Lecture - 6

Date: 21.08.2014

- Lossy Transmission Line
- Introduction to Smith Chart: The complex Γ - plane
- Transformations on the complex Γ - plane
- Mapping Z to Γ
- Smith Chart - Construction
- Smith Chart - Geography

Lossy Transmission Lines

- Recall that we have been approximating low-loss transmission lines as lossless ($\mathrm{R}=\mathrm{G}=0$):

$$
\alpha=0
$$

$$
\beta=\omega \sqrt{L C}
$$

- But, long low-loss lines require a better approximation:

$$
\alpha=\frac{1}{2}\left(\frac{R}{Z_{0}}+G Z_{0}\right) \quad \beta=\omega \sqrt{L C}
$$

- Now, if we have really long transmission lines (e.g., long distance communications), we can apply no approximations at all:

$$
\alpha=\operatorname{Re}\{\gamma\}
$$

$$
\beta=\operatorname{Im}\{\gamma\}
$$

For these very long transmission lines, we find that $\beta=\operatorname{Im}\{\gamma\}$ is a function of signal frequency ω. This results in an extremely serious problem—signal dispersion.

Lossy Transmission Lines (contd.)

- Recall that the phase velocity $\boldsymbol{v}_{\boldsymbol{p}}$ (i.e., propagation velocity) of a wave in a transmission line is:

$$
v_{p}=\frac{\omega}{\beta}
$$

$$
\beta=\operatorname{Im}\{\gamma\}=\operatorname{Im}\{\sqrt{(R+j \omega L)(G+j \omega C)}\}
$$

Thus, for a lossy line, the phase velocity $\boldsymbol{v}_{\boldsymbol{p}}$ is a function of frequency ω (i.e., $\boldsymbol{v}_{\boldsymbol{p}}(\boldsymbol{\omega})$)-this is bad!

- Any signal that carries significant information must has some non-zero bandwidth. In other words, the signal energy (as well as the information it carries) is spread across many frequencies.
- If the different frequencies that comprise a signal travel at different velocities, that signal will arrive at the end of a transmission line distorted. We call this phenomenon signal dispersion.
- Recall for lossless lines, however, the phase velocity is independent of frequency-no dispersion will occur!

Lossy Transmission Lines (contd.)

- For lossless line:

$$
v_{p}=\frac{1}{\sqrt{L C}}
$$

however, a perfectly lossless line is impossible, but we find phase velocity is approximately constant if the line is low-loss.

Therefore, dispersion distortion on low-loss lines is most often not a problem.

Q: You say "most often" not a problem-that phrase seems to imply that dispersion sometimes
 is a problem!

Lossy Transmission Lines (contd.)

A: Even for low-loss transmission lines, dispersion can be a problem if the lines are very long-just a small difference in phase velocity can result in significant differences in propagation delay if the line is very long!

- Modern examples of long transmission lines include phone lines and cable TV. However, the original long transmission line problem occurred with the telegraph, a device invented and implemented in the $19^{\text {th }}$ century.
- Early telegraph "engineers" discovered that if they made their telegraph lines too long, the dots and dashes characterizing Morse code turned into a muddled, indecipherable mess. Although they did not realize it, they had fallen victim to the heinous effects of dispersion!
- Thus, to send messages over long distances, they were forced to implement a series of intermediate "repeater" stations, wherein a human operator received and then retransmitted a message on to the next station. This really slowed things down!

Lossy Transmission Lines (contd.)

Q: Is there any way to prevent dispersion from occurring?

A: You bet! Oliver Heaviside figured out how in the $\mathbf{1 9}^{\text {th }}$ Century!

- Heaviside found that a transmission line would be distortionless (i.e., no dispersion) if the line parameters exhibited the following ratio:

$$
\frac{R}{L}=\frac{G}{C}
$$

- Let's see why this works. Note the complex propagation constant γ can be expressed as:

$$
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\sqrt{L C(R / L+j \omega)(G / C+j \omega)}
$$

Lossy Transmission Lines (contd.)

- Then IF: $\frac{R}{L}=\frac{G}{C}$
- we find:

$$
\gamma=\sqrt{L C(R / L+j \omega)(R / L+j \omega)}=(R / L+j \omega) \sqrt{L C}=R \sqrt{\frac{C}{L}}+j \omega \sqrt{L C}
$$

- Thus: $\alpha=\operatorname{Re}\{\gamma\}=R \sqrt{\frac{C}{L}}$

$$
\beta=\operatorname{Im}\{\gamma\}=\omega \sqrt{L C}
$$

- The propagation velocity of the wave is thus:

$$
v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}
$$

The propagation velocity is independent of frequency! This lossy transmission line is not dispersive!

Lossy Transmission Lines (contd.)

Q: Right. All the transmission lines I use have the property that $R / L>G / C$. I've never found a transmission line with this ideal property $R / L=G / C$!
 is equal to G / C) by adding series inductors periodically along the transmission line.

This was Heaviside's solution—and it worked! Long distance transmission lines were made possible.

Q: Why don't we increase G instead?
A:

Smith Chart

- Smith chart - what?
- The Smith chart is a very convenient graphical tool for analyzing TLs studying their behavior.
- It is mapping of impedance in standard complex plane into a suitable complex reflection coefficient plane.
- It provides graphical display of reflection coefficients.
- The impedances can be directly determined from the graphical display (ie, from Smith chart)
- Furthermore, Smith charts facilitate the analysis and design of complicated circuit configurations.

The Complex Γ - Plane

- Let us first display the impedance Z on complex Z-plane

- Note that each dimension is defined by a single real line: the horizontal line (axis) indicates the real component of Z, and the vertical line (axis) indicates the imaginary component of $Z \rightarrow$ Intersection of these lines indicate the complex impedance

The Complex Γ - Plane (contd.)

- How do we plot an open circuit (i.e, $Z=\infty$), short circuit (i.e, $Z=0$), and matching condition (i.e, $Z=Z_{0}=50 \Omega$) on the complex Z-plane

It is apparent that complex Z-plane is not very useful

The Complex Γ-Plane (contd.)

- The limitations of complex Z-plane can be overcome by complex Г-plane
- We know $\mathbf{Z} \leftrightarrow \Gamma$ (i.e, if you know one, you know the other).
- We can therefore define a complex Γ-plane in the same manner that we defined a complex Z-plane.
- Let us revisit the reflection coefficient in complex form:

$$
\Gamma_{0}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\underbrace{\Gamma_{R}}_{\Gamma_{0 r}}+\Gamma_{0 i}=\left|\Gamma_{0}\right| e^{j \theta_{0}}
$$

Where,

$$
\theta_{0}=\tan ^{-1}\left(\frac{\Gamma_{0 i}}{\Gamma_{0 r}}\right) \quad{\text { Real part of } \Gamma_{0}}
$$

- In the special terminated conditions of pure short-circuit and pure opencircuit conditions the corresponding Γ_{0} are -1 and +1 located on the real axis in the complex Γ-plane.

The Complex Γ-Plane (contd.)

$$
\Gamma_{0}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\Gamma_{0 r}+\Gamma_{0 i}=\left|\Gamma_{0}\right| e^{j \theta_{0}}
$$

Representation of reflection coefficient in polar form

Observations:

- A radial line is formed by the locus of all points whose phase is θ_{0}
- Acircle is formed by the locus of alk points whose magnitude is $\left|\Gamma_{0}\right|$

It means the reflection coefficient has a valid region that encompasses all the four quadrants in the complex Γ-plane within the -1 to +1 bounded region

In complex Z-plane the valid region was unbounded on the right half of the plane \rightarrow as a result many important impedances could not be plotted

The Complex Г-Plane (contd.)

- Validity Region

The Complex Γ-Plane (contd.)

- We can plot all the valid impedances (i.e $R>0$) within this bounded region.

$Z=j X \rightarrow$ purely reactive

Example - 1

- A TL with a characteristic impedance of $Z_{0}=50 \Omega$ is terminated into following load impedances:
(a) $Z_{L}=0$ (Short Circuit)
(b) $Z_{L} \rightarrow \infty$ (Open Circuit)
(c) $Z_{L}=50 \Omega$
(d) $Z_{L}=(16.67-j 16.67) \Omega$
(e) $Z_{L}=(50+j 50) \Omega$

Display the respective reflection coefficients in complex Γ-plane

- Solution: We know the relationship between Z and Γ :

$$
\Gamma_{0}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\Gamma_{0 r}+\Gamma_{0 i}=\left|\Gamma_{0}\right| e^{j \theta_{0}}
$$

$\left\{\begin{array}{l}\text { (a) } \Gamma_{0}=-1 \text { (Short Circuit) } \\ \text { (b) } \Gamma_{0}=1 \text { (Open Circuit) } \\ \text { (c) } \Gamma_{0}=0 \text { (Matched) } \\ \text { (d) } \Gamma_{0}=0.54<221^{\circ} \\ \text { (e) } \Gamma_{0}=0.83<34^{\circ}\end{array}\right.$

Example - 1 (contd.)

Transformations on the Complex Γ-Plane

- The usefulness of the complex Γ-plane will be evident when we consider the terminated, lossless TL again.

- At $z=0$, the reflection coefficient is called load reflection coefficient $\left(\Gamma_{0}\right) \rightarrow$ this actually describes the mismatch between the load impedance $\left(\mathrm{Z}_{\mathrm{L}}\right)$ and the characteristic impedance $\left(Z_{0}\right)$ of the TL .
- The move away from the load (or towards the input/source) in the negative z-direction (clockwise rotation) requires multiplication of Γ_{0} by a factor $\exp (+j 2 \beta z)$ in order to explicitly define the mismatch at location ' z ' known as $\Gamma(\mathrm{z})$.
- This transformation of Γ_{0} to $\Gamma(\mathrm{z})$ is the key ingredient in Smith chart as a graphical design/display tool.

Transformations on the Complex Γ-Plane (contd.)

- Graphical interpretation of $\Gamma(z)=\Gamma_{0} e^{+2 j \beta z}$

Transformations on the Complex Γ-Plane (contd.)

- It is clear from the graphical display that addition of a length of TL to a load Γ_{0} modifies the phase θ_{0} but not the magnitude Γ_{0}, we trace a circular arc as we parametrically plot $\Gamma(\mathrm{z})$! This arc has a radius Γ_{0} and an arc angle $2 \beta l$ radians.
- We can therefore easily solve many interesting TL problems graphically-using the complex Γ-plane! For example, say we wish to determine $\Gamma_{\text {in }}$ for a transmission line length $l=\lambda / 8$ and terminated with a short circuit.

Transformations on the Complex Γ-Plane (contd.)

- The reflection coefficient of a short circuit is $\Gamma_{0}=-1=1^{*} e(j \pi)$, and therefore we begin at the leftmost point on the complex Γ-plane. We then move along a circular arc $-2 \beta l=-2(\pi / 4)=-\pi / 2$ radians (i.e., rotate

Transformations on the Complex Γ-Plane (contd.)

- Now let us consider the same problem, only with a new transmission line length $l=\lambda / 4$.
- Now we rotate clockwise $2 \beta l=\pi$ radians.

- In this case the input reflection coefficient is $\Gamma_{\mathrm{in}}=1^{*} \mathrm{e}(\mathrm{j} 0)=1$
- The reflection coefficient of an open circuit

The short circuit load has been transformed into an open circuit with a quarter-wave TL

Transformations on the Complex Γ-Plane (contd.)

- We also know that a quarter-wave TL transforms an open-circuit into short-circuit \rightarrow graphically it can be shown as:

Transformations on the Complex Γ-Plane (contd.)

- Now let us consider the same problem again, only with a new transmission line length $l=\lambda / 2$.
- Now we rotate clockwise $2 \beta l=2 \pi$ radians $\left(360^{\circ}\right)$

Transformations on the Complex Γ-Plane (contd.)

- Now let us consider the opposite problem. Say we know that the input reflection coefficient at the beginning of a TL with length $l=\lambda / 8$ is: $\Gamma_{i n}=0.5 e\left(j 60^{\circ}\right)$.
- What is the reflection coefficient at the load?
- In this case we rotate counter-clockwise along a circular arc (radius $=0.5$) by an amount $2 \beta l=\pi / 2$ radians $\left(90^{\circ}\right)$.
- In essence, we are removing the phase associated with the TL.

The reflection coefficient at the load is:

$$
\Gamma_{0}=0.5 * e^{+j 150}
$$

Mapping Z to Γ

- We know that the line impedance and reflection coefficient are equivalent - either one can be expressed in terms of the other.

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}
$$

$$
Z(z)=Z_{0}\left(\frac{1+\Gamma(z)}{1-\Gamma(z)}\right)
$$

- The above expressions depend on the characteristic impedance Z_{0} of the TL. In order to generalize the relationship, we first define a normalized impedance value z^{\prime} as:

$$
z^{\prime}(z)=\frac{Z(z)}{Z_{0}}=\frac{R(z)}{Z_{0}}+j \frac{X(z)}{Z_{0}}=r(z)+j x(z)
$$

therefore

$$
\frac{\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}=\frac{\left(Z(z) / Z_{0}\right)-1}{\left(Z(z) / Z_{0}\right)+1}=\frac{z^{\prime}(z)-1}{z^{\prime}(z)+1}}{\left(z^{\prime}(z)=\frac{1+\Gamma(z)}{1-\Gamma(z)}\right.}
$$

Mapping \mathbf{Z} to Γ (contd.)

$$
\Gamma(z)=\frac{Z(z)-Z_{0}}{Z(z)+Z_{0}}=\frac{\left(Z(z) / Z_{0}\right)-1}{\left(Z(z) / Z_{0}\right)+1}=\frac{z^{\prime}(z)-1}{z^{\prime}(z)+1}
$$

$$
z^{\prime}(z)=\frac{1+\Gamma(z)}{1-\Gamma(z)}
$$

These equations describe a mapping between z^{\prime} and Γ. That means that each and every normalized impedance value likewise corresponds to one specific point on the complex Γ-plane

- For example, we wish to indicate the values of some common normalized impedances (shown below) on the complex Γ-plane and vice-versa.

Case	z	z^{\prime}	Γ
$\mathbf{1}$	∞	∞	$\mathbf{1}$
2	$\mathbf{0}$	$\mathbf{0}$	$-\mathbf{1}$
$\mathbf{3}$	z_{0}	$\mathbf{1}$	$\mathbf{0}$
4	jz	j	j
$\mathbf{5}$	-jz	-j	$-\mathbf{j}$

Mapping \mathbf{Z} to Γ (contd.)

- The five normalized impedances map five specific points on the complex Γ-plane.

Mapping \mathbf{Z} to Γ (contd.)

- The five complex- Γ map onto five points on the normalized Z-plane

- It is apparent that the normalized impedances can be mapped on complex Γ-plane and vice versa
- It gives us a clue that whole impedance contours (i.e, set of points) can be mapped to complex Γ-plane

Mapping \mathbf{Z} to Γ (contd.)

Case-I: $\mathbf{Z}=\mathbf{R} \rightarrow$ impedance is purely real

$$
z^{\prime}=r+j 0 \longmapsto \Gamma=\frac{r-1}{r+1} \longmapsto \Gamma_{r}=\frac{r-1}{r+1} \quad \Gamma_{i}=0
$$

Mapping Z to Γ (contd.)

Case-II: $\mathrm{Z}=\mathrm{jX} \rightarrow$ impedance is purely imaginary

$$
z^{\prime}=0+j x
$$

Purely reactive impedance results in a

These cases (I and II) demonstrate that effectively any complex impedance can be mapped to complex Γ-plane \rightarrow Smith Chart

The Smith Chart

In summary

A vertical line $\mathrm{r}=0$ on complex Z-plane maps to a circle $|\Gamma|=1$ on the complex Γ-plane

- A horizontal line $x=0$ on complex Z-plane maps to the line $\Gamma_{i}=0$ on the complex Γ-plane

Very fascinating in an academic sense, but are not relevant considering that actual values of impedance generally have both a real and imaginary component

Mappings of more general impedance contours (e.g, $r=0.5$ and $x=-1.5$ corresponding to normalized impedance $0.5-j 1.5$) can also be mapped

The Smith Chart (contd.)

- Let us revisit the generalized reflection coefficient formulation:

$$
\Gamma(z)=\left|\Gamma_{0}\right| e^{j \theta_{0}} e^{j 2 \beta z}=\Gamma_{r}+j \Gamma_{i}
$$

- Therefore, the normalized impedance can be formulated as:

$$
z^{\prime}(z)=r+j x=\frac{Z(z)}{Z_{0}}=\frac{1+\Gamma(z)}{1-\Gamma(z)}=\frac{1+\Gamma_{r}+j \Gamma_{i}}{1-\Gamma_{r}-j \Gamma_{i}}
$$

$$
\Rightarrow\left(\left(1-\Gamma_{r}\right)-j \Gamma_{i}\right)(r+j x)=\left(1+\Gamma_{r}\right)+j \Gamma_{i}
$$

- The separation of real and imaginary part results in:

$$
\begin{gathered}
r\left(1-\Gamma_{r}\right)+x \Gamma_{i}=\left(1+\Gamma_{r}\right) \\
x\left(1-\Gamma_{r}\right)-r \Gamma_{i}=\Gamma_{i}
\end{gathered}
$$

The Smith Chart (contd.)

- Simplification and then elimination of reactance (x) from these two give:

$$
\begin{aligned}
& \left(1-\Gamma_{\mathrm{r}}\right) \mathrm{r}+\Gamma_{\mathrm{i}}\left[\left(\frac{\Gamma_{\mathrm{i}}}{1-\Gamma_{\mathrm{r}}}\right)(1+\mathrm{r})\right]=1+\Gamma_{\mathrm{r}} \\
& \left(1-\Gamma_{r}\right)^{2} \mathrm{r}+\Gamma_{i}^{2}(1+\mathrm{r})=\left(1+\Gamma_{r}\right)\left(1-\Gamma_{r}\right) \\
& \text { Multiplying through by } 1-\Gamma_{r} \\
& \left(1-\Gamma_{r}\right)^{2} r+\Gamma_{i}^{2}(1+r)=1-\Gamma_{r}^{2} \\
& \Gamma_{r}^{2}(1+r)-2 \Gamma_{r} r+(r-1)+\Gamma_{i}^{2}(1+r)=0
\end{aligned}
$$

$$
\begin{gathered}
\Gamma_{r}^{2}(1+r)-2 \Gamma_{r} r+\Gamma_{i}^{2}(1+r)=1-r \\
\Gamma_{r}^{2}-2 \Gamma_{r}\left(\frac{r}{1+r}\right)+\Gamma_{i}^{2}=\frac{1-r}{1+r} \\
\left(\Gamma_{\mathrm{r}}-\frac{\mathrm{r}}{1+\mathrm{r}}\right)^{2}+\Gamma_{\mathrm{i}}^{2}=\frac{1-\mathrm{r}}{1+\mathrm{r}}+\left(\frac{\mathrm{r}}{1+\mathrm{r}}\right)^{2} \\
\left(\Gamma_{r}-\frac{r}{1+r}\right)^{2}+\Gamma_{i}^{2}=\frac{(1+r)(1-r)+(r)^{2}}{(1+r)^{2}}
\end{gathered}
$$

The Smith Chart (contd.)

Similar equation to circle of radius l, centered at (p, q) :

$$
\left(\Gamma_{r}-p\right)^{2}+\left(\Gamma_{i}-q\right)^{2}=l^{2}
$$

This is equation of a circle

$$
\text { center: }(p, q)=\left(\frac{r}{1+r}, 0\right) \text { and radius: } l=\frac{1}{1+r}
$$

Observations:

- For $r=0: p^{2}+q^{2}=1 ;(p, q)=(0,0)$ and $l=1$
- For $r=1 / 2:(p-1 / 3)^{2}+q^{2}=(2 / 3)^{2} ;(p, q)=(1 / 3,0)$ and $l=2 / 3$

Circles of distinct

- For $r=1:(p-1 / 2)^{2}+q^{2}=(1 / 2)^{2} ;(p, q)=(1 / 2,0)$ and $l=1 / 2$
- For $r=3:(p-3 / 4)^{2}+q^{2}=(1 / 4)^{2} ;(p, q)=(3 / 4,0)$ and $l=1 / 4$

The Smith Chart (contd.)

Therefore the resistance circles on the complex Γ-plane are:

This approach enables mapping of any realizable vertical line (representing r) in the complex Γ-plane

ECE321/521

The Smith Chart (contd.)

- For the mapping of horizontal lines of the normalized impedance plane to Γ-plane, let us simplify and eliminate resistance (\boldsymbol{r}) from the following:

$$
\begin{gathered}
\begin{array}{c}
r\left(1-\Gamma_{r}\right)+x \Gamma_{i}=\left(1+\Gamma_{r}\right) \\
x\left(1-\Gamma_{r}\right)-r \Gamma_{i}=\Gamma_{i}
\end{array} \Longleftrightarrow \text { Real } \\
\square \\
\left(1-\Gamma_{r}\right)\left[\frac{\left(1-\Gamma_{r}\right) x-\Gamma_{i}}{\Gamma_{i}}\right]+x \Gamma_{i}=1+\Gamma_{r} \\
\square \\
\left(1-\Gamma_{r}\right)^{2} x-\Gamma_{i}\left(1-\Gamma_{r}\right)+x \Gamma_{i}^{2}-\Gamma_{i}\left(1+\Gamma_{r}\right)=0 \\
\left(1-\Gamma_{r}\right)^{2} x-2 \Gamma_{i}+x \Gamma_{i}^{2}=0
\end{gathered}
$$

The Smith Chart (contd.)

$$
\left(\Gamma_{r}-1\right)^{2}+\left(\Gamma_{i}-\frac{1}{x}\right)^{2}=\left(\frac{1}{x}\right)^{2} \quad \rightarrow \text { radius: } l=\frac{1}{|x|}
$$

Observations:

- For $x=1:(p-1)^{2}+(q-1)^{2}=(1)^{2} ;(p, q)=(1,1)$ and $l=1$ For $x=-1:(p-1)^{2}+(q+1)^{2}=(1)^{2} ;(p, q)=(1,-1)$ and $l=1$ Circles of distinct centre and radii
- For $x=1 / 2:(p-1)^{2}+(q-2)^{2}=(2)^{2} ;(p, q)=(1,2)$ and $l=2$
- For $x=-1 / 2:(p-1)^{2}+(q+2)^{2}=(2)^{2} ;(p, q)=(1,-2)$ and $l=2$

The Smith Chart (contd.)

This approach enables mapping of any realizable horizontal line (representing x) in the complex Γ-plane

The Smith Chart (contd.)

- Combination of these constant resistance and reactance circles define the mappings from normalized impedance (z^{\prime}) plane to Γ-plane and is called as Smith chart.

$$
z^{\prime}(z)=\frac{1+\Gamma(z)}{1-\Gamma(z)} \leadsto \Gamma(z)=\frac{z^{\prime}(z)-1}{z^{\prime}(z)+1}
$$

Positive (Inductive)

The Smith Chart (contd.) - Important Features

1. By definition:

$$
\Gamma(z)=\frac{z^{\prime}(z)-1}{z^{\prime}(z)+1}=\frac{r+j x-1}{r+j x+1}
$$

- It is apparent: for $r \geq 0$, we get $|\Gamma(z)| \leq 1$. This condition is easily met for passive networks (i.e, no amplifiers) and lossless TLs (real Z_{0})
- Consequently, the standard Smith chart only shows only the inside of the unit circle in the Γ-plane. That is, $|\Gamma(z)| \leq 1$ which is bounded by the $r=0$ circle described by:

$$
\Gamma_{r}^{2}+\Gamma_{i}^{2}=1
$$

The Smith Chart (contd.) - Important Features

2. Notice that in the upper semi-circle of the Smith chart, $x \geq 0$ which is an inductive reactance. Consequently, the generalized reflection coefficients $\Gamma(\mathrm{z}) \equiv \Gamma_{\mathrm{r}}+\mathrm{j} \Gamma_{\mathrm{i}}$ in the upper semi-circle are associated with normalized TL impedances $z^{\prime}(z) \equiv r+j x$ that are inductively reactive.

Conversely, the lower semi-circle of the Smith chart represent capacitive reactive impedances
3. If $z^{\prime}(z)$ is purely real (ie, $x=0$) then the reactance term:

$$
\left(1-\Gamma_{r}\right)^{2} x-2 \Gamma_{i}+x \Gamma_{i}^{2}=0 \quad \text { suggests } \Gamma_{\mathbf{i}}=\mathbf{0} \text { except possibly at } \Gamma_{\mathbf{r}}=\mathbf{1}
$$

Consequently, purely real $z^{\prime}(z)$ values are mapped to $\Gamma(z)$ values on the Γ_{r} axis.

The Smith Chart (contd.) - Important Features

4. If $z^{\prime}(z)$ is purely imaginary (ie, $r=0$) then the impedance term:

$$
\begin{aligned}
&\left(\Gamma_{r}-\frac{r}{1+r}\right)^{2}+\Gamma_{i}^{2}=\frac{(1+r)(1-r)+(r)^{2}}{(1+r)^{2}} \\
& \text { suggests }
\end{aligned}
$$

Consequently, purely imaginary $z^{\prime}(z)$ values are mapped to $\Gamma(z)$ values on the unit circle in Γ-plane.

