qz)Co(Zj+1)

=(qz − qj)Co(z ∪Xj+1) + (qj+1 − qz)Co(Xj+1)

(which is true due to monotonicity of Co())

=(qz − qj)Co(Xj+1) + (qj+1 − qz)Co(Xj+1)

≤(qz − qj)Co(z ∪Xj+1) + (qj+1 − qz)Co(Xj+1)

The above lemma allows us to prove that ucov is a monotone function.

Theorem 3. The utility function ucov(·, T ) is monotone for any fixed T .

Proof. Take any two subsets X ⊂ Y ⊆ T . It is always possible to construct
several more subsets Y0, Y1, Y2, . . . , Yk such that X = Y0 ⊂ Y1 ⊂ Y2 . . . Yk−1 ⊂
Yk = Y and each Yi contains exactly one new element in addition to those from
Yi−1. Then using Lemma 3 repeatedly, we get that ucov(Xi−1) ≤ ucov(Xi) for
i = 1 . . . n. Combining all of them proves that ucov(X) ≤ ucov(Y ) which proves
that ucov is a monotone set function when T is fixed.
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C.3 ucov() is subadditive

Next we prove subadditivity of ucov. Let X = {x1, x2, . . . , xk} be any set of
items in which x1 denotes the items with the smallest quantity (ties broken
arbitrarily). Define marginal coverage of X as

MCo(X) = Co({x1, x2, . . . , xk})− Co({x2, . . . , xk})

which is the change in coverage due to the item in X with the smallest quantity
on the rest of X. For the sake of completeness, define the coverage of an empty
set to be 0. It is easy to show that Co(X) ≤ Co(Y ) if X ⊆ Y . Thus it follows
that MCo() is a non-negative function.

Lemma 4. Let Y be a subset of items from a transaction. Let the items in Y
when ordered in non-decreasing quantities be [x1, x2, . . .]. Further, let X be a sub-
sequence of Y starting with x1; so, X = [x1, . . .] ⊆ Y . Then MCo(X) ≥MCo(Y ).

Proof. Clearly, x is the item in X with the smallest quantity, and also the item
in Y with the smallest quantity. Let X ′ = X \ {x} and Y ′ = Y \ {x}. Submod-
ular functions are known to have lower diminishing returns; so, Co(X ′ ∪ {x})−
Co(X ′) ≥ Co(Y ′ ∪{x})−Co(Y ′). However, the former was defined as MCo(X)
and the latter as MCo(Y ), thus proving the lemma.

We now re-define ucov using MCo by simply re-arranging and collating
terms. To simplify expressions,MCo([x1, x2, . . . xk]) will meanMCo({x1, x2, . . . , xk})
and the items in the sequence appearing in non-decreasing quantities; thus
MCo([x1, . . .]) will mean the coverage of the first item x1 in the sequence. Sup-
pose X denotes [x1, x2, . . . , xk] where the items are ordered in a non-decreasing
manner. Then ucov can be re-written as

ucov(X,T ) =

n∑
j=1

qij ×MCo([xj , xj+1, . . . , xk]). (3)

Lemma 5. Let X,Y denote any two itemsets of a transaction T and let Z
denotes X ∪ Y . Then, ucov(Z, T ) ≤ ucov(X,T ) + ucov(Y, T ).

Proof. Suppose the items of Z when ordered in non-decreasing quantities are
denoted z1, z2, . . . , zn where any zi belongs to exactly one of X or Y ; further,
suppose the quantity of zi be denoted qi. Note that when ordered, the sequences
of the items in X and the items in Y are (possibly overlapping) subsequences of
Z. Using the alternative definition of ucov given in 3, we get the following.

ucov(Z, T ) =

n∑
i=1

qi ×MCo(Zi)

ucov(X,T ) =

n∑
i=1:
zi∈X

qi ×MCo(Xi)

ucov(Y, T ) =

n∑
i=1:
zi∈Y

qi ×MCo(Y i)
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We will analyse the terms in the expression of ucov(Z, T ). Take any i ∈
{1, . . . , n}; the i-th summand is qi×MCo(Zi). Consider the case where zi ∈ X.
Xi is the subsequence of X starting with zi; in fact, Xi ⊆ Zi and both the
sequences start with zi. Therefore, by Lemma 4 MCo(Xi) ≥MCo(Zi). For the
other case of zi ∈ Y \ X we similarly obtain that MCo(Y i) ≥ MCo(Zi); note
that any zi ∈ Z either belongs to X or belongs to Y \X.

Combining both of these, and summing over all i = 1 . . . n (and using the
fact that MCo() is a positive function due to which the additional summands
in ucov(Y, T ) only make the RHS larger), we obtain the claim in the theorem.

n∑
i=1

qi ×MCo(Zi) ≤
n∑

i=1:
zi∈X

qi ×MCo(Xi) +

n∑
i=1:
zi∈Y

qi ×MCo(Y i)

This proves the theorem. For an intuitive explanation, consider a transaction
T = {(A1 : 2), (A2 : 7), (A3 : 4), (C1 : 3), (B1 : 3), (B2 : 1)(B3 : 2)}, item-
set X = {A1, A2, C1} and itemset Y = {B1, B2, C1}. Then, written in order,
Z = [B2, A1, C1, B1, A2], X = [A1, C1, A2] and Y = [B2, C1, B1]. The above in-
equalities can be applied to these subsets which can be seen in Table 5. It can
be seen that ucov(Z, T ) ≤ ucov(X,T ) + ucov(Y, T ).

D Proof of claims in Section 5

Lemma 1. If TSMWU(X) is less than the threshold, then X and its supersets
cannot be high-utility itemsets. Further, TSMWU(X) is a tighter upper-bound
compared to TWU(X).

Proof. We first prove that if TSMWU(X) is less than the threshold, then X
and its supersets cannot be high-utility itemsets. For any transaction T and any
X ⊆ X ′ ⊆ T , u(X ′, T ) ≤ u(T, T ) (due to monotonicity) which equal TSMU(T ).
Therefore, u(X ′) ≤ TSMWU(X) and thus, TSMWU(X) < θ implies that
u(X ′) < θ as well.

Now we prove that TSMWU(X) is a tighter upper-bound compared to
TWU(X). Observe that TU(T ) =

∑
x∈T u(x, T ) ≥ u(T, T ) due to subadditiv-

ity. Further the right hand side equals TSMU(T ). Therefore, TSMWU(X) =∑
T :X⊆T TSMU(T ) ≤

∑
T :X⊆T TU(T ) = TWU(X).

Lemma 2. If CU(X) is less than a threshold, any extension X ′ of X in the
processing order of items is not a high-utility itemset. Further, CU(X) is a
tighter upper-bound compared to EU−RU(X).

Proof. We first prove that if CU(X) is less than a threshold, any extension X ′

of X in the processing order of items is not a high-utility itemset. Let X ′ be
some extension of X in the processing order of items; since transactions are also
(implicitly) stored in the same order, X ′ ⊆ X ∪ T/X. The proof of the lemma
follows easily since the set of transactions containing X ′ is always a subset of
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the set of transactions containing X and u(·, T ) is a monotone function which
implies that u(X ′, T ) ≤ u(X ∪ T/X, T ) = CU(X,T ).

Then we prove that CU(X) is a tighter upper-bound compared to EU−RU(X).
From the subadditivity property we get that EU(X,T ) =

∑
x∈X u(x, T ) ≥

u(X,T ). Further RU(X,T ) ≥ u(T/X, T ). We immediately get EU(X,T ) +
RU(X,T ) ≥ u(X,T ) + u(T/X, T ) ≥ u(X ∪ T/X, T ) = CU(X,T ) (second
inequality again uses subadditivity). Therefore it follows that EU−RU(X) ≥
CU(X).
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Fig. 3: Performance evaluation of SM-Miner (our), and SMIM implementations
of EFIM, D2HUP, UP-Growth+ (using ucov). We report the average values of
five executions, wherever appropriate. The utility values are expressed in terms
of the percentage of the utility threshold at which at least one candidate itemset
is reported.

Table 7: Transaction datasets used in our experiments [8]. The networks among
the items were generated in a synthetic manner.

Dataset #Tx Avg. length #Items Type
Chainstore 11,12,949 7.2 46,086 Sparse
Kosarak 9,90,002 8.1 41,270 Sparse
Mushroom 8,124 23 119 Dense
Accidents 3,40,183 33.8 468 Dense
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