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* Lossy Transmission Line

* Introduction to Smith Chart: The complex I — plane
* Transformations on the complex I'-plane

* MappingZtol

 Smith Chart — Construction

* Smith Chart — Geography
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* Recall that we have been approximating low-loss transmission lines as
lossless (R =G = 0):

() g

* But, long low-loss lines require a better approximation:

a=;(ZRO+Gzoj = wVLC]

* Now, if we have really long transmission lines (e.g., long distance
communications), we can apply no approximations at all:

| @ =Re{y}] [ B=1m{y}]

"For these very long transmission lines, we find that § = Im{y} is |
a function of signal frequency w . This results in an extremely
serious problem—signal dispersion.

\.
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Lossy Transmission Lines (contd.)

* Recall that the phase velocity v, (i.e., propagation
velocity) of a wave in a transmission line is:

[,Bz Im{y}= Im{\/(R+ joL)(G + ja)C)}J\ }

Vp=

SRS

Thus, for a lossy line, the phase velocity v,, is a function of
frequency w (i.e., v, (w))—this is bad!

 Any signal that carries significant information must has some non-zero
bandwidth. In other words, the signal energy (as well as the information it
carries) is spread across many frequencies.

 If the different frequencies that comprise a signal travel at different
velocities, that signal will arrive at the end of a transmission line distorted.
We call this phenomenon signal dispersion.

* Recall for lossless lines, however, the phase velocity is independent of
frequency—no dispersion will occur!
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Lossy Transmission Lines (contd.)

* Forlosslessline: [, _ 1 h oty lossless fine
»— JLC owever, a perfectly lossless line is

impossible, but we find phase
velocity is approximately constant
if the line is low-loss.

Therefore, dispersion distortion on low-loss lines is
most often not a problem.

Q: You say “most often” not a
problem—that phrase seems to
imply that dispersion sometimes

is a problem!
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Lossy Transmission Lines (contd.)

A: Even for low-loss transmission lines, dispersion can be a problem if the
lines are very long—ijust a small difference in phase velocity can result in
significant differences in propagation delay if the line is very long!

Indraprastha Institute of ECE321/521

* Modern examples of long transmission lines include phone lines and cable
TV. However, the original long transmission line problem occurred with the
telegraph, a device invented and implemented in the 19t century.

* Early telegraph “engineers” discovered that if they made their telegraph lines
too long, the dots and dashes characterizing Morse code turned into a
muddled, indecipherable mess. Although they did not realize it, they had
fallen victim to the heinous effects of dispersion!

* Thus, to send messages over long distances, they were forced to implement
a series of intermediate “repeater” stations, wherein a human operator
received and then retransmitted a message on to the next station. This
really slowed things down!
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Lossy Transmission Lines (contd.)
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Q: Is there any way to prevent
_dispersion from occurring?

A: You bet! Oliver Heaviside figured out
how in the 19th Century!

 Heaviside found that a transmission line would be

: : : : . : R G
distortionless (i.e., no dispersion) if the line parameters —=—
exhibited the following ratio: C

* Let’s see why this works. Note the complex propagation constant y can be
expressed as:

=R+ 10L)(G+ 10C) = LC(R L+ j0)(G /C 1 ja)
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Lossy Transmission Lines (contd.)

e Then IF:; E = 9

e we find:

[]/—\/LC(R/L-Fj(())(R/L+j6())—(R/L+ja))\/E—R\/f-i-ja)\/rC]
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* Thus: [a:Re{y}zR C} [ﬁ—lm{y}—w\/ﬁ]

L

@ 1
* The propagation velocity of the wave is thus: 'V, = F; ~JlC

The propagation velocity is independent of frequency! This lossy
transmission line is not dispersive!
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Lossy Transmission Lines (contd.)

Q: Right. All the transmission lines | use
have the property that B/, > 6/.. I've
never found a transmission line with this
ideal property ®/, = ¢/,!

&

A: It is true that typically B/, > ¢/.. But, we can reduce the ratio &/, (until it

is equal to ¢/.) by adding series inductors periodically along the
transmission line.

This was Heaviside’s solution—and it worked! Long distance
transmission lines were made possible.

Q: Why don’t we increase G instead?

A:
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Smith Chart

 Smith chart — what?

* The Smith chart is a very convenient graphical tool for analyzing TLs
studying their behavior.

* It is mapping of impedance in standard complex plane into a suitable
complex reflection coefficient plane.

* |t provides graphical display of reflection coefficients.

 The impedances can be directly determined from the graphical display (ie,
from Smith chart)

 Furthermore, Smith charts facilitate the analysis and design of
complicated circuit configurations.

Indraprastha Institute of
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The Complex I'- Plane

e Let us first display the impedance Z on complex Z-plane

Im (2)
® Z =30+ j40Q
> Re (2)
® Z=60-j30Q2

* Note that each dimension is defined by a single real line: the horizontal
line (axis) indicates the real component of Z, and the vertical line (axis)
indicates the imaginary component of Z = Intersection of these lines
indicate the complex impedance



1D

Indraprastha Institute of ECE321/521

Information Technology Delhi

The Complex I'- Plane (contd.)

* How do we plot an open circuit (i.e, Z = ), short circuit (i.e, Z = 0), and
matching condition (i.e, Z = Z, = 50() ) on the complex Z-plane

Z = o
somewhere over there!!

[It is apparent that complex Z — plane is not very useful ]
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The Complex I'-Plane (contd.)

The limitations of complex Z-plane can be overcome by complex I'-plane
We know Z € I (i.e, if you know one, you know the other).

We can therefore define a complex I'-plane in the same manner that we
defined a complex Z-plane.

Let us revisit the reflection coefficient in complex form:

Z —Z @ ® -
E—‘O — ZL ZO FoejﬁoJ
L+ 0 [N
\ Imaginary part of I,

Where, [6’0 _tant (FO.H
Lor Real part of I

In the special terminated conditions of pure short-circuit and pure open-
circuit conditions the corresponding I'; are -1 and +1 located on the real
axis in the complex I'-plane.
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The Complex I'-Plane (contd.)

L -7 . : :
[FO: L 20T 4T, :Foejﬁ(] _ Representation of reflection

Z, +2Z, coefficient in polar form
4l o Observations:
0 * A radial line is formed by the locus
I of all points whose phase is 6,
Ll =6, . ircle is formed by the locus o
<€ > I, oints whose magnitude isD

It means the reflection coefficient has a valid region
that encompasses all the four quadrants in the complex
I'-plane within the -1 to +1 bounded region

In complex Z-plane the valid region was unbounded on the right half of the
plane - as a result many important impedances could not be plotted
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The Complex I'-Plane (contd.)

Validity Region
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The Complex I'-Plane (contd.)

 We can plot all the valid impedances (i.e R > 0) within this bounded region.

r,=e°=10
(open)

Tl =1 \
Z = jX = purely reactive



Information Technology Delhi

1D

Indraprastha Institute of | ECE321/521

Example -1

* A TL with a characteristic impedance of Z, = 50Q is terminated into
following load impedances:
(a) Z, = 0 (Short Circuit)
(b) Z, > o= (Open Circuit)
(c) Z, = 50Q
(d) Z, = (16.67 —j16.67)Q
(e) Z, = (50 +j50)Q
Display the respective reflection coefficients in complex I'-plane

e Solution: We know the
relationship between Z and T": ) I'g = -1 (Short Circuit)
b) 'y =1 (Open Circuit
Z -2 )I'y=1(0p )

(a
| (
r,= 0=T,, +T, :‘Fo‘elé’o —— (c) I', = 0 (Matched)
(
(

f

Z +Z, d) T, = 0.54<221°
e) I, =0.83<34°

\
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Example — 1 (contd.)

(e)
90 | /
5 .A [y=0.83 £ 34°
g 0 6...
150/ (c) Matched
| r() = +1
—_
(a) Short Circuit (b)Open Circuit

10N

A To=0542221° ~
d)

270
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Transformations on the Complex I'-Plane

* The usefulness of the complex I'-plane will be evident when we consider
the terminated, lossless TL again.

1_10
® @ é‘*
Bz, L Lln B. Z, Z,

P & | e
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* Atz =0, the reflection coefficient is called load reflection coefficient (I';) -
this actually describes the mismatch between the load impedance (Z, ) and
the characteristic impedance (Z) of the TL.

* The move away from the load (or towards the input/source) in the
negative z-direction (clockwise rotation) requires multiplication of I'; by a
factor exp(+j2[z) in order to explicitly define the mismatch at location ‘Z’
known as I'(z).

* This transformation of ['; to I'(z) is the key ingredient in Smith chart as a
graphical design/display tool.
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Transformations on the Complex I'-Plane (contd.)
* Graphical interpretation of  I'(z) =T,

['(z=0)=T,
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" Transformations on the Complex I'-Plane (contd.)

* It is clear from the graphical display that addition of a length of TL to a
load I'y modifies the phase 8, but not the magnitude I';,, we trace a
circular arc as we parametrically plot I (z)! This arc has a radius I'; and
an arc angle 2f! radians.

e We can therefore easily solve many interesting TL problems
graphically—using the complex I'-plane! For example, say we wish to
determine I';, for a transmission line length | = A/8 and terminated with a
short circuit.

z = -| z=0
@ @ o
ﬂ, ZO Fin ﬂ’ ZO FOZ '1
o & | = 1/8 >0
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Transformations on the Complex I'-Plane (contd.)
* The reflection coefficient of a short circuit is I, = -1 =1*e(jm), and

therefore we begin at the leftmost point on the complex I'-plane. We

then move along a circular arc -2l = -2(n/4) = -n/2 radians (i.e., rotate
clockwise 90°).
Lo

7

* When we stop, we find we
are at the point for I'; ; in
this case I';, = 1*e(jr/2)

> 1_1Or

[,=1%e"” '(z)
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" Transformations on the Complex I'-Plane (contd.)

* Now let us consider the same problem, only with a new transmission line

length | = \/4.
* Now we rotate clockwise 2Bl = it radians.
reflection coefficient is
[, =1%e(j0) =1
‘F(Z)‘j - of an open circuit
1_‘Or

Lo  In this case the input
* The reflection coefficient

-
The short circuit load has been
transformed into an open circuit
with a quarter-wave TL )

r,=1*e""
\_
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Transformations on the Complex I'-Plane (contd.)

* We also know that a quarter-wave TL transforms an open-circuit into
short-circuit - graphically it can be shown as:

Al

(z)—>

o =1*e"V”

In

N
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Transformations on the Complex I'-Plane (contd.)

* Now let us consider the same problem again, only with a new
transmission line length | = A/2.
 Now we rotate clockwise 2Bl = 2rt radians (360°)

(e We came clear around to)

where we started!
* Thus we conclude that I, =17, )

.

Ly

r

" It comes from the fact that )
half-wavelength TL is a
special case, where we know
that Z;, = Z, - eventually it
\_ leadsto I';, =T, )

[ =1%eg"”

In

"o
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Transformations on the Complex I'-Plane (contd.)

* Now let us consider the opposite problem. Say we know that the input
reflection coefficient at the beginning of a TL with length | = A/8 is:
[;, = 0.5e(j60°).

* Whatis the reflection coefficient at the load?

* In this case we rotate counter-clockwise along a circular arc (radius =0.5)
by an amount 2Bl = /2 radians (90°).

* Inessence, we are removing the phase associated with the TL.

Indraprastha Institute of ECE321/521

6, =

The reflection coefficient at
the load is:

FO _ 0.5*e+j150
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Mapping Zto I

 We know that the line impedance and reflection coefficient are equivalent
— either one can be expressed in terms of the other.

Z(2)-Z, 1+1'(2)
F - =
[ @) Z(z)+ZO] < > [Z(Z) Zo(l—l“(z)
* The above expressions depend on the characteristic impedance Z, of the

TL. In order to generalize the relationship, we first define a normalized
impedance value z’ as:

[z’(z) _ ZZ(Z) _ RZ(Z) +j XZ(Z) — 1(2) + jx(2)

J

therefore [ 2()-2, (2(2)/Z,)-1 z’(z)—f
2(2)+2Z, (Z(2)!/Z,)+1 z7'(z)+1

oy 1+T0(2)
[Z &= 1T Jh-:
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Mappmg Z toI (contd.)
[F(z) _Z(0)-2, _(2(9)1Z,)-1 _ z'(z)—l} [Z,(Z) _1+T(2) J
Z(2)+2, (Z2(2)/Z,)+1 7'(2)+1 1-T(z) ) :

R s

=

. o . Vi \
These equations describe a mapping between z’ and I'. That means
that each and every normalized impedance value likewise corresponds
to one specific point on the complex I'-plane

Y,
* For example, we wish to indicate the values of some common normalized
impedances (shown below) on the complex I'-plane and vice-versa.

Case --—

00

2 0 0 -1
3 Z, 1 0
4 iZy j j

5 -JZ, -J g
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Mapping Z to I' (contd.)

 The five normalized impedances map five specific points on the complex
I'-plane.
AL
Invalid Region
IT'| >1

I =1
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Mapping Z to I' (contd.)

* The five complex-I' map onto five points on the normalized Z-plane

° (T'=1)

Z =00

* It is apparent that the normalized impedances can be mapped on complex

I'-plane and vice versa
* It gives us a clue that whole impedance contours (i.e, set of points) can be

mapped to complex I'-plane
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Mapping Z to I' (contd.)

impedance is purely real

Z=R-

Case-I|

o0

r

r

(Fi =0)

Xx=0




Indraprastha Institute of ECE321/521

IIIr.) Information Technology Delhi

Mapping Z to I' (contd.)
Case-ll: Z = jX - impedance is purely imaginary
Purely reactive impedance results in a ‘1—‘ _1

BoRon oMo oD oMo o3 oM oNo OB 3o o3 o3 oo o2 o»o=m = S

r|=1
S o

X — — oo

?Ehese cases (I and Il) demonstrate that
T ffhctively any complex impedance can be
RN NR MRS KRNI INNNIUAN I ‘mapped to complex I'-plane = Smith Chart
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The Smith Chart
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In
* Avertical liner =0 on complex Z-plane maps to a circle |I'| =1 on the
complex I'-plane

A horizontal line X = 0 on complex Z-plane maps to the line I'; = 0 on
omplex I'-plane

A

Very fascinating in an academic sense, but are not relevant considering
that actual values of impedance generally have both a real and imaginary
component )

~N

(I\/Iappings of more general impedance contours (e.g,
r=0.5and x =- 1.5 corresponding to normalized [Smith Chart]
9 impedance 0.5 —j1.5) can also be mapped
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The Smith Chart (contd.)

* Let us revisit the generalized reflection coefficient formulation:

[ ['(z) =|T,|e'*e’?* =T, + I, ]

* Therefore, the normalized impedance can be formulated as:

7(2) 1+T(z) 14T + il |
Z'(Z)=I’+jX= (Z): + (Z): + r+J- i
Z, 1-T'(z) 1-T, -],

[ =(@-r)-in)(r+ ) =(+1,)+ T,

 The separation of real and imaginary part results in:

CP(-T, ) 40T, = (14T, )  Real
X(1-T )—r[, =T, ¢ 1 Imaginary
% ( r) i i J
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“The Smith Chart (contd.)

« Simplification and then elimination of reactance (x) from these two give:

(1-T,)r+T, Klrr ](1+r)} =1+T,

ﬂMultiplying through by 1-T",

(1-T,) r+T2(1+r)=(1+T,)(1-T,)

Information Technology Delhi
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(1-T,) r+0?(1+r)=1-T?

Iy (1+r)-2C,r+(r-1)+I7(1+r)=0
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“The Smith Chart (contd.) ﬂ
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Iy (1+r)-20,r+07 (1+r)=1-r
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“The Smith Chart (contd.)

Similar equation to circle of radius |,

2
r ) 1 :
r ———— ?= centered at q):
( : 1”) i -— (p.9)

(T, — p)2 +(T, —q)2 =1°

N /
This is equation of a circle
center: (P.0)= (ﬁ , 0) and radius: |= 1+ir
Observations: _ =) Circles of
r=0:p2+q2=1;(p, q)=(0,0)and | = 1 Jistinet
For r =1/2: (p - 1/3)* + 9> = (2/3)% (p, a) = (1/3,0) and | = 2/3 radii

Forr=1:(p-1/2)>+9?=(1/2)% (p, q) =(1/2,0)and | =1/2
rr=3:(p—-3/4)+q*=(1/4)% (p,a)=(3/4,0)and | = 1/4
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“The Smith Chart (contd.)

Therefore the resistance circles on the complex I'-plane are:

Note:
I, p+1=1

Because of
(q—0)?
term, all the
constant
resistance (r)
circles have
centers on r=1/2

this line

This approach enables mapping of any
realizable vertical line (representing r) in the
complex I'-plane
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“The Smith Chart (contd.)

* For the mapping of horizontal lines of the normalized impedance plane to
I'-plane, let us simplify and eliminate resistance (r) from the following:

: r(1-T, )+, =(1+T,) \: 1 Real
X(1-T )—rT, =T, ¢ 1 Imaginary
\ ( r) i i J
(1—rr){(1_rr)x_Fi }rxri =1+T,

4

(1-T,)" x-T,(1-T, )+ X2 T, (1+T, ) =0

g

(1-T,)" x=2I, + X2 =0
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“The Smith Chart (contd.)

center: (P.q)=(11/x)

/ 1

Note: radlus | =
o=+l (T, 1 r = X

Observations: _ Circles of

= " distinct
. X=1:(p—1)°+(g—-1)°=(1)%, (p,q)=(1,1)and I =1 centre and
* Forx=-1:(p—-1)2+(g+1)2=(1)%(p,qa)=(1,-1)and =1 radii

e Forx=1/2:(p—-1)2+(q-2)2=(2)%(p,q)=(1,2)and | =2
rx=-1/2: (p—1)*+(q+2)*=(2)% (p,a) = (1,-2) and | =
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“The Smith Chart (contd.)

Note:

All constant reactance
(X) circles have their
origins along this line

p=1 because of the
term (p — 1)?

This approach enables mapping of any realizable horizontal line
(representing X) in the complex I'-plane
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“The Smith Chart (contd.)

e Combination of these constant resistance and reactance circles define the
mappings from normalized impedance (z’) plane to I'-plane and is called as
Smith chart.

oy 1+1(2) 7(2)-1
[z (z)= 1_1_(2)] < :: > [F(z) = z’(z)+1]

Positive
(Inductive)
Reactance

JX

)

r

Negative
(Capacitive)
Reactance
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The Smith Chart (contd.) — Important Features
1. By definition:

(2)-1 r+jx-1 C(r-1) 4%
[F(Z)_z’(z)+1_r+jx+l] ‘ F(Z)(I’+1)2+X2]

e Itis apparent: forr = 0, we get |I'(z)|< 1. This condition is easily met for
passive networks (i.e, no amplifiers) and lossless TLs (real Z,)

* Consequently, the standard Smith chart only shows only the inside of the
unit circle in the I'-plane. Thatis, |I'(z)| <1 which is bounded by the r = 0

circle described by:

[ rf+r?=1]
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The Smith Chart (contd.) — Important Features
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2. Notice that in the upper semi-circle of the Smith chart, x = 0 which is an
inductive reactance. Consequently, the generalized reflection coefficients
['(z) =T, + JI'; in the upper semi-circle are associated with normalized TL
impedances z'(z) = r + jx that are inductively reactive.

Conversely, the lower semi-circle of the Smith chart represent capacitive
reactive impedances

3. IfZ(z) is purely real (ie, X = 0) then the reactance term:

(1-T, )’ x-2I,+x72=0 ) T = 0 except possibly at I', = 1

suggests

Consequently, purely real z’(z) values are mapped to I'(z) values on the I,
axis.
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The Smith Chart (contd.) — Important Features

4. If Z’(z) is purely imaginary (ie, r= 0) then the impedance term:

(Fr _LT Lr2 (1+r)(1-r)+(r)

1+r) ' (L4r)

suggests

Consequently, purely imaginary z’(z) values are mapped to I'(z) values
on the unit circle in I'-plane.

Unit Circle on
I'-plane



