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Lecture – 6                                          Date: 21.08.2014 
 
• Lossy Transmission Line  
• Introduction to Smith Chart: The complex  Γ– plane 
• Transformations on the complex  Γ– plane 
• Mapping Z to Γ 

• Smith Chart – Construction  
• Smith Chart – Geography  
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Lossy Transmission Lines  

• Recall that we have been approximating low-loss transmission lines as 
lossless (R =G = 0): 

0  LC 

• But, long low-loss lines require a better approximation: 

0

0
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Z


 
  

 
LC 

• Now, if we have really long transmission lines (e.g., long distance 
communications), we can apply no approximations at all: 

 Re   Im 

For these very long transmission lines, we find that 𝛽 = 𝐼𝑚 𝛾  is 
a function of signal frequency ω . This results in an extremely 

serious problem—signal dispersion. 
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Lossy Transmission Lines (contd.)  
• Recall that the phase velocity 𝒗𝒑  (i.e., propagation 

velocity) of a wave in a transmission line is: 
pv






     Im Im R j L G j C      

Thus, for a lossy line, the phase velocity 𝒗𝒑 is a function of 

frequency ω (i.e., 𝒗𝒑(𝝎))—this is bad! 

• Any signal that carries significant information must has some non-zero 
bandwidth. In other words, the signal energy (as well as the information it 
carries) is spread across many frequencies. 

• If the different frequencies that comprise a signal travel at different 
velocities, that signal will arrive at the end of a transmission line distorted. 
We call this phenomenon signal dispersion. 

• Recall for lossless lines, however, the phase velocity is independent of 
frequency—no dispersion will occur! 
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Lossy Transmission Lines (contd.)  

• For lossless line: 1
pv

LC
 however, a perfectly lossless line is 

impossible, but we find phase 
velocity is approximately constant 

if the line is low-loss. 

Therefore, dispersion distortion on low-loss lines is 
most often not a problem. 

Q: You say “most often” not a 
problem—that phrase seems to 
imply that dispersion sometimes 

is a problem! 
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Lossy Transmission Lines (contd.)  
A: Even for low-loss transmission lines, dispersion can be a problem if the 
lines are very long—just a small difference in phase velocity can result in 
significant differences in propagation delay if the line is very long! 

• Modern examples of long transmission lines include phone lines and cable 
TV. However, the original long transmission line problem occurred with the 
telegraph, a device invented and implemented in the 19th  century. 

• Early telegraph “engineers” discovered that if they made their telegraph lines 
too long, the dots and dashes characterizing Morse code turned into a 
muddled, indecipherable mess. Although they did not realize it, they had 
fallen victim to the heinous effects of dispersion! 

• Thus, to send messages over long distances, they were forced to implement 
a series of intermediate “repeater” stations, wherein a human operator 
received and then retransmitted a message on to the next station. This 
really slowed things down! 
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Lossy Transmission Lines (contd.)  

Q: Is there any way to prevent 
dispersion from occurring? 

A: You bet! Oliver Heaviside figured out 
how in the 19th  Century! 

• Heaviside found that a transmission line would be 
distortionless (i.e., no dispersion) if the line parameters 
exhibited the following ratio: 

R G

L C


• Let’s see why this works. Note the complex propagation constant  𝛾 can be 
expressed as: 

     / /R j L G j C LC R L j G C j         
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Lossy Transmission Lines (contd.)  

• Then IF: 
R G

L C


• we find: 

    / / /
C

LC R L j R L j R L j LC R j LC
L

          

• Thus:  Re
C

R
L

    Im LC   

• The propagation velocity of the wave is thus: 
1

pv
LC




 

The propagation velocity is independent of frequency! This lossy 
transmission line is not dispersive! 
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Lossy Transmission Lines (contd.)  

Q: Right. All the transmission lines I use 
have the property that  𝑅 𝐿 > 𝐺

𝐶 . I’ve 
never found a transmission line with this 

ideal property  𝑅 𝐿 = 𝐺
𝐶 ! 

A: It is true that typically 𝑅 𝐿 > 𝐺
𝐶 . But, we can reduce the ratio 𝑅 𝐿 (until it 

is equal to 𝐺
𝐶 ) by adding series inductors periodically along the 

transmission line. 

This was Heaviside’s solution—and it worked! Long distance 
transmission lines were made possible. 

Q: Why don’t we increase G instead? 
 

A:  
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 Smith Chart  
• Smith chart – what?  
• The Smith chart is a very convenient graphical tool for analyzing TLs 

studying their behavior. 
• It is mapping of impedance in standard complex plane into a suitable 

complex reflection coefficient plane.  
• It provides graphical display of reflection coefficients.  
• The impedances can be directly determined from the graphical display (ie, 

from Smith chart)  
• Furthermore, Smith charts facilitate the analysis and design of 

complicated circuit configurations.   



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 The Complex Γ- Plane 
• Let us first display the impedance Z on complex  Z-plane   

30 40Z j  

60 30Z j  

Invalid 
Region 

Invalid 
Region 

Re (Z) 

Im (Z) 

• Note that each dimension is defined by a single real line: the horizontal 
line (axis) indicates the real component of Z, and the vertical line (axis) 
indicates the imaginary component of Z → Intersection of these lines 
indicate the complex impedance  
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 The Complex Γ- Plane  (contd.) 

• How do we plot an open circuit (i.e, 𝑍 = ∞), short circuit (i.e, 𝑍 = 0), and 
matching condition (i.e, 𝑍 = 𝑍0 = 50Ω ) on the complex  Z-plane   

Re (Z) 

Im (Z) 

Z = Z0 

Z = 0 

𝒁 = ∞ 
somewhere over there!! 

It is apparent that complex   𝒁 − 𝒑𝒍𝒂𝒏𝒆 is not very useful  
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 The Complex Γ-Plane (contd.) 

• The limitations of complex Z-plane can be overcome by complex  Γ-plane 
• We know Z ↔ Γ (i.e, if you know one, you know the other).  
• We can therefore define a complex Γ-plane in the same manner that we 

defined a complex Z-plane.  

• Let us revisit the reflection coefficient in complex form: 

Real part of Γ0 

Imaginary part of Γ0 

• In the special terminated conditions of pure short-circuit and pure open-
circuit conditions the corresponding Γ0 are -1 and +1 located on the real 
axis in the complex Γ-plane. 

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


       



Where, 1 0
0

0
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   
  

 
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 The Complex Γ-Plane (contd.) 

Γ0r 

Γ0i 

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


       



Representation of reflection 
coefficient in polar form 

0

0

0 0 

Observations: 
• A radial line is formed by the locus 

of all points whose phase is θ0 

• A circle is formed by the locus of all 
points whose magnitude is |Γ0| 

It means the reflection coefficient has a valid region 
that encompasses all the four quadrants in the complex 

Γ-plane within the -1 to +1 bounded region 

In complex Z-plane the valid region was unbounded on the right half of the 
plane → as a result many important impedances could not be plotted 
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 The Complex Γ-Plane (contd.) 

Γ0r 

Γ0i 

• Validity Region 

Invalid Region 
|Γ0| > 1 

Valid Region 
|Γ0| < 1 

|Γ0| = 1 

1 

-1 

-1 

1 
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 The Complex Γ-Plane (contd.) 
• We can plot all the valid impedances (i.e R > 0) within this bounded region. 

Γ0r 

Γ0i 

(short) 
0 1.0je    

(matched) 
0 0 

(open) 

0

0 1.0je  

|Γ0| = 1 
Z = jX → purely reactive 
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• A TL with a characteristic impedance of Z0 = 50Ω is terminated into 
following load impedances:  

 (a) ZL = 0 (Short Circuit) 
 (b) ZL → ∞ (Open Circuit) 
 (c) ZL = 50Ω 
 (d) ZL = (16.67 – j16.67)Ω 
 (e) ZL = (50 + j50)Ω 
Display the respective reflection coefficients in complex Γ-plane  

 Example – 1  

• Solution: We know the 
relationship between Z and Γ: 

  
00

0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


       



(a) Γ0 = -1 (Short Circuit) 
(b) Γ0 = 1 (Open Circuit) 
(c) Γ0 = 0 (Matched) 
(d) Γ0 = 0.54<221ο 
(e) Γ0 = 0.83<34ο  
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(a) Short Circuit (b)Open Circuit 

(c) Matched 

(e) 

(d) 

 Example – 1 (contd.)  
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 Transformations on the Complex Γ-Plane  

• At z =0, the reflection coefficient is called load reflection coefficient (Γ0) → 
this actually describes the mismatch between the load impedance (ZL) and 
the characteristic impedance (𝑍0) of the TL. 

• The move away from the load (or towards the input/source) in the 
negative z-direction (clockwise rotation) requires multiplication of Γ0 by a 
factor exp (+𝑗2𝛽𝑧) in order to explicitly define the mismatch at location ‘z’ 
known as Γ(z).  

• This transformation of Γ0  to Γ(z) is the key ingredient in Smith chart as a 
graphical design/display tool.  

• The usefulness of the complex Γ-plane will be evident when we consider 
the terminated, lossless TL again.  

β, Z0 β, Z0 
ZL 

l 

in

0



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Transformations on the Complex Γ-Plane (contd.) 
• Graphical interpretation of  2

0( ) j zz e  

0

( ) 1z 

Γ0r 

Γ0i 

0( 0)z  

0

( ) inz l   

0 2 l 
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 Transformations on the Complex Γ-Plane (contd.) 

• It is clear from the graphical display that addition of a length of TL to a 
load Γ0 modifies the phase θ0 but not the magnitude Γ0, we trace a 
circular arc as we parametrically plot Γ (z)! This arc has a radius Γ0 and 
an arc angle 2βl radians. 

• We can therefore easily solve many interesting TL problems 
graphically—using the complex Γ-plane! For example, say we wish to 
determine Γin for a transmission line length l = λ/8 and terminated with a 
short circuit. 

in β, Z0 β, Z0 
Γ0= -1  

l = λ/8 

z = -l z = 0 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Transformations on the Complex Γ-Plane (contd.) 
• The reflection coefficient of a short circuit is Γ0 = −1 =1*e(jπ), and 

therefore we begin at the leftmost point on the complex Γ-plane. We 
then move along a circular arc −2βl = −2(π/4) = −π/2 radians (i.e., rotate 
clockwise 90⁰). 

• When we stop, we find we 
are at the point for Γin; in 
this case Γin = 1*e(jπ/2) 

Γ0r 

Γ0i 

( )z

/21* j

in e  

0 1* je  
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 Transformations on the Complex Γ-Plane (contd.) 

• Now let us consider the same problem, only with a new transmission line 
length l = λ/4. 

• Now we rotate clockwise 2βl = π radians.  

( )z

• In this case the input 
reflection coefficient is 
Γin = 1*e(j0) = 1 

• The reflection coefficient 
of an open circuit  

The short circuit load has been 
transformed into an open circuit 

with a quarter-wave TL 

Γ0r 

Γ0i 

0 1* je  

01* j

in e 
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 Transformations on the Complex Γ-Plane (contd.) 

• We also know that a quarter-wave TL transforms an open-circuit into 
short-circuit → graphically it can be shown as:  

Γ0r 

Γ0i 

1* j

in e  

0

0 1* je ( )z
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 Transformations on the Complex Γ-Plane (contd.) 
• Now let us consider the same problem again, only with a new 

transmission line length l = λ/2. 
• Now we rotate clockwise 2βl = 2π radians (360⁰) 

( )z
0

0 1* je 

( ) 1z 

• We came clear around to 
where we started! 

• Thus we conclude that Γin = Γ0  

It comes from the fact that 
half-wavelength TL is a 

special case, where we know 
that Zin = ZL → eventually it 

leads to Γin = Γ0  

Γ0r 

Γ0i 

1* j

in e  
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 Transformations on the Complex Γ-Plane (contd.) 
• Now let us consider the opposite problem. Say we know that the input 

reflection coefficient at the beginning of a TL with length l = λ/8 is: 
Γ𝒊𝒏 = 𝟎. 𝟓𝒆 𝒋𝟔𝟎° . 

• What is  the reflection coefficient at the load?  
• In this case we rotate counter-clockwise along a circular arc (radius =0.5) 

by an amount  2βl = π/2 radians (90⁰). 
• In essence, we are removing the phase associated with the TL.  

Γ0r 

Γ0i 

600.5* j

in e 

in

150

0 0.5* je 

0 2in l   

( ) 1z 

The reflection coefficient at 
the load is: 

150

0 0.5* je 

0.5
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Mapping Z to Γ 
• We know that the line impedance and reflection coefficient are equivalent 

– either one can be expressed in terms of the other.  

0

0

( )
( )

( )

Z z Z
z

Z z Z


 

 0

1 ( )
( )

1 ( )

z
Z z Z

z

 
  

 

• The above expressions depend on the characteristic impedance Z0 of the 
TL. In order to generalize the relationship, we first define a normalized 
impedance value z’ as:   

0 0 0

( ) ( ) ( )
( ) ( ) ( )

Z z R z X z
z z j r z jx z

Z Z Z
     

therefore  

 
00

0 0

( ) / 1( ) ( ) 1
( )

( ) ( ) / 1 ( ) 1

Z z ZZ z Z z z
z

Z z Z Z z Z z z

  
   

  

1 ( )
( )

1 ( )

z
z z

z


 


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Mapping Z to Γ (contd.) 

 

 
00

0 0

( ) / 1( ) ( ) 1
( )

( ) ( ) / 1 ( ) 1

Z z ZZ z Z z z
z

Z z Z Z z Z z z

  
   

  

1 ( )
( )

1 ( )

z
z z

z


 



These equations describe a mapping between z’ and Γ. That means 
that each and every normalized impedance value likewise corresponds 

to one specific point on the complex Γ-plane 

• For example, we wish to indicate the values of some common normalized 
impedances (shown below) on the complex Γ-plane and vice-versa.  

Case Z z’ Γ 

1 ∞ ∞ 1 

2 0 0 -1 

3 Z0 1 0 

4 jZ0 j j 

5 -jZ0 -j -j 
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Mapping Z to Γ (contd.) 

Γr 

Γi 

Invalid Region 
|Γ| > 1 

|Γ| = 1 

Γ = j 
(z’ = j) 

Γ = -1 
(z’ = 0) 

Γ = -j 
(z’ = -j) 

Γ = 0 
(z’ = 1) 

Γ = 1 (z’ =∞) 

• The five normalized impedances map five specific points on the complex   
Γ-plane.  
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Mapping Z to Γ (contd.) 

Invalid Region 

r 

x 

(Γ = 0) 
z’ = 1 

(Γ = -1) 
z’ = 0 

(Γ = -j) 
z’ = -j 

(Γ = j) 
z’ = j 

• The five complex-Γ map onto five points on the normalized Z-plane   

• It is apparent that the normalized impedances can be mapped on complex 
Γ-plane and vice versa 

• It gives us a clue that whole impedance contours (i.e, set of points) can be 
mapped to complex  Γ-plane  
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Mapping Z to Γ (contd.) 
Case-I: Z = R → impedance is purely real  

0z r j  
1

1

r

r


 



1

1
r

r

r


 


0i 

Γr 

Γi 

Invalid Region 
|Γ0| > 1 

(Γi = 0) 
x = 0 

In
valid

 R
e

gio
n

 

r 

x 

(Γi = 0) 
x = 0 

r 
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Mapping Z to Γ (contd.) 
Case-II: Z = jX → impedance is purely imaginary 

0z jx  
Purely reactive impedance results in a 

reflection coefficient with unity magnitude 
1 

Γr 

Γi 

|Γ|= 1 
r = 0 

Invalid Region 
|Γ0| > 1 

In
valid

 R
e

gio
n

 
x j 

x j 

r 

x 

These cases (I and II) demonstrate that 
effectively any complex impedance can be 

mapped to complex Γ-plane → Smith Chart 

|Γ|= 1 
r = 0 
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The Smith Chart  

In summary 
• A vertical line r = 0 on complex Z-plane maps to a circle |Γ| = 1 on the 

complex Γ-plane 
• A horizontal line x = 0 on complex Z-plane maps to the line Γi = 0 on 

the complex Γ-plane 

Very fascinating in an academic sense, but are not relevant considering 
that actual values of impedance generally have both a real and imaginary 

component  

Mappings of more general impedance contours (e.g, 
r = 0.5 and x = - 1.5 corresponding to normalized 

impedance 0. 5 – j1.5) can also be mapped  
Smith Chart 
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The Smith Chart (contd.)  

• Therefore, the normalized impedance can be formulated as:  

• Let us revisit the generalized reflection coefficient formulation: 

0 2

0( )
j j z

r iz e e j
       

0

1( ) 1 ( )
( )

1 ( ) 1

r i

r i

jZ z z
z z r jx

Z z j

  
     

   

• The separation of real and imaginary part results in: 

   1 1r i rr x    

 1 r i ix r    

Real 

Imaginary 

     1 1r i r ij r jx j        
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The Smith Chart (contd.)  

• Simplification and then elimination of reactance (x) from these two give:  

Multiplying through by  1 r

      
2 21- r + 1+ r = 1+ 1-r i r r   

   i
r i r

r

Γ
1-Γ r +Γ 1+ r =1+Γ

1-Γ

  
  
  

   
2 2 21 1 1r i rr r    

     2 21 2 1 1 0r r ir r r r        
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The Smith Chart (contd.)  

   2 21 2 1 1r r ir r r r       

2 2 1
2

1 1
r r i

r r

r r

 
     

  

2 2

2

r i

r 1- r r
Γ - +Γ = +

1+ r 1+ r 1+ r

   
   
   

    

 

22

2

2

1 1

1 1
r i

r r rr

r r

   
    

  
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The Smith Chart (contd.)  

 

2

2

2

1

1 1
r i

r

r r

 
    

  
 

   
2 2 2

, :

r i

l

p q

p q l     

Similar equation to circle of radius  , 

centered at 

This is equation of a circle 

 , ,0
1

r
p q

r

 
  

 
center: radius: 

1

1
l

r



and 

Observations: 

• For r =0: p2 + q2 = 1; (p, q) = (0, 0) and l = 1 
• For r =1/2: (p - 1/3)2 + q2 = (2/3)2; (p, q) = (1/3, 0) and l = 2/3 
• For r =1: (p - 1/2)2 + q2 = (1/2)2; (p, q) = (1/2, 0) and l = 1/2 
• For r =3: (p – 3/4)2 + q2 = (1/4)2; (p, q) = (3/4, 0) and l = 1/4 

Circles of 
distinct 

centre and 
radii 
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0r 

r

i
1r 

3r 

1/ 2r 
r 

1 

1p l 

Note: 

Therefore the resistance circles on the complex Γ-plane are:  

Because of 
(q – 0)2 

term, all the 
constant 

resistance (r) 
circles have 
centers on 

this line 

The Smith Chart (contd.)  

This approach enables mapping of any 
realizable vertical line (representing r) in the 

complex Γ-plane 
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• For the mapping of horizontal lines of the normalized impedance plane to 
Γ-plane, let us simplify and eliminate resistance (r) from the following:  

   1 1r i rr x    

 1 r i ix r    

Real 

Imaginary 

 
 1

1 1
r i

r i r

i

x
x

  
     

 

     
2 21 1 1 0r i r i i rx x       

 
2 21 2 0r i ix x     

The Smith Chart (contd.)  
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The Smith Chart (contd.)  

 
2 22

1 0r i i
x

 
      

 

Observations: 

• For x =1: (p – 1)2 + (q – 1)2 = (1)2; (p, q) = (1, 1) and l = 1 
• For x =-1: (p – 1)2 + (q + 1)2 = (1)2; (p, q) = (1, -1) and l = 1 
• For x =1/2: (p – 1)2 + (q – 2)2 = (2)2; (p, q) = (1, 2) and l = 2 
• For x =-1/2: (p – 1)2 + (q + 2)2 = (2)2; (p, q) = (1, -2) and l = 2 

Circles of 
distinct 

centre and 
radii 

 
2 2

2 1 1
1r i

x x

   
        

   

   , 1,1/p q xcenter: 

radius: 
1

l
x



q l 

Note: 
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0r 

The Smith Chart (contd.)  

r

i
1x 

1x  

0x 

0.5x 

0.5x  

3x  

3x 

x 

q l 
Note: 

All constant reactance 
(x) circles have their 

origins along this line 
p=1 because of the 

term (p – 1)2 

This approach enables mapping of any realizable horizontal line 
(representing x) in the complex Γ-plane 
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The Smith Chart (contd.)   
• Combination of these constant resistance and reactance circles define the 

mappings from normalized impedance (z’) plane to Γ-plane and is called as 
Smith chart.  

( ) 1
( )

( ) 1

z z
z

z z

 
 

 

1 ( )
( )

1 ( )

z
z z

z


 



r

i

0r 

0x 

jx

r

z r jx  

1r 

Positive 
(Inductive) 
Reactance 

Negative 
(Capacitive) 
Reactance 
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 The Smith Chart (contd.) – Important Features 

• It is apparent: for 𝑟 ≥ 0, we get |Γ(z)|≤ 1. This condition is easily met for 
passive networks (i.e, no amplifiers) and lossless TLs (real Z0)  

• Consequently, the standard Smith chart only shows only the inside of the 
unit circle in the Γ-plane. That is, |Γ(z)|≤1 which is bounded by the 𝑟 = 0 
circle described by:    

2 2 1r i  

1. By definition: 

( ) 1 1
( )

( ) 1 1

z z r jx
z

z z r jx

   
  

   

 

 

2 2

2 2

1
( )

1

r x
z

r x

 
 

 
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 The Smith Chart (contd.) – Important Features 

2. Notice that in the upper semi-circle of the Smith chart, 𝑥 ≥ 0 which is an 
inductive reactance. Consequently, the generalized reflection coefficients 
Γ(z) ≡ Γr + jΓi in the upper semi-circle are associated with normalized TL 
impedances 𝑧′ 𝑧 ≡ 𝑟 + 𝑗𝑥 that are inductively reactive.  

Conversely, the lower semi-circle of the Smith chart represent capacitive 
reactive impedances  

3. If z’(z) is purely real (ie, x = 0) then the reactance term:   

 
2 21 2 0r i ix x     

suggests 
Γi = 0 except possibly at Γr = 1 

Consequently, purely real z’(z) values are mapped to Γ(z) values on the Γr 

axis.   
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4. If z’(z) is purely imaginary (ie, r= 0) then the impedance term:   

 The Smith Chart (contd.) – Important Features 

Consequently, purely imaginary z’(z) values are mapped to Γ(z) values 
on the unit circle in Γ-plane.   

    

 

22

2

2

1 1

1 1
r i

r r rr

r r

   
    

  

suggests 

2 2 1r i  

Unit Circle on 
Γ-plane 


