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Lecture – 5                                          Date: 19.08.2014 
 
• Review – Lecture 4 
• Reflection Coefficient Transformation  
• Power Considerations on a TL 
• Return Loss, Insertion Loss, SWR etc.  
• Sourced and Loaded TL 
• Lossy TL  
 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Review – Lecture 4 

• Short-Circuited Line 
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 Review – Lecture 4 

• Short-Circuited Line 

HW # 1 (part-1): plot these 
curves using MATLAB and 

ADS for frequency range of 
your choice. 
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• Open-Circuited Line 

 Review – Lecture 4 

ZL → ∞ 
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• The current and voltage along the TL is: 

• The line impedance is: 
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• Open-Circuited Line 

 Review – Lecture 4 

HW # 1 (part-2): plot these 
curves using MATLAB and 

ADS for frequency range of 
your choice. 
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 Example – 1 
A transistor has an input impedance of ZL = 25Ω → this needs to be matched to a 
50Ω microstrip line at f = 500 MHZ by using a quarter-wave parallel-plate impedance 
transformer → Find the length, width and Zline (which also equals the characteristic 
impedance of the parallel-plate line) → The thickness of the dielectric is 1mm and 
relative dielectric constant of the material is 4. Use formulation for inductance/m as 
µl/w  and capacitance/m as εl/d. Ignore R and G. 
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• We know that the load at the end of some length of a transmission line 
(with characteristic impedance 𝑍0 ) can be specified in terms of its 
impedance 𝑍𝐿 or its reflection coefficient Γ0. 

 Reflection Coefficient Transformation  

• Note both values are complex, and 
either one completely specifies the 
load—if you know one, you know 
the other! 
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• Recall that we determined how a length of transmission line transformed 
the load impedance into an input impedance of a (generally) different 
value: 
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 Reflection Coefficient Transformation (contd.)  

Q: Say we know the load in terms of its reflection coefficient. How can we 
express the input impedance in terms its reflection coefficient (call this Γ𝑖𝑛)? 

ZL 
β, Z0 ?in β, Z0 

l 

A: Well, we could execute these three steps: 

1. Convert  Γ0 to 𝑍𝐿: 
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2. Transform 𝑍𝐿down the line to 𝑍𝑖𝑛: 
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3. Convert  𝑍𝑖𝑛 to Γ𝑖𝑛: 0
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 Reflection Coefficient Transformation (contd.)  

Q: Yikes! This is a ton of complex arithmetic—isn’t there an easier way? 
A: Actually, there is! 

• Recall that the input impedance of a transmission line length 𝑙, terminated 
with a load Γ0, is: 

0
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Note this directly relates Γ0 to 𝑍𝑖𝑛  (steps 1 and 2 combined!). 

Directly 
insert this 

into: 
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directly relates Γ0 to Γ𝑖𝑛. 2

0

j l
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Q: Hey! This result looks familiar.  
A: Absolutely! Recall that we found the reflection coefficient function Γ(𝒛): 

2

0(z) j ze   
2

0(z ) j ll e     



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Reflection Coefficient Transformation (contd.)  

2

0

j l

in e   
the magnitude of Γ𝑖𝑛 is the 

same as the magnitude of Γ0! 
2

0 0

j l

in e     

The reflection coefficient at the input is simply 
related to Γ0 by a phase shift of 2𝛽𝑙. 

Finally, the phase shift associated with transforming Γ0 down a transmission 
line can be attributed to the phase shift associated with the wave 

propagating a length 𝑙 down the line, reflecting from load 𝑍𝐿, and then 
propagating a length 𝑙 back up the line. 

ZL in β, Z0 

𝜑 = 𝛽𝑙 

0

j l j le e  
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0
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Z Z
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For Open Circuit 
Line:  ZL →∞ 

0 1 

That means the wave gets fully 
reflected with the same polarity 

For Short Circuit 
Line:  ZL = 0 

0 1  

That means the wave gets fully 
reflected with inverted amplitude 

• When, ZL = Z0 → the transmission line is matched that results in no 
reflection → Γ0 = 0 → the incident voltage wave is completely absorbed by 
the load → a scenario that says a second transmission line with the same 
characteristic impedance but infinite length is attached at z = 0 → VERY 
IMPORTANT CONCEPT 

Some Observations 
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• Let us revisit propagation constant and phase velocity  

j    j 
For a lossless line 

Purely 
Imaginary 

LC 

• We also know: 
1

pv
LC



• It is apparent that the phase velocity is independent of frequency (instead 
it is dependent on line parameters) → It means that if a saw tooth voltage 
signal propagates down a line then each frequency components of this 
sawtooth travels with same fixed velocity → means original pulse will 
appear at a different location without changing shape  

Frequency 
Dependent 

Some Observations (contd.) 
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ZL 

z = 0 z = -l 

Z0 





( , )v z t

t=0 t = t1 t = t2 t = t3 t = t4 

• Wave is emerging from the source end of the line, traveling down the line, 
and then being absorbed by the matched load → it is known as dispersion-
free transmission 

• In practical situation, there is always frequency dependence on phase 
velocity → dispersion happens → signal distortion takes place → This 
property can be used in the design of dual-band/multi-band circuits!! 

Some Observations (contd.) 
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• A terminated transmission line experiences standing waves  
• It is due to superposition of two waves of the same frequency propagating 

in opposite directions  
• The effect of standing waves is presence of series of nodes (zero 

displacement) and anti-nodes (maximum displacement) at fixed points 
along the transmission line 

• The failure of the line to transfer power at the standing wave frequency 
results in attenuation distortion → lossless transmission line is required!! 

• Losses in transmission line doesn’t allow a perfect reflection and a pure 
standing wave → that results into partial standing wave → superposition of 
standing and traveling wave → The degree to which the propagating wave 
resembles a pure traveling or standing wave is measured in terms of 
standing wave ratio (SWR) 

Some Observations (contd.) 
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Which relationship to use:                  
 

𝑽 𝒛 , 𝑰 𝒛 , 𝒁(𝒛) 
 

or                          
 

𝑽+ 𝒛 , 𝑽− 𝒛 , Γ(𝒛) 

Some Observations (contd.) 
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Based on your circuits experience, 
you might well be tempted to 
always use V(z), I(z) and Z(z).  

However,  it is useful (as well as simple) to 
describe activity on a transmission line in 

terms of V+(z), V–(z) and Γ(z) 

Some Observations (contd.) 
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• The solution of Telegrapher equations (the equations  defining the current 
and voltages along a TL) boils down to determination of complex 
coefficients V+, V–, I+ and I–. Once these are known, we can describe all 
the quantities along the TL.   

• For example, the wave representations are:   
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 arg ( )V z z    arg ( )V z z    arg ( ) 2z z  

Some Observations (contd.) 
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• Contrast the wave functions with complex voltage, current and impedance 

Magnitudes 
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Some Observations (contd.) 
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• It is thus apparent that the description of quantities along a transmission 
line — as a function of position z — is much easier and more 
straightforward to use the wave representation. 

• However, this does not mean that we never determine V(z ), I(z ), or Z(z ); 
these quantities are still fundamental and very important—particularly at 
each end of the transmission line! 

Some Observations (contd.) 
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 Power Considerations on a TL 
• We have discovered that two waves propagate along a transmission line, 

one in each direction (𝑉+ 𝑧  𝑎𝑛𝑑  𝑉−(𝑧)). 

z = 0 

ZL 

z = -l 





l 






LV

LV

( ) ( ) ( )V z V z V z  

The result is that 
electromagnetic energy 

flows along the 
transmission line at a given 

rate (i.e., power). 

Q: How much power flows along a transmission line, and where does that 
power go? 
A: We can answer that question by determining the power absorbed by the 
load! 
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 Power Considerations on a TL (contd.) 

Incident 
Power, Pinc 

Reflected 
Power, Pref 

2
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V
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• Expression for Time-Averaged Power Absorbed by load ZL is:  
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 Power Considerations on a TL (contd.) 

• It is thus apparent that the  power flowing towards the load (Pinc) is either 
absorbed by the load (Pabs) or reflected back from the load (Pref)  

z = 0 

ZL 

z = -l 
l 

incP refP

absP

Now let us consider some special cases: 

2

0ref inc incP P P   0absP In this case: 

There is no power absorbed by the load → all the incident power is reflected  

1. 0 1 
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 Power Considerations on a TL (contd.) 

2

0 0ref incP P   abs incP P In this case: 

all the incident 
power is absorbed 

by the load 

z = 0 

|Γ0|=1 

z = -l 
l 

incP ref incP P

0absP 1. 0 1 

2. 0 0 

z = 0 z = -l 
l 

incP 0refP 
abs incP P

|Γ0|=0 

None of the incident 
power is reflected 
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 Power Considerations on a TL (contd.) 

3. 00 1  

2

00 0ref incP P     2

00 1abs inc incP P P     In this case: 

In this case the incident power is divided → some of the incident 
power is absorbed by the loads whereas the remainder is 

reflected from the load 

z = 0 z = -l 
l 

incP
ref incP P

abs incP P

0<|Γ0|<1 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Power Considerations on a TL (contd.) 

4. 0 1 

2

0ref inc incP P P    2

01 0abs incP P    In this case: 

Power Absorbed is Negative 

What type of load 
it could be? 

Definitely not a passive load → A passive device can’t produce power  

0 1  For all passive loads Therefore: 

Alternatively, we can say that the load 
creates extra power → i.e, acts as a 

power source and not a sink! 
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 Power Considerations on a TL (contd.) 

Q: Can Γ0 every be greater than one? 
A: Sure, if the “load” is an active device. In other words, the load must have 
some external power source connected to it. 

Q: What about the case where Γ0 < 0, shouldn’t we examine that situation 
as well? 
A: That would be just plain silly; do you see why? 
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 Return Loss 

• The ratio of the reflected power from a load, to the incident power on 
that load, is known as return loss. Typically, return loss is expressed in dB: 

ZL 
Z0 

0

z =l 

incP refP

Return Loss (R.L.):  2

0[ ] 10log 10log
ref

inc

P
RL dB

P

 
     

 
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 Return Loss (contd.) 

• The return loss tells us the percentage of the incident power reflected at 
the point of mismatch 

• For example, if the return loss is 10dB, then 10% of the power is reflected 
while the 90% is absorbed/transmitted → i.e, we lose 10% of the incident 
power  

• For the return loss of 30dB, the reflected power is 0.1% of the incident 
power → we lose only 0.1% of the incident power  

• A larger numeric value of return loss actually indicates smaller lost power  
→ An ideal return loss would be ∞ → matched condition 

• A return loss of 0dB indicates that reflection coefficient is ONE → reactive 
termination  

• Return Loss (RL) is very helpful as it provides real-valued measures of 
mismatch (unlike the complex-valued 𝑍𝐿 and Γ0) 

Summary 

A match is good if the return loss is high. A high return loss is 
desirable and results in a lower insertion loss. 
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• Another traditional real-valued measure of load match is Voltage Standing 
Wave Ratio (VSWR). Consider again the voltage along a terminated 
transmission line, as a function of position 𝑧. 

 Standing Wave and Standing Wave Ratio  

0 0( ) j z j zV z V e e       

z = 0 z = -l 

Z0 

ZL 

0

0

j zV e  

0

j zV e 

0 0( ) j l j lV l V e e       

• For a short circuited line: Γ0 = -1   0( ) j l j lV l V e e     

2jsin(βl) 
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Where has the traveling wave V(z) gone? 

• As the time and space are decoupled → No wave propagation takes 
place  

• The incident wave is 180ο out of phase with the reflected wave → gives 
rise to zero crossings of the wave at 0, λ/2, λ, 3λ/2, and so on → 
standing wave pattern!!! 

 Standing Wave and Standing Wave Ratio (contd.) 

   0( , ) Re ( ) Re 2 ( )sin( )j t j tv l t V l e jV z l e    

0( , ) 2 sin( )cos( ( / 2))v l t V l t     

Always zero for -l=0 i.e., the 
point of short-circuit 

Definitely not  a 
traveling wave!! 
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Standing Wave Pattern for Various Instances of Time 

𝛽𝑙 

𝑉
(𝑙
)/
2
𝑉 0

+
 

 Standing Wave and Standing Wave Ratio (contd.)  

Spatial Location: 
0, λ/2, λ, 3λ/2 

Corresponding 
Electrical Length (βl): 

0, π, 2π, 3π 
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 Standing Wave and Standing Wave Ratio (contd.)  

   2

0 0 0 0( ) 1j l j l j l j lV l V e e V e e              

→ for arbitrarily terminated line: 

A(-l) Γ(-l) 

 ( ) ( ) 1 ( )V l A l l      
Valid anywhere 

on the line 

 
0

( )
( ) 1 ( )

A l
I l l

Z


    Similarly: 

Valid anywhere 
on the line 

• Under the matched condition, Γ0 = 0 and therefore Γ(-l) = 0 → as 
expected, only positive traveling wave exists.  

• For other arbitrary impedance loads: Standing Wave Ratio (SWR) or 
Voltage Standing Wave Ratio (VSWR) is the measure of mismatch. 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Standing Wave and Standing Wave Ratio (contd.)  

• SWR is defined as the ratio of maximum voltage (or current) amplitude 
and the minimum voltage (or current) amplitude along a line → therefore, 
for an arbitrarily terminated line:  

 2

0 0( ) 1j l j lV l V e e      We have: 

max max

min min

( ) ( )

( ) ( )

V l I l
VSWR ISWR SWR

V l I l

 
   

 

Recall this is a complex function, the magnitude of which expresses the 
magnitude of the sinusoidal signal at position 𝑧, while the phase of the 

complex value represents the relative phase of the sinusoidal signal. 

• Therefore two possibilities for extreme values:  

0 1j le   0 1j le   
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00 1  Apparently: 1 VSWR  

 0 0max
V( ) 1l V    Max. voltage: Min. voltage:  0 0min

V( ) 1l V    

0

0

1

1
VSWR

 
 

 

 Standing Wave and Standing Wave Ratio (contd.)  

• Note if Γ0 = 0 (i.e., 𝑍𝐿 = 𝑍0 ), then 
VSWR = 1. We find for this case: 0max min

( ) ( )V z V z V  

In other words, the voltage magnitude is a constant 
with respect to position 𝑧. 

• Conversely, if Γ0 = 0 (i.e., 𝑍𝐿 = 𝑍0), 
then VSWR = ∞. We find for this case: 0max min

( ) ( )V z V z V   0max min
( ) ( )V z V z V  

In other words, the voltage magnitude varies 
greatly with respect to position 𝑧. 
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 Standing Wave and Standing Wave Ratio (contd.)  

• Similarly,  0

0

( ) j l j lV
I l e e

Z

 


    We have: 

Thus:     VSWR=ISWR=SWR 

0

0

1

1
ISWR

 
 

 
1 ISWR  

In our course we will mention both 
as VSWR 

 0max
0

I( ) 1
V

d
Z

 
   
 

 0min
0

I( ) 1
V

d
Z

 
   
 

and 

As with return loss, VSWR is dependent on the magnitude of 
Γ0  (i.e, Γ0 ) only ! 

In practice, SWR can only be defined for lossless line as the SWR equation 
is not valid for attenuating voltage and current   
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 Standing Wave and Standing Wave Ratio (contd.)  

z 

Standing Wave Pattern at Γ0=0.1 

z 

Standing Wave Pattern at Γ0=1 

• It is apparent that the maximum and minimum repeats periodically and 
its values can be used to identify the degree of mismatch by calculating 
the Standing Wave Ratio 

HW # 1 (part-3): 
demonstrate these 

curves using MATLAB 
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Insertion Loss  
• This is another parameter to address the mismatch problem and is 

defined as:  

 2
[ ] 10log 10log 10log 1

incident reflectedtransmitted
in

incident incident

P PP
IL dB

P P

   
         

   

For open- and 
short-circuit 
conditions 

IL

For perfectly 
matched 

conditions 

0IL 

insertion loss signifies  the loss of signal power resulting from 
the insertion of a device in a transmission line. 
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• The following two-step procedure has been carried out with a 50Ω  coaxial 
slotted line to determine an unknown load impedance: 

Example – 2  

1. short circuit is placed at the 
load plane, resulting in a 
standing wave on the line with 
infinite SWR and sharply 
defined voltage minima, as 
shown in Figure.  

On the  arbitrarily positioned scale on the slotted line, voltage 
minima are recorded at: 

𝑧 = 0.2𝑐𝑚,  2.2𝑐𝑚,    4.2𝑐𝑚 
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Example – 2  (contd.) 

2. The short circuit is removed 
and replaced with the unknown 
load. The standing wave ratio is 
measured as SWR = 1.5, and 
voltage minima, which are not 
as sharply defined as those in 
step 1, are recorded at: 

𝑧 = 0.72𝑐𝑚,  2.72𝑐𝑚,    4.72𝑐𝑚 

Find the load impedance. 
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Example – 2  (contd.) 
• Knowing that voltage minima repeat every λ/2, we have from the data of 

step 1 that λ = 4.0 cm.  
• In addition, because the reflection coefficient and input impedance also 

repeat every λ/2, we can consider the load terminals to be effectively 
located at any of the voltage minima locations listed in step 1. 

• Thus, if we say the load is at 4.2𝑐𝑚, then the data from step 2 show that 
the next voltage minimum away from the load occurs at 2.72𝑐𝑚. 

• It gives: 

𝑙𝑚𝑖𝑛 = 4.2 − 2.72 = 1.48𝑐𝑚 = 0.37λ 

• Now: 
0

1

1

SWR

SWR


 


0

1.5 1
0.2

1.5 1


  



min2 l     min

2
2 86.4l


 




 
     

 
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Example – 2  (contd.) 

• Therefore: 86.4

0 0.2 0.0126 0.1996je j   

• The unknown impedance is then: 

0
0

0

1

1
LZ Z

  
  

  

0

0

1
50 47.3 19.7

1
LZ j

  
    

  
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 Sourced and Loaded Transmission Line 
• Thus far, we have discussed a TL with terminated load impedance → Let us 

now consider a TL with terminated load impedance and a source at the 
input (with line-to-source mismatch) 

0 0( ) j z j zV z V e e       
0

0

0

( ) j z j zV
I z e e

Z

 


     

• The current and voltage along the TL is: 

0
0

0

L

L

Z Z

Z Z


 



• At 𝑧 = 0 

ZL Z0 

0

z =l 

ZG S VG 

0
0

0

L

L

Z Z

Z Z


 



z = 0 z = -l 





in

𝐼𝑖  
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 Sourced and Loaded Transmission Line (contd.) 

• We are left with the question: just what is the value of complex constant 
𝑉0

+? 
• This constant depends on the signal source! To determine its exact value, 

we must now apply boundary conditions at 𝑧 = −𝑙. 

• We know that at the beginning of the transmission line: 

0 0( ) j l j lV z l V e e         
0

0

0

( ) j l j lV
I z l e e

Z

 


       

• Likewise, we know that the source must satisfy: G i G iV V Z I 

To relate these three expressions, we need to apply boundary 
conditions at 𝑧 = −𝑙. 
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 Sourced and Loaded Transmission Line (contd.) 

ZL Z0 

ZG 

S VG 

z = 0 z = -l 





iV

𝐼𝑖  𝐼(𝑧 = −𝑙) 





( )V z l 

• From KVL we find: 

( )iV V z l  

• From KCL we find: 

( )iI I z l  
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 Sourced and Loaded Transmission Line (contd.) 

• Combining these equations, we find: 

0
0 0 0

0

j l j l j l j l

G G

V
V V e e Z e e

Z

   


               
One equation → one 

unknown (𝑉0
+)!! 

• Solving, we find the value of 𝑉0
+:    

0
0

0 1 1

j l

G

in G in

Z
V V e

Z Z

 
    

0( ) j l

in z l e       

• Note this result looks different than the 
equation in your book (Pozar):  

 
0

0

0 01

j l

G j l

G G

Z e
V V

Z Z e











   

0

0

G
G

G

Z Z

Z Z


 


I like the first expression better. 
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 Sourced and Loaded Transmission Line (contd.) 

Although the two equations are equivalent, first expression is 
explicitly written in terms of Γ𝑖𝑛 = Γ(𝑧 = −𝑙) (a very useful, precise, 

and unambiguous value), while the book’s expression is written in 
terms of this so-called “source reflection coefficient” Γ𝐺(a misleading, 

confusing, ambiguous, and mostly useless value). 

Specifically, we might be tempted to equate Γ𝐺  with the 
value Γ𝑖𝑛 = Γ(𝑧 = −𝑙), but it is not Γ𝐺 ≠ Γ(𝑧 = −𝑙)! 
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Example – 3  

• Consider the circuit below: 

Z0 =50Ω 25Ω 
1.0 A 

z = 0 





𝐼(𝑧) 

( )V z

• It is known that the current along the transmission line is: 

𝐼 𝑧 = 0.4𝑒−𝑗𝛽𝑧 − 𝐵𝑒+𝑗𝛽𝑧     𝐴𝑚𝑝       𝑓𝑜𝑟 𝑧 > 0 

where B is some unknown complex value. 

Determine the value of B. 
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 Sourced and Loaded Transmission Line (contd.) 

Q: If the purpose of a transmission line is to transfer power from a source to 
a load, then exactly how much power is delivered to ZL for the circuit shown 
below ?? 

ZL 
Z0 

ZG 

S VG 

z = 0 z = -l 

𝐼(𝑧) 





( )V zZin 

A: We of course could determine 𝑉0
+and 𝑉0

−, and then determine the 
power absorbed by the load (Pabs) as: 

( )V z
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 Sourced and Loaded Transmission Line (contd.) 

• However, if the transmission line is lossless, then we know that the power 
delivered to the load must be equal to the power “delivered” to the input 
(Pin) of the transmission line: 

 *1
Re ( ) ( )

2
abs inP P V z l I z l     

• However, we can determine this power without having to solve for 
𝑉0

+and 𝑉0
− (i.e., V(z) and I(z)). We can simply use our knowledge of 

circuit theory! 

• We can transform load ZL to 
the beginning of the 
transmission line, so that 
we can replace the 
transmission line with its 
input impedance Zin: 

𝑍𝑖𝑛 = 𝑍(𝑧 = −𝑙) 
Z0 

ZG 

S VG 

𝐼(𝑧 = −𝑙) 





( )V z l 
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 Sourced and Loaded Transmission Line (contd.) 

• Note by voltage division we can determine: ( ) in
G

G in

Z
V z l V

Z Z
  



• And from Ohm’s Law we conclude: ( ) G

G in

V
I z l

Z Z
  



• And thus, the power Pin delivered to Zin (and thus the power Pabs 
delivered to the load ZL) is: 

 
 

*
*

*

1 1
Re ( ) ( ) Re

2 2

in G
abs in G

G in G in

Z V
P P V z l I z l V

Z Z Z Z

  
        

   

   
2 2

2

2 2

1 1
Re Re

2 2

G in

abs in in G in

G in G in

V Z
P P Z V Y

Z Z Z Z
   

 
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 Sourced and Loaded Transmission Line (contd.) 

   
2

20*

0

0

1
Re ( 0) ( 0) 1

2 2
abs

V
P V z I z

Z



     

• Note that we could also determine Pabs from our earlier expression: 

But we would of course have 
to first determine 𝑉0

+(! ): 

   
0

0

0 1 1

j l

G

in G in

Z
V V e

Z Z

 
    

• Let’s look at specific cases of ZG and ZL, and determine how they affect 
𝑉0

+ and Pabs. 

𝒁𝑮 = 𝒁𝟎 • For this case, we find that 𝑉0
+ simplifies greatly: 

0

1

2

j l

GV V e  
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 Sourced and Loaded Transmission Line (contd.) 

0

1

2

j l

GV V e  

It says that the incident wave in this case is 
independent of the load attached at the 

other end! 

Thus, for the one case 𝒁𝑮 = 𝒁𝟎 , we in fact can consider 𝑉+(𝑧) as being 
the source wave, and then the reflected wave 𝑉−(𝑧) as being the result 

of this stimulus. 

• Remember, the complex value 𝑉0
+ is the value of the incident wave 

evaluated at the end of the transmission line (𝑉0
+= 𝑉+(𝑧 = 0)). We can 

likewise determine the value of the incident wave at the beginning of the 
transmission line (i.e. 𝑉+(𝑧 = −𝑙)). For this case, where 𝒁𝑮 = 𝒁𝟎, we find 
that this value can be very simply stated (!): 

( )

0

1
( )

2 2

j z l j l j l G
G

V
V z l V e V e e        

     
 
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 Sourced and Loaded Transmission Line (contd.) 

• Likewise, we find that the delivered power for this case can be simply 
stated as: 

   
2 2

2 20

0 0

0 0

1 1
2 8

G

abs

V V
P

Z Z



     

𝒁𝑳 = 𝒁𝟎 
• In this case, we find that  Γ0 = 0, and thus  Γ𝑖𝑛 = 0 . As a 

result: 
0

0

0

j l

G

G

Z
V V e

Z Z

 


• Likewise, we find that:  
2 2

20 0

0

0 0

1
2 2

abs

V V
P

Z Z

 

   

Here the delivered power Pabs is simply that of the incident wave (P+ ), as 
the matched condition causes the reflected power to be zero (P− = 0)! 
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 Sourced and Loaded Transmission Line (contd.) 

• Inserting the value of 𝑉0
+, we find: 

2 2

0 0

2

0 0
2 2

G

abs

G

V V Z
P

Z Z Z



 


Note that this result can likewise be found by recognizing 
that   𝑍𝑖𝑛 = 𝑍0 when 𝑍𝐿 = 𝑍0. 

𝒁𝒊𝒏 = 𝒁𝑮
∗ 

For this case, we find ZL takes on whatever value required 
to make 𝒁𝒊𝒏 = 𝒁𝑮

∗. This is a very important case! 

• First, we can express: 

*

0 0

*

0 0

in G
in

in G

Z Z Z Z

Z Z Z Z

 
  

 

We can show that 
(trust me!): 

 

*

0
0

4Re

j l G
G

G

Z Z
V V e

Z

  

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 Sourced and Loaded Transmission Line (contd.) 
• let’s look at the absorbed power: 

 
2

2

1
Re

2

G

abs in

G in

V
P Z

Z Z



 

2

*

2
*

1
Re

2

G

abs G

G G

V
P Z

Z Z




 
2

*

1 1

2 4Re
abs G avl

G

P V P
Z

 

It can be shown that—for a given VG and ZG—the value 
of input impedance Zin that will absorb the largest 
possible amount of power is the value 𝒁𝒊𝒏 = 𝒁𝑮

∗. 

This case is known as the conjugate match, and is essentially the goal of 
every transmission line problem—to deliver the largest possible power to 

Zin, and thus to ZL as well!  → This power is known as the available 
power (Pavl) of the source. 

 

HW #1 (part-4) 
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 Sourced and Loaded Transmission Line (contd.) 

 
2

*

1 1

2 4Re
abs G avl

G

P V P
Z

 There are two very important things to 
understand about this result! 

Very Important Thing #1 

• Consider again the terminated transmission line: 

ZL 
Z0 

ZG 

S VG 

z = 0 z = -l 

𝐼(𝑧) 





( )V zZin 

• Recall that if 𝒁𝑳 = 𝒁𝟎, the reflected 
wave will be zero, and the absorbed 
power will be: 

2

0

2

0
2

G

abs avl

G

V Z
P P

Z Z
 


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 Sourced and Loaded Transmission Line (contd.) 

• But note if 𝒁𝑳 = 𝒁𝟎 , the input impedance  𝒁𝒊𝒏 = 𝒁𝟎  —but then 
𝒁𝒊𝒏 ≠ 𝒁𝑮

∗ (generally)! In other words, 𝒁𝑳 = 𝒁𝟎 does not (generally) result 
in a conjugate match, and thus setting 𝒁𝑳 = 𝒁𝟎  does not result in 
maximum power absorption! 

Q: Huh!? This makes no sense! A load value of 𝒁𝑳 = 𝒁𝟎 will minimize the 
reflected wave 𝑃− = 0 —all of the incident power will be absorbed. 

• Any other value of 𝒁𝑳 will result in some of the incident wave being 
reflected—how in the world could this increase absorbed power? 

• After all, just look at the expression for absorbed power: 

 
2

20

0

0

1
2

abs

V
P

Z



  
Clearly, this value is maximized when 

Γ0 = 0 (i.e., when 𝒁𝑳 = 𝒁𝟎) 
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 Sourced and Loaded Transmission Line (contd.) 

A: You are forgetting one very important fact! Although it is true that the 
load impedance 𝒁𝑳 affects the reflected wave power 𝑃−, the value of 𝒁𝑳 —
as we have shown— likewise helps determine the value of the incident wave 
(i.e., the value of 𝑃+) as well. 

• Thus, the value of 𝒁𝑳 that minimizes  𝑃− will not generally maximize 𝑃+! 
• Likewise the value of  𝒁𝑳 that maximizes 𝑃+ will not generally minimize 

𝑃−. 
• Instead, the value of 𝒁𝑳 that maximizes the absorbed power Pabs is, by 

definition, the value that maximizes the difference 𝑃+ − 𝑃−.  
• We find that this impedance 𝒁𝑳  is the value that results in the ideal case 

of  𝒁𝒊𝒏 = 𝒁𝑮
∗. 
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Q: Yes, but what about the case where 𝒁𝑮 = 𝒁𝟎? For that case, we 
determined that the incident wave is independent of 𝒁𝑳. Thus, it would seem 
that at least for that case, the delivered power would be maximized when 
the reflected power was minimized (i.e., 𝒁𝑳 = 𝒁𝟎). 

 Sourced and Loaded Transmission Line (contd.) 

A: True! But think about what the input impedance would be in that case— 
𝒁𝒊𝒏 = 𝒁𝟎. Oh by the way, that provides a conjugate match (𝒁𝒊𝒏 = 𝒁𝟎 =
𝒁𝑮

∗). 

• Thus, in some ways, the case 𝒁𝑮 = 𝒁𝟎 = 𝒁𝑳 (i.e., both source and load 
impedances are numerically equal to 𝒁𝟎) is ideal. A conjugate match 
occurs, the incident wave is independent of ZL, there is no reflected wave, 
and all the math simplifies quite nicely: 

0

1

2

j l

GV V e  

2

08

G

abs avl

V
P P

Z
 
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 Sourced and Loaded Transmission Line (contd.) 

Very Important Thing #2 

Note the conjugate match criteria says: 
Given source impedance 𝒁𝑮, maximum power transfer occurs when the 
input impedance is set at value  𝒁𝒊𝒏 = 𝒁𝑮

∗. 

It does NOT say: 

Given input impedance  𝒁𝒊𝒏, maximum power transfer occurs when the 
source impedance is set at value  𝒁𝑮 = 𝒁𝒊𝒏

∗. 

This last statement is in fact false! 

A factual statement is this: 

Given input impedance 𝒁𝒊𝒏, maximum power transfer occurs when the 
source impedance is set at value  𝒁𝑮 = 0 − j𝑋𝑖𝑛(i.e., 𝑹𝑮 = 0). 

Q: Huh?? 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

A: Remember, the value of source impedance 𝒁𝑮 affects the available power 
Pavl of the source. To maximize Pavl, the real (resistive) component of the 
source impedance should be as small as possible (regardless of 𝒁𝒊𝒏!), a fact 
that is evident when observing the expression for available power: 

 Sourced and Loaded Transmission Line (contd.) 

 

2

2

*

1 1

2 84Re

G

avl G

GG

V
P V

RZ
 

• Thus, maximizing the power delivered to a load (Pabs), from a source, has 
two components: 

1. Maximize the power available (Pavl) from a source (e.g., minimize 𝑅𝐺). 
2. Extract all of this available power by setting the input impedance 𝒁𝒊𝒏 

to a value 𝒁𝒊𝒏 = 𝒁𝑮
∗ (thus  𝑷𝒂𝒃𝒔 = 𝑷𝒂𝒗𝒍). 
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 Example – 4 

S VG 

𝑍𝐺 = 20Ω 
𝑍𝐿 = 125Ω 

𝑃𝑖𝑛𝑐 = 0.49𝑊 𝑃𝑟𝑒𝑓 = 0.09𝑊 

𝑍0 = 50Ω 

𝑙 = λ
4  

• Consider this circuit, where the transmission line is lossless and has length 
𝑙 = λ

4  : 

Determine the magnitude of source voltage 𝑽𝑮 (i.e., determine 𝑽𝑮 ). 

Hint: This is not a boundary condition problem. Do not attempt to find  𝑉(𝑧) 
and/or  𝐼(𝑧)! 
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Lossy Transmission Lines  

• Recall that we have been approximating low-loss transmission lines as 
lossless (R =G = 0): 

0  LC 

• But, long low-loss lines require a better approximation: 

0

0

1

2

R
GZ

Z


 
  

 
LC 

• Now, if we have really long transmission lines (e.g., long distance 
communications), we can apply no approximations at all: 

 Re   Im 

For these very long transmission lines, we find that 𝛽 = 𝐼𝑚 𝛾  is 
a function of signal frequency ω . This results in an extremely 

serious problem—signal dispersion. 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Lossy Transmission Lines (contd.)  
• Recall that the phase velocity 𝒗𝒑  (i.e., propagation 

velocity) of a wave in a transmission line is: 
pv






     Im Im R j L G j C      

Thus, for a lossy line, the phase velocity 𝒗𝒑 is a function of 

frequency ω (i.e., 𝒗𝒑(𝝎))—this is bad! 

• Any signal that carries significant information must has some non-zero 
bandwidth. In other words, the signal energy (as well as the information it 
carries) is spread across many frequencies. 

• If the different frequencies that comprise a signal travel at different 
velocities, that signal will arrive at the end of a transmission line distorted. 
We call this phenomenon signal dispersion. 

• Recall for lossless lines, however, the phase velocity is independent of 
frequency—no dispersion will occur! 
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Lossy Transmission Lines (contd.)  

• For lossless line: 1
pv

LC
 however, a perfectly lossless line is 

impossible, but we find phase 
velocity is approximately constant 

if the line is low-loss. 

Therefore, dispersion distortion on low-loss lines is 
most often not a problem. 

Q: You say “most often” not a 
problem—that phrase seems to 
imply that dispersion sometimes 

is a problem! 
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Lossy Transmission Lines (contd.)  
A: Even for low-loss transmission lines, dispersion can be a problem if the 
lines are very long—just a small difference in phase velocity can result in 
significant differences in propagation delay if the line is very long! 

• Modern examples of long transmission lines include phone lines and cable 
TV. However, the original long transmission line problem occurred with the 
telegraph, a device invented and implemented in the 19th  century. 

• Telegraphy was the essentially the first electrical engineering technology 
ever implemented, and as a result, led to the first ever electrical engineers! 

• Early telegraph “engineers” discovered that if they made their telegraph lines 
too long, the dots and dashes characterizing Morse code turned into a 
muddled, indecipherable mess. Although they did not realize it, they had 
fallen victim to the heinous effects of dispersion! 

• Thus, to send messages over long distances, they were forced to implement 
a series of intermediate “repeater” stations, wherein a human operator 
received and then retransmitted a message on to the next station. This 
really slowed things down! 
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Lossy Transmission Lines (contd.)  

Q: Is there any way to prevent 
dispersion from occurring? 

A: You bet! Oliver Heaviside figured out 
how in the 19th  Century! 

• Heaviside found that a transmission line would be 
distortionless (i.e., no dispersion) if the line parameters 
exhibited the following ratio: 

R G

L C


• Let’s see why this works. Note the complex propagation constant  𝛾 can be 
expressed as: 

     / /R j L G j C LC R L j G C j         
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Lossy Transmission Lines (contd.)  

• Then IF: 
R G

L C


• we find: 

    / / /
C

LC R L j R L j R L j LC R j LC
L

          

• Thus:  Re
C

R
L

    Im LC   

• The propagation velocity of the wave is thus: 
1

pv
LC




 

The propagation velocity is independent of frequency! This lossy 
transmission line is not dispersive! 
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Lossy Transmission Lines (contd.)  

Q: Right. All the transmission lines I use 
have the property that  𝑅 𝐿 > 𝐺

𝐶 . I’ve 
never found a transmission line with this 

ideal property  𝑅 𝐿 = 𝐺
𝐶 ! 

A: It is true that typically 𝑅 𝐿 > 𝐺
𝐶 . But, we can reduce the ratio 𝑅 𝐿 (until it 

is equal to 𝐺
𝐶 ) by adding series inductors periodically along the 

transmission line. 

This was Heaviside’s solution—and it worked! Long distance 
transmission lines were made possible. 

Q: Why don’t we increase G instead? 
 

A:  


