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• Smith Chart 
• Smith Chart – Geography 
• Smith Chart – Outer Scales  
• Examples  
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Actual 
Smith chart 

 The Smith Chart 
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 The Smith Chart – Geography  

• We have located specific points on the complex impedance plane, such as 
a short circuit or a matched load 

• We’ve also identified contours, such as r =1 or x =1.5 

We can likewise identify 
whole regions  (!) of the 

complex impedance plane, 
providing a bit of a 

geography lesson of the 
complex impedance plane 
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 The Smith Chart – Geography  

r = -1 

r = +1 

r = 0 

For example, 
we can divide 
the complex 
impedance 
plane into 

four regions 
based on 

normalized 
resistance 

value r: 

r ≤ -1 

-1 ≤r ≤ 0 

0≤r ≤ 1 

1≤r 

Re{z’} 

Im{z’} 
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-1 ≤r ≤ 0 

0≤r ≤ 1 

1≤r 

r ≤ -1 

r = 0 

r = +1 

r = -1 

 The Smith Chart – Geography  

Just like 
points and 
contours, 

these regions 
of the 

complex 
impedance 

plane can be 
mapped onto 
the complex 

gamma 
plane! 
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x ≤ -1 

  -1 ≤x ≤0 

0 ≤x ≤1 

x ≥1 

 The Smith Chart – Geography  

Instead of 
dividing the 

complex 
impedance 
plane into 

regions 
based on 

normalized 
resistance r, 

we could 
divide it 

based on 
normalized 
reactance 

x: 

x =0 

x =1 

x = -1 

r =0 
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0 ≤ x ≤1 

-1 ≤ x ≤0 

 The Smith Chart – Geography  

These 
four 

regions 
can 

likewise 
be 

mapped 
onto the 
complex 
gamma 
plane: 

x =0 

x ≤ -1 

x = -1 

x ≥1 

x =1 

r =0 
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r<1 

0< x < 1 

r<1 

-1 < x < 0 

r<1 

x >1 

r >1 

x >1 

r >1 

x < -1 

r <1 

x < -1 

r >1 

0< x < 1 
-1< x < 0 

r>1 

 The Smith Chart – Geography  

Eight of these sixteen 
regions lie in the valid region 

(i.e., r > 0), while the other 
eight lie entirely in the 

invalid region. 

Note the four resistance regions and the 
four reactance regions combine to from 

16 separate regions on the complex 
impedance and complex gamma planes! 

Make sure you can locate the eight impedance regions on a Smith 
Chart—this understanding of Smith Chart geography will help you 

understand your design and analysis results! 
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The Smith Chart – Important Points 
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 The Smith Chart (contd.) 

0 

      ( )
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2

2
z

 
 



  
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In general: 

 The Smith Chart (contd.) 

  2

0

j zz e   

/ 2z 

We go completely around 
the Smith chart when 

Note: the Smith chart already has wavelength scales on the 
perimeter for your convenience. 
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 The Smith Chart (contd.) 

• Go half-way around the Smith chart: 

/ 4l  
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 The Smith Chart – Outer Scale 

Note that around the outside of 
the Smith Chart there is a scale 
indicating the phase angle, from 
180⁰ to -180⁰.  
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 The Smith Chart  – Outer Scale (contd.) 

• Recall however, for a terminated transmission line, the reflection 
coefficient function is: 

  0(2 )2

0 0

j zj zz e e
       

• Thus, the phase of the reflection coefficient function depends on 
transmission line position z as: 

0( ) 2z z     0

2
2 z






 
  

 
04

z
 



 
  

 

• As a result, a change in line position z (i.e., Δz ) results in a change in 
reflection coefficient phase θΓ (i.e., ∆θΓ): 

4
z

 




 
   

 
• E.g., a change of position equal to one-quarter wavelength Δz =λ/4 

results in a phase change of π radians—we rotate half-way around the 
complex Γ-plane (otherwise known as the Smith Chart). 
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• The Smith Chart then has a second scale (besides θΓ) that surrounds it 
—one that relates TL position in wavelengths (∆z/λ) to the θΓ: 

• Since the phase scale on the Smith 
Chart extends from -180⁰ < θΓ  < 180⁰ 
(i.e., -π < θΓ <π  ), this electrical 
length scale extends from: 

0 < z/λ <0.5 

• Note, for this mapping the reflection 
coefficient phase at location z = 0 is 
θΓ = −π. Therefore, θ0 =−π , and we 
find that: 

0

0 0 0 0

j je e
         

S.C. 
Point 

 The Smith Chart  – Outer Scale (contd.) 
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• Example: say you’re at some 
location z = z1 along a TL. The value 
of the reflection coefficient at that 
point happens to be: 

65

1( ) 0.685 jz z e   

• Finding the phase angle of θΓ = -65⁰ 
on the outer scale of the Smith 
Chart, we note that the 
corresponding electrical length 
value is: 

0.160

Note: this tells us nothing about the 
location z  = z1. This does not mean 

that z1 =0.160λ , for example! 

 The Smith Chart  – Outer Scale (contd.) 
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• Now, say we move a short distance Δz 
(i.e., a distance less than λ/2) along the 
transmission line, to a new location 

denoted as  z = z2 and find that the 
reflection coefficient has a value of: 

74

2( ) 0.685 jz z e   

• Now finding the phase angle of θΓ = 74⁰ on 
the outer scale of the Smith Chart, we note 
that the corresponding electrical length 
value is: 

0.353

Note: this tells us nothing about the 
location z = z2. This does not mean that z1 

=0.353λ , for example! 

 The Smith Chart  – Outer Scale (contd.) 
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Q: So what do the values 0.160λ and 0.353λ tell us? 

A: They allow us to determine the distance between points z2 and z1 on 
the transmission line. 

2 1 0.353 0.160 0.193z z z        

The transmission line location z2 is a distance of 0.193λ from location z1! 

Q: But, say the reflection coefficient at some point z3 has a phase value of 
θΓ = -112⁰, which maps to a value of                on the outer scale of Smith 
chart. It gives                                                               . What does the –ve 
value mean?  

0.094

3 1 0.094 0.160 0.066z z z         

 The Smith Chart  – Outer Scale (contd.) 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

• In the first example, ∆z > 0 , meaning z2 > z1 → the location z2 is closer to 
the load  than is location z1 

• the positive value ∆z maps to a phase change of 74⁰ - (-65⁰) = 139⁰ 
• In other words, as we move toward the load from location z1 to 

location z2, we rotate counter-clockwise around the Smith chart  
• In the second example, ∆z < 0 , meaning z3 < z1 → the location z3 is closer 

to the beginning of the TL (i.e., farther from the load)  than is location z1 

• the negative value ∆z maps to a phase change of -112⁰ - (-65⁰) = -47⁰ 
• In other words, as we move away from the load (i.e, towards the 

generator) from location z1 to location z3, we rotate clockwise 
around the Smith chart  

 

 The Smith Chart  – Outer Scale (contd.) 
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0.193z   
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 The Smith Chart – Outer Scale (contd.) 
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Q: Wait! I just used a Smith Chart to analyze a TL 
problem in the manner you have just explained. At 
one point on my transmission line the phase of the 
reflection coefficient is θΓ = +170⁰, which is 
denoted as 0.486λ on the “wavelengths toward 
load” scale. 

I then moved a short distance along the line toward 
the load, and found that the reflection coefficient 
phase was θΓ = −144ο, which is denoted as 0.050λ 
on the “wavelengths toward load” scale. 

According to your “instruction”, the distance 
between these two points is: 

0.050 0.486 0.436z       

A large negative value! This says that I moved nearly a half wavelength away 
from the load, but I know that I moved just a short distance toward the load! 

What happened? 

 The Smith Chart  – Outer Scale (contd.) 
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The electrical 
length scales on 
the Smith chart 
begin and end 
where 180    1( )z z 

2( )z z 

0.436z   

In your example, 
when rotating 
counter-
clockwise (i.e., 
moving toward 
the load) you 
passed by this 
transition. This 
makes the 
calculation of Δz 
a bit more 
problematic. 

 The Smith Chart  – Outer Scale (contd.) 
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• As you rotate counter-clockwise around the Smith Chart, the “wavelengths 
toward load” scale increases in value, until it reaches a maximum value of 0.5λ 
(at θΓ = ± π)  

• At that point, the scale “resets” to its minimum value of zero 
• Thus, in such a situation, we must divide the problem into two steps: 
• Step 1: Determine the electrical length from the initial point to the “end” of the 

scale at 0.5λ 
• Step 2: Determine the electrical distance from the “beginning” of the scale (i.e., 

0) and the second location on the transmission line 
• Add the results of steps 1 and 2, and you have your answer! 

For example, let’s look at the case that originally gave us the erroneous result. The 
distance from the initial location to the end of the scale is: 

0.500 0.486 0.014    

And the distance from the beginning of the scale to the second point is: 

0.050 0.000 0.050    

Thus the distance between the two points is: 0.014 0.050 0.064     

 The Smith Chart  – Outer Scale (contd.) 
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1( )z z 

2( )z z 

0.014

0.050

 The Smith Chart  – Outer Scale (contd.) 
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• The ∆z towards generator could also be mentioned as a +ve term if we 
consider the upper metric in the “Outer Scale”   

Clockwise Rotation  
• gives +ve distance when moving 

towards generator 
• gives –ve distance when moving 

towards load 

Counter-clockwise Rotation  
• gives -ve distance when moving 

towards generator 
• gives +ve distance when moving 

towards load 

 The Smith Chart  – Outer Scale (contd.) 
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 Example-1 

0=0.5 45  

Given: 

What is load 
impedance, ZL?  

0 50Z  

- Locate Γ0 on the smith chart 
- Read the normalized impedance 
- Then multiply the identified 

normalized impedance by Z0  

Steps: 

1.35 1.35z j  

 50 * 1.35 1.35 67.5 67.5LZ j j      
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 Z = 15 25L j 

Given: 

What is load 
impedance, Γ0?  

0 50Z  

 Example-2 

- Normalize the given ZL  

- Mark the normalized impedance on 
Smith chart 

- Read the value of Γ0 from Smith 
chart    

Steps: 

15 25
0.3 0.5

50

j
z j

 
   



What is Γ0 here? 
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 Example-3 
• Using Smith chart, determine the voltage reflection coefficient at the 

load and the input impedance of the following TL 

Mark this on Smith chart  '

0 0

( 0)
0 0.8 0.6L

L

ZZ d
z d j

Z Z


    1.   

2. What is Γ0? Read this directly from Smith chart.  

0 0.33 
0 90  
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 Example-3 (contd.) 

3. For Zin, rotate the load reflection 
coefficient point clockwise (towards 
generator) by d = 0.625λ (it is full 
rotation and then additional rotation 
of 0.125λ)  → Then read normalized 
input impedance from Smith chart  

' 2 0inz j 

Therefore the 
input 

impedance of 
the TL is:  

'50* 100in inZ z  
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 Example – 4 

• A load impedance ZL = (30 + j60)Ω is connected to a 50Ω TL of 2cm length 
and operated at 2 GHz. Use the reflection coefficient concept and find the 
input impedance Zin under the assumption that the phase velocity is 50% 
of the speed of light  

• We first determine the load reflection coefficient: 

71.560
0

0

30 60 50
0.2 0.6 .40

30 60 50

jL

L

Z Z j
j e

Z Z j

  
     

  



• Next we compute Γ (l = 2cm) based on the fact that: 

12 2 2
83.77

0.5p

f f
m

v c

   
  




2 192l   How? 

First Approach 
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 Example – 4 (contd.)  

• Therefore, reflection coefficient at the other end of the TL is:  

2 120.4

0 .40 0.32 0.55j le e j
       

• The corresponding input impedance is:   

0

1
(14.7 26.7)

1
inZ Z R jX j

 
     



Using Smith chart 

Second Approach 
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 Example – 4 (contd.)  

Using Smith Chart 

1. The normalized load impedance is: 

' (30 60) / 50 0.6 1.2Lz j j    

2. This point on the Smith chart can be identified as the intersection of the 
circle of constant resistance r = 0.6 with the circle of constant reactance 
x = 1.2 

3. The straight line  connecting the origin to normalized load impedance 

determines the load reflection coefficient Γ0. The associated angle is 
recorded with respect to the positive real axis. From Smith chart we can 
find that |Γ0 | = 0.6325 and phase of Γ0 = 71.56⁰.  

4. Rotate this by 2βl = 192⁰ to obtain Γin   
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 Example – 4 (contd.)  

|Γ0 | = 0.6325  

phase ( Γ0 )= 71.56⁰ 
'

Lz
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'

Lzphase ( Γ0 )= 71.56⁰ 

|Γ0 | = 0.6325  

in

Rotate by 
192⁰ 

This point 
uniquely 

identifies the 
associated 
normalized 

input impedance 
zin’= 0.3 – j0.53 

 Example – 4 (contd.)  
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 Example – 4 (contd.)  

5. The Γ𝑖𝑛 uniquely identifies the associated normalized input impedance zin’= 

0.3 – j0.53 

6. The preceding normalized impedance can be converted back to actual input 
impedance values by multiplying it by Z0 = 50Ω, resulting in the final 
solution Zin = (15 – j26.5)Ω 

The exact value of Zin computed earlier was (14.7 – j26.7)Ω. The 
small anomaly is expected considering the approximate 

processing of graphical data in Smith chart   
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 Special Transformation Conditions in Smith Chart 
• The rotation angle of the normalized TL impedance around the Smith 

chart is regulated by the length of TL or operating frequency  
• Thus, both capacitive and inductive impedances can be generated based 

on the length of TL and the termination conditions at a given frequency  
• The open- and short-circuit terminations are very popular in generating 

inductive and capacitive elements  

Open Circuit Transformations 

• For an arbitrary terminated line the input impedance is: 

0
0

0

tan( )
( )

tan( )

L
in

L

Z jZ z
Z z Z

Z jZ z










For an open circuit 
0( ) cot( )inZ z jZ z 

• For a capacitive impedance of XC = 1/jωC we get:  

'

1

0

1 1
. cot( )inz j z

j C Z



   1

1

0

1 1
cotz n

CZ


 


  

   
  
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• For an inductive impedance of XL = jωL we get:  

'

2

0

1
cot( )inj L z j z

Z
   

 Special Transformation Conditions in Smith Chart (contd.) 
Open Circuit Transformations 

Short Circuit Transformations 

• For an arbitrary terminated line the input impedance is: 

0
0

0

tan( )
( )

tan( )

L
in

L

Z jZ z
Z z Z

Z jZ z










For a short circuit 
0( ) tan( )inZ z jZ z

• For a capacitive impedance of XC = 1/jωC we get:  

'

1

0

1 1
. tan( )inz j z

j C Z



 

• For an inductive impedance of XL = jωL we get:  

'

2

0

1
tan( )inj L z j z

Z
  

1

2

0

1
cot

L
z n

Z


 




  

    
  

1

1

0

1 1
tanz n

CZ
 

 


  

    
  

1

2

0

1
tan

L
z n

Z







  

   
  
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 Example – 5   
• For an open-circuited 50Ω  TL operated at 3GHz and with a phase velocity of 77% 

of speed of light, find the line lengths to create a 2pF capacitor and 5.3nH 
inductor. Use Smith Chart for solving this problem.  

 For the given phase velocity, the propagation constant is: 

12 2
81.6

0.77p

f f
m

v c

 
   

1

1

0

1 1
cotz n

CZ


 


  

   
   

 We know that an open-circuit can create a capacitor as per following equation: 
181.6m 

3f GHz

2C pF 1 13.27 38.5z n 

 We know that an open-circuit can create an inductor as per following equation: 
181.6m 

3f GHz

5.3L nH 2 32.81 38.5z n 
1

2

0

1
cot

L
z n

Z


 




  

    
   
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 Example – 5  (contd.)  

Using Smith Chart 

• At 3GHz, the reactance of a 2pF capacitor is: 
1

26.5CX j
j C

   

• Therefore, the normalized capacitive reactance is: 
'

0

0.53C
c

X
z j

Z
  

• At 3GHz, the reactance of a 5.3nH inductor is: 100LX j L j  

• Therefore, the normalized inductive reactance is: 
'

0

2L
L

X
z j

Z
 

• The wavelength is: 77
pv

mm
f

  
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 Example – 5 (contd.)  

Open Circuit 

-j0.53 

j2 

Towards 
Generator 

From open-circuit to –j0.53: 
distance l1 is 0.172λ  
→ l1 equals 13.24mm 

From open-circuit to j2: 
distance l2 is 0.426λ  
→ l2 equals 32.8mm 
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 Example – 6  

Short Circuit 

-j0.53 

j2 

Towards 
Generator 

From short-circuit to –j0.53: 
distance l1 is 0.422λ  

From short-circuit to j2: 
distance l2 is 0.176λ  

• Same problem but for 
a short-circuited line 
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 Special Transformation Conditions in Smith Chart (contd.) 

Summary 

• It is apparent that both open-circuit and short-circuit TLs can achieve 
desired capacitance or inductance. Which configuration is more useful?  

• At high frequencies, its difficult to maintain perfect open-circuit 
conditions → due to changing temperatures, humidity, and  other 
parameters of the medium surrounding the open TL → short-circuit TLs 
are, therefore, more popular  

• However, short-circuit TL is problematic at higher frequencies → through-
hole short connections create parasitic inductances (why? → HW # 0)  

• Sometimes board size regulates the choice of open or short TL → for 
example, an open-circuit TL will always require smaller TL segment for 
realizing any specified capacitance as compared to a short-circuit TL 
segment   
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maxVminV
0Γ

loadV 45
'ZL

0 =0.707 45  Given: 

'Z 1 2  L j 

45
16




Use the Smith chart to plot the voltage 
magnitude, find the SWR, and the normalized 

load admittance 

 Example – 7  
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   1.707

0.293

load

5

16



V(z)

V 

16


z

1V  

 Example – 7 (contd.)  
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What is Zin at 50 MHZ for the following circuit?   

 50Zo

 50j50ZLnS78.6

?Zin 

0 0.445 64   

' 50 50
1.0 1.0

50
L

j
z j

 
  


1. Normalized Impedance: 

2. Mark the normalized impedance on the Smith chart  

3. Read reflection coefficient from Smith Chart: 

4. Transform the load reflection coefficient to the input: 

2 2

0 0

j l j

in e e      

 2442
0.445 180in   

Rotate clockwise (towards generator)   

Read the normalized 
input impedance in the 

Smith chart  

' 0.38 0.0inz j 

 Example – 8  
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 2442

' 1.0 1.0Lz j 

' 0.38 0.0inz j 

 Example – 8 (contd.)  


