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 Example – 1  

• determine the input impedance of a transmission line that is terminated 
in a short circuit, and whose length is: 

𝑎) 𝑙 = λ
8 = 0.125λ                   ⇒                       2𝛽𝑙 = 90° 

b) 𝑙 = 3λ
8 = 0.375λ                  ⇒                       2𝛽𝑙 = 270° 

l 

𝑧𝑖𝑛
′ 𝑧0

′ = 1 𝑧𝐿
′ = 0 

• Solution: 

a) Rotate clockwise 90° from Γ = −1.0 = 𝑒𝑗180°and find 𝑧𝑖𝑛
′.  𝑧𝑖𝑛

′ = 𝑗 

b) Rotate clockwise 270° from Γ = −1.0 = 𝑒𝑗180°and find 𝑧𝑖𝑛
′.  𝑧𝑖𝑛

′ = −𝑗 
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 Example – 2  
• we know that the input impedance of a transmission line length 

𝑙 = 0.134λ  is: 
𝑧𝑖𝑛

′ = 1.0 + 𝑗1.4 

→ determine the impedance of the load that is terminating this line. 

𝑙 = 0.134λ 

𝑧𝑖𝑛
′ = 1.0 + 𝑗1.4 𝑧0

′ = 1 𝑧𝐿
′ =? 

Locate 𝑧𝑖𝑛
′ on the Smith Chart, and then rotate counter clockwise (yes, I 

said counter-clockwise) 2𝛽𝑙 = 96.5°. Essentially, you are removing the 
phase shift associated with the transmission line. When you stop, lift your 
pen and find 𝑧𝐿

′! 

• Solution: 
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 Example – 3  
• A load terminating at transmission line has a normalized impedance 

𝑧𝐿
′ = 2.0 + 𝑗2.0. What should the length 𝑙 of transmission line be in order 

for its input impedance to be: 

a) Purely real (i.e., 𝑋𝑖𝑛 = 0) 
b) Have a real (resistive) part equal to one (i.e., 𝑟𝑖𝑛 = 1.0) 

• Solution: 

a) Find 𝑧𝐿
′ = 2.0 + 𝑗2.0 on your Smith Chart, and then rotate clockwise until 

you “bump into” the contour 𝑥 = 0 (recall this contour lies on the Γ𝑟 − 
axis!). 

• When you reach the 𝑥 = 0 contour—stop! Lift your pen and note that the 
impedance value of this location is purely real (after all, 𝑥 = 0!). 

• Now, measure the rotation angle that was required to move clockwise 
from 𝑧𝐿

′ = 2.0 + 𝑗2.0 to an impedance on the 𝑥 = 0 contour—this angle 
is equal to 2𝛽𝑙! 

You can now solve for 𝑙, or alternatively use the 
electrical length scale surrounding the Smith Chart. 
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 Example – 3 (contd.)  

One more important point—there are two possible solutions! 

𝑧𝑖𝑛
′ = 4.2 + 𝑗0 2𝛽𝑙 = 30° 𝑙 = 0.042λ 

𝑧𝑖𝑛
′ = 0.24 + 𝑗0 2𝛽𝑙 = 210° 𝑙 = 0.292λ 

b) Find 𝑧𝐿
′ = 2.0 + 𝑗2.0 on your Smith Chart, and then rotate clockwise until 

you “bump into” the circle 𝑟 = 1 (recall this circle intersects the center point 
of the Smith Chart!). 

• When you reach the 𝑟 = 1 circle—stop! Lift your pencil and note that 
the impedance value of this location has a real value equal to one (after 
all, 𝑟 = 1!). 

• Now, measure the rotation angle that was required to move clockwise 
from 𝑧𝐿

′ = 2.0 + 𝑗2.0 to an impedance on the 𝑟 = 1 circle—this angle is 
equal to 2𝛽𝑙! 
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 Example – 3 (contd.)  

You can now solve for 𝑙, or alternatively use the 
electrical length scale surrounding the Smith Chart. 

Again, we find that there are two solutions! 

𝑧𝑖𝑛
′ = 1.0 − 𝑗1.6 2𝛽𝑙 = 82° 𝑙 = 0.114λ 

𝑧𝑖𝑛
′ = 1.0 + 𝑗1.6 2𝛽𝑙 = 339° 𝑙 = 0.471λ 

Q: Hey! For part b), the solutions resulted in 𝑧𝑖𝑛
′ = 1.0 − 𝑗1.6 and 𝑧𝑖𝑛

′ =
1.0 + 𝑗1.6 --the imaginary parts are equal but opposite! Is this just a 
coincidence? 
A: Hardly! Remember, the two impedance solutions must result in the same 
magnitude for Γ --for this example we find Γ 𝑧 = 0.625. 
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 Example – 3 (contd.)  

• and therefore: 

2 2
2

2 242

jx x

xjx
  



• Thus, for impedances where 𝑟 = 1 (i.e., 𝑧′ = 1 + 𝑗𝑥): 

' 1 (1 ) 1

' 1 (1 ) 1 2

z jx jx

z jx jx

  
   

   

2

2

2

4

1
x




 

there are two equal by 
opposite solutions! 

2

2

1
x


 

 

Which for this example gives us our solutions 𝑥 = ±1.6. 
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 Admittance Transformation 

• RF/Microwave network, similar to any electrical network, has impedance 
elements in series and parallel  

• Impedance Smith chart is well suited while working with series 
configurations while admittance Smith chart is more useful for parallel 
configurations  

• The impedance Smith chart can easily be used as an admittance calculator 

 

 

1
( )

1
in

z
z z

z






 
 

 

1

1
in

z
y z

z





• Hence, 

 
   

   0 0 0

1/ 1 1

1/ /

in in

in

in in

Y z Z z
y z

Y Z Z z Z z z
   

 
 

 

1

1

j

in j

e z
y z

e z









 


 

It means, to obtain normalized admittance → take the normalized impedance 
and multiply associated reflection coefficient by -1 = e-jπ  → it is equivalent to 
a 180⁰ rotation of the reflection coefficient in complex  Γ-plane  
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 Example – 4  
• Convert the following normalized input impedance 𝑧𝑖𝑛

′ into normalized 
input admittance 𝑦𝑖𝑛

′  using the Smith chart:   

' ( /4)1 1 2 j

inz j e   

First approach: The normalized admittance can be found by direct inversion as: 

' ( /4)

'

1 1 1 1 1

1 1 2 22

j

in

in

y e j
z j

    


Alternative approach: 

• Mark the normalized impedance on Smith chart  
• Identify phase angle and magnitude of the associated reflection coefficient  
• Rotate the reflection coefficient by 180⁰ 
• Identify the x-circle and r-circle intersection of the rotated reflection 

coefficient   
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 Example – 4 (contd.) Normalized 
impedance (zin’) is the 
intersection of r-circle 
of 1 and x-circle of 1 

Rotate this by 180⁰ 
to obtain normalized 

admittance 

Quick investigation 
show that the 

normalized 
impedance (yin’ ) is 
the intersection of 
r-circle of 1/2  and 

x-circle of -1/2 

To denormalize, multiply 
with the inverse of Z0.  

' '

0

0

1
in in inY y Y y

Z
 
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 Example – 5  

 Find the normalized admittance l/8 away from the load 

' 1 2  inz j Given: 

1. Mark the normalized impedance on Smith Chart  
2. Clockwise rotate it by 180⁰ 
3. Identify the normalized impedance and the phase angle of the 

associated reflection coefficient 
4. Clockwise rotate the reflection coefficient (associated with the 

normalized admittance) by 2βl (here l = λ/8) 
5. The new location gives the required normalized admittance  

Steps: 
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 Example – 5 (contd.)  

' 0.2 .4 0iny j 

' 1 2  inz j 
' 0.20 0.40 iny j 

2 4
l

l 
l

 
  

 

Clockwise rotation by 

o/ 8 2 90l ll   

180⁰ clockwise 
rotation 
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 Admittance Smith chart 

• Alternative approach to solve parallel network elements is through 180⁰ 
rotated Smith chart   

• This rotated Smith chart is called admittance Smith chart or Y-Smith chart 
• The corresponding normalized resistances become normalized 

conductances & normalized reactances become normalized suceptances 

0

0 0

R G
r g Z G

Z Y
   

0

0 0

X b
x b Z B

Z Y
   

• The Y-Smith chart preserves: 
• The direction in which the angle of the reflection coefficient is 

measured 
• The direction of rotation (either toward or away from the generator)  
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 Admittance Smith chart (contd.) 

Open Circuit 

Short Circuit 

Negative Values of 
Suceptances 

→Inductive Behavior 

Positive Values of 
Suceptances 
→Capacitive 

Behavior 

Real Component of Admittances 
Decrease from Left to Right 

Angle of reflection 
coefficient 

In this chart, admittance is represented in exactly 
the same manner as the impedance in the Z-

smith Chart  → without 180⁰ rotation 
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 Combined Z- and Y- Smith Charts  

Red: Z – Smith Chart 

Blue: Y – Smith Chart 
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 Example – 6  
• Identify (a) the normalized impedance z’ = 0.5 + j0.5, and (b) the 

normalized admittance value y’ = 1 + j2 in the combined ZY-Smith Chart 
and find the corresponding values of normalized admittance and 
impedance 
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' 0.5 0.5z j 

' 1 2y j 

' 1 1y j 

' 0.2 0.4z j 

 Example – 6 (contd.)  
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 Parallel and Series Connections of RLC Elements 

Parallel Connection of R and L  

• Let us consider the following circuit  

• We can compute the normalized 
admittance as: 

0Z
g

R
 0

L

Z
b

L


Normalized admittance yin’ will 
be in upper part of Y-Smith 

Chart  

' 0( )in

Z
y g j

L



 

For a constant conductance (g) 
circle and variable frequency 
→ admittance will be a curve 
along the conductance circle    
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 Parallel and Series Connections of RLC Elements (contd.) 

Parallel Connection of R and L  

• Frequency dependent admittance behavior → for conductance values g = 
0.3, 0.5, 0.7, and 1 for 500 MHz to 4 GHz range  → for fixed inductance of 
10 nH and Z0 = 50Ω. 

Susceptance 
at 4 GHz 

Susceptance 
at 500 MHz 
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 Parallel and Series Connections of RLC Elements (contd.) 

Parallel Connection of R and C  

• We can compute the normalized 
admittance as: 

0Z
g

R
 0Cb Z C

Normalized admittance yin’ will 
be in lower part of Y-Smith 

Chart  

'

0( )iny g jZ C  

For a constant conductance (g) 
circle and variable frequency 
→ admittance will be a curve 
along the conductance circle    

• Let us consider the following circuit  
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 Parallel and Series Connections of RLC Elements (contd.) 

Parallel Connection of R and C  

• Frequency dependent admittance behavior → for conductance values g = 
0.3, 0.5, 0.7, and 1 for 500 MHz to 4 GHz range  → for fixed capacitance of 
1 pF and Z0 = 50Ω. 

Susceptance 
at 4 GHz 

Susceptance 
at 500 MHz 
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 Parallel and Series Connections of RLC Elements (contd.) 

Series Connection of R and L  

• We can compute the normalized 
impedance as: 

0

R
r

Z


0

L

L
x

Z




Normalized impedance zin’ will 
be in upper part of Z-Smith 

Chart  

'

0

( )in

L
z r j

Z


  

For a constant resistance (r) 
circle and variable frequency 
→ impedance will be a curve 

along the resistance circle    

• Let us consider the following circuit  
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Series Connection of R and L  

• Frequency dependent impedance behavior → for resistance values r = 0.3, 
0.5, 0.7, and 1 for 500 MHz to 4 GHz range  → for fixed inductance of 10 nH 
and Z0 = 50Ω. 

reactance at 
4 GHz 

reactance at 
500 MHz 

 Parallel and Series Connections of RLC Elements (contd.) 
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 Parallel and Series Connections of RLC Elements (contd.) 

Series Connection of R and C  

• We can compute the normalized 
impedance as: 

0

R
r

Z


0

1
Cx

CZ
 

Normalized impedance zin’ will 
be in lower part of Z-Smith 

Chart  

'

0

1
( )inz r j

CZ



 

For a constant resistance (r) 
circle and variable frequency 
→ impedance will be a curve 

along the resistance circle    

• Let us consider the following circuit  
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Series Connection of R and C  

• Frequency dependent impedance behavior → for resistance values r = 0.3, 
0.5, 0.7, and 1 for 500 MHz to 4 GHz range  → for fixed capacitance of 1 pF 
and Z0 = 50Ω. 

reactance at 
4 GHz 

reactance at 
500 MHz 

 Parallel and Series Connections of RLC Elements (contd.) 
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•  Requirement of Matrix Formulation 

directional coupler 
(more than one port) 

Current/Voltage   or  
Incident/Reflected 

Traveling Wave 

Current/Voltage   or  
Incident/Reflected 

Traveling Wave 

Can we characterize this using an impedance or admittance! 
 

NO!! 
 

What is the way?  
Impedance or Admittance Matrix. Right? 

In principle, N by N impedance matrix completely characterizes a linear N-
port device. Effectively, the impedance matrix defines a multi-port device the 

way a ZL describes a single port device (e.g., a load)  

These are called 
networks 

Linear networks can be completely characterized by parameters measured at 
the network ports without knowing the content of the networks. 

High Frequency  Networks 
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Multiport Networks 

• Networks can have any number of ports – however, analysis of a 2-port, 
3-port or 4-port network is sufficient to explain the theory and the 
associated concepts  

 

 

 

 

 

2 Port
NetworkP

o
rt

 1

I1

 

+

-

V1

P
o

rt 2

I2

 

+

-

V2

• The ports can be characterized with many parameters (Z, Y, S, ABDC). Each 
has a specific advantage. 

• For 2-port Network, each parameter set is related to 4 variables: 
o 2 independent variables for excitation 
o 2 dependent variables for response 
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 The Impedance Matrix 
• Let us consider the following 4-port network: 

4-port 
Linear 

Microwave 
Network 

1 1( )V z




3 3( )V z





4 4( )V z

 

2 2( )V z

 

1 1( )I z
3 3( )I z

2 2( )I z

4 4( )I z

Port-1 

Port-4 

Port-3 

Port-2 

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

0Z

0Z0Z

0Z

Either way, the 
network can be fully 

described by its 
impedance matrix 

Each TL has 
specific location 

that defines input 
impedances to 

the network 
The arbitrary locations are known as ports of the network  

This could be a 
simple linear device 
or a large/complex 
linear microwave 

system 

Four identical TLs 
used to connect 

this network to the 
outside world 
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 The Impedance Matrix (contd.) 

• In principle, the current and voltages at the port-n of networks are given as:  

• If we want to say that there exists a non-zero current at port-1 and zero 
current at all other ports then we can write as:  

• In order to define the elements of impedance matrix, there will be need to 
measure/determine the associated voltages and currents at the respective 
ports. Suppose, if we measure/determine current at port-1 and then 
voltage at port-2 then we can define: 

2
21

1

V
Z

I
 Trans-impedance  

( )n n nPV z z ( )n n nPI z z

• However, the simplified formulations are:  

( )n n n nPV V z z  ( )n n n nPI I z z 

1 0I 
2 3 4 0I I I  
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 The Impedance Matrix (contd.) 

• Similarly, the trans-impedance parameters Z31 and Z41 are:  

3
31

1

V
Z

I
 4

41

1

V
Z

I


• We can also define other trans-impedance parameters such as Z34 as the 
ratio between the complex values I4 (the current into port-4) and V3 (the 
voltage at port-3), given that the currents at all other ports (1, 2, and 3) 
are zero.  

• Therefore, the more generic form of trans-impedance is:  

How do we ensure that all but one port current is zero?  

m
mn

n

V
Z

I
 (given that Ik = 0 for all k≠n) 
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 The Impedance Matrix (contd.) 

4-port 
Linear 

Microwave 
Network 

0Z

0Z0Z

0Z

1V





1I

Port-1 

4V 4 0I  Port-4 

3V





3 0I 

Port-3 

2V 

2 0I  Port-2 

• Open the ports where the current needs to be zero  

The ports should be 
opened! not the TL 
connected to the 

ports 

• We can then define the respective trans-impedances as:  

m
mn

n

V
Z

I
 (given that all ports k≠n are open) 
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 The Impedance Matrix (contd.) 

• Once we have defined the trans-impedance terms by opening various 
ports, it is time to formulate the impedance matrix   

• Since the network is linear, the voltage at any port due to all the port 
currents is simply the coherent sum of the voltage at that port due to each 
of the currents 

• For example, the voltage at port-3 is: 

3 34 4 33 3 32 2 31 1V Z I Z I Z I Z I   

1

N

m mn n
n

V Z I




• Therefore we can generalize the voltage for N-port network as: 

V = ZI

• Where I and V are vectors given as: 

 1 2 3 NV , V , V , ...., VV =
T

 1 2 3 NI , I , I , ...., II =
T
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 The Impedance Matrix (contd.) 

• The term Z is matrix given by: 

11 12 1

21

1 2

n

m m mn

Z Z Z

Z

Z Z Z

 
 
 
 
 
 

Z Impedance Matrix 

• The values of elements in the impedance matrix are frequency 
dependents and often it is advisable to describe impedance matrix as: 

11 12 1

21

1 2

( ) ( ) ( )

( )

( ) ( ) ( )

n

m m mn

Z Z Z

Z

Z Z Z

  




  

 
 
 
 
 
 

Z( )


