Lecture - 5

- Review - Lecture 4
- Reflection Coefficient Transformation
- Power Considerations on a TL
- Return Loss, Insertion Loss, SWR etc.
- Sourced and Loaded TL
- Lossy TL

Review - Lecture 4

- Short-Circuited Line

- The current and voltage along the TL is:

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}-e^{+j \beta z}\right]=-j 2 V_{0}^{+} \sin (\beta z)
$$

$$
I(z)=\frac{2 V_{0}^{+}}{Z_{0}} \cos (\beta z)
$$

- The line impedance is:

$$
Z(z)=-j Z_{0} \tan (\beta z)
$$

Alternatively

$$
Z(z)=-j Z_{0} \tan \left(\frac{2 \pi z}{\lambda}\right)
$$

Review - Lecture 4

- Short-Circuited Line

HW \# 1 (part-1): plot these curves using MATLAB and ADS for frequency range of your choice.

Review - Lecture 4

- Open-Circuited Line

- The current and voltage along the TL is:

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}+e^{+j \beta z}\right]=2 V_{0}^{+} \cos (\beta z)
$$

$$
I(z)=-j \frac{2 V_{0}^{+}}{Z_{0}} \sin (\beta z)
$$

- The line impedance is:

$$
Z(-l)=-j Z_{0} \cot (\beta l)
$$

$$
Z(-l)=-j Z_{0} \cot \left(\frac{2 \pi l}{\lambda}\right)
$$

Review - Lecture 4

- Open-Circuited Line

HW \# 1 (part-2): plot these curves using MATLAB and ADS for frequency range of your choice.

Example - 1

A transistor has an input impedance of $Z_{L}=25 \Omega \rightarrow$ this needs to be matched to a 50Ω microstrip line at $f=500 \mathrm{MHZ}$ by using a quarter-wave parallel-plate impedance transformer \rightarrow Find the length, width and $Z_{\text {line }}$ (which also equals the characteristic impedance of the parallel-plate line) \rightarrow The thickness of the dielectric is 1 mm and relative dielectric constant of the material is 4 . Use formulation for inductance/m as $\mu l / w$ and capacitance/m as $\varepsilon l / d$. Ignore R and G.

Reflection Coefficient Transformation

- We know that the load at the end of some length of a transmission line (with characteristic impedance Z_{0}) can be specified in terms of its impedance Z_{L} or its reflection coefficient Γ_{0}.
- Note both values are complex, and either one completely specifies the load-if you know one, you know

$$
\Gamma_{0}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

$$
Z_{L}=Z_{0}\left(\frac{1+\Gamma_{0}}{1-\Gamma_{0}}\right)
$$ the other!

- Recall that we determined how a length of transmission line transformed the load impedance into an input impedance of a (generally) different value:

Reflection Coefficient Transformation (contd.)

Q: Say we know the load in terms of its reflection coefficient. How can we express the input impedance in terms its reflection coefficient (call this $\Gamma_{i n}$)?

A: Well, we could execute these three steps:

1. Convert Γ_{0} to Z_{L} :
2. Transform Z_{L} down the line to $Z_{i n}$:

$$
Z_{L}=Z_{0}\left(\frac{1+\Gamma_{0}}{1-\Gamma_{0}}\right)
$$

$$
Z_{i n}=Z_{0} \frac{Z_{L}+j Z_{0} \tan (\beta l)}{Z_{0}+j Z_{L} \tan (\beta l)}
$$

3. Convert $Z_{\text {in }}$ to $\Gamma_{\text {in }}: \Gamma_{i n}=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}$

Reflection Coefficient Transformation (contd.)

Q: Yikes! This is a ton of complex arithmetic—isn't there an easier way?
A: Actually, there is!

- Recall that the input impedance of a transmission line length l, terminated with a load Γ_{0}, is:

Directly insert this

$$
Z_{i n}=Z(z=-l)=\frac{V(z=-l)}{I(z=-l)}=Z_{0}\left(\frac{e^{j \beta l}+\Gamma_{0} e^{-j \beta l}}{e^{j \beta l}-\Gamma_{0} e^{-j \beta l}}\right)
$$

Note this directly relates Γ_{0} to $Z_{\text {in }}$ (steps 1 and 2 combined!).

$$
\Gamma_{i n}=\frac{Z_{i n}-Z_{0}}{Z_{i n}+Z_{0}} \quad \text { directly relates } \Gamma_{0} \text { to } \Gamma_{i n} . \quad \square \Gamma_{i n}=\Gamma_{0} e^{-j 2 \beta l}
$$

Q: Hey! This result looks familiar.
A: Absolutely! Recall that we found the reflection coefficient function $\Gamma(\mathbf{z})$:

$$
\Gamma(\mathrm{z})=\Gamma_{0} e^{j 2 \beta z} \quad \Gamma(\mathrm{z}=-l)=\Gamma_{0} e^{-j 2 \beta l}
$$

Reflection Coefficient Transformation (contd.)

$$
\Gamma_{i n}=\Gamma_{0} e^{-j 2 \beta l}
$$

the magnitude of $\Gamma_{i n}$ is the same as the magnitude of Γ_{0} !

$$
\left|\Gamma_{i n}\right|=\left|\Gamma_{0} e^{-j 2 \beta l}\right|=\left|\Gamma_{0}\right| \mid
$$

The reflection coefficient at the input is simply related to Γ_{0} by a phase shift of $2 \beta l$.

Finally, the phase shift associated with transforming Γ_{0} down a transmission
line can be attributed to the phase shift associated with the wave propagating a length l down the line, reflecting from load Z_{L}, and then propagating a length l back up the line.

Some Observations

That means the wave gets fully reflected with the same polarity

That means the wave gets fully reflected with inverted amplitude

- When, $\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{0} \rightarrow$ the transmission line is matched that results in no reflection $\rightarrow \Gamma_{0}=0 \rightarrow$ the incident voltage wave is completely absorbed by the load \rightarrow a scenario that says a second transmission line with the same characteristic impedance but infinite length is attached at $z=0 \rightarrow$ VERY IMPORTANT CONCEPT

Some Observations (contd.)

- Let us revisit propagation constant and phase velocity

$$
\gamma=\alpha+j \beta
$$

- It is apparent that the phase velocity is independent of frequency (instead it is dependent on line parameters) \rightarrow It means that if a saw tooth voltage signal propagates down a line then each frequency components of this sawtooth travels with same fixed velocity \rightarrow means original pulse will appear at a different location without changing shape

Some Observations (contd.)

- Wave is emerging from the source end of the line, traveling down the line, and then being absorbed by the matched load \rightarrow it is known as dispersionfree transmission
- In practical situation, there is always frequency dependence on phase velocity \rightarrow dispersion happens \rightarrow signal distortion takes place \rightarrow This property can be used in the design of dual-band/multi-band circuits!!

Some Observations (contd.)

- A terminated transmission line experiences standing waves
- It is due to superposition of two waves of the same frequency propagating in opposite directions
- The effect of standing waves is presence of series of nodes (zero displacement) and anti-nodes (maximum displacement) at fixed points along the transmission line
- The failure of the line to transfer power at the standing wave frequency results in attenuation distortion \rightarrow lossless transmission line is required!!
- Losses in transmission line doesn't allow a perfect reflection and a pure standing wave \rightarrow that results into partial standing wave \rightarrow superposition of standing and traveling wave \rightarrow The degree to which the propagating wave resembles a pure traveling or standing wave is measured in terms of standing wave ratio (SWR)

Some Observations (contd.)

Some Observations (contd.)

Based on your circuits experience, you might well be tempted to always use $\mathrm{V}(\mathrm{z})$, I(z) and $\mathrm{Z}(\mathrm{z})$.

However, it is useful (as well as simple) to describe activity on a transmission line in terms of $\mathrm{V}^{+}(\mathrm{z}), \mathrm{V}^{-}(\mathrm{z})$ and $\Gamma(\mathrm{z})$

Some Observations (contd.)

- The solution of Telegrapher equations (the equations defining the current and voltages along a TL) boils down to determination of complex coefficients $\mathrm{V}^{+}, \mathrm{V}^{-}, \mathrm{I}^{+}$and I^{-}. Once these are known, we can describe all the quantities along the TL .
- For example, the wave representations are:

$$
\begin{aligned}
& V^{+}(z)=V_{0}^{+} e^{-j \beta z} \\
& V^{-}(z)=V_{0}^{-} e^{j \beta z} \\
& \Gamma(z)=\frac{V_{0}^{-}(z)}{V_{0}^{+}(z)}=\frac{V_{0}^{-}}{V_{0}^{+}} e^{j 2 \beta z}
\end{aligned} \quad \text { Magnitudes } \quad \begin{aligned}
& \left|V^{+}(z)\right|=V_{0}^{+} \\
& \left|V^{-}(z)\right|=V_{0}^{-} \\
& |\Gamma(z)|=\left|\frac{V_{0}^{-}}{V_{0}^{+}}\right|
\end{aligned}
$$

Relative Phases

$$
\arg \left\{V^{+}(z)\right\}=-\beta z
$$

$$
\arg \left\{V^{-}(z)\right\}=+\beta z
$$

$$
\arg \{\Gamma(z)\}=+2 \beta z
$$

Some Observations (contd.)

- Contrast the wave functions with complex voltage, current and impedance

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z} \\
& I(z)=\frac{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}}{Z_{0}} \\
& Z(z)=Z_{0} \frac{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}}{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}}
\end{aligned}
$$

Magnitudes

$$
\begin{gathered}
|V(z)|=\left|V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}\right|=? ? \\
|I(z)|=\frac{\left|V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}\right|}{Z_{0}}=? ? \\
|Z(z)|=Z_{0} \frac{\left|V_{0}^{+} e^{-i \beta z}+V_{0}^{-} e^{j \beta z}\right|}{\left|V_{0}^{+} e^{-i \beta z}-V_{0}^{-} e^{j \beta z}\right|}=? ?
\end{gathered}
$$

Relative Phases

$$
\begin{aligned}
& \arg \{V(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}\right\}=? ? \\
& \arg \{I(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}\right\}=? ?
\end{aligned}
$$

$$
\arg \{Z(z)\}=\arg \left\{V_{0}^{+} e^{-j \beta z}+V_{0}^{-} e^{j \beta z}\right\}-\arg \left\{V_{0}^{+} e^{-j \beta z}-V_{0}^{-} e^{j \beta z}\right\}=? ?
$$

Some Observations (contd.)

- It is thus apparent that the description of quantities along a transmission line - as a function of position $z-$ is much easier and more straightforward to use the wave representation.
- However, this does not mean that we never determine $\mathrm{V}(\mathrm{z})$, $\mathrm{I}(\mathrm{z})$, or $\mathrm{Z}(\mathrm{z})$; these quantities are still fundamental and very important—particularly at each end of the transmission line!

Power Considerations on a TL

- We have discovered that two waves propagate along a transmission line, one in each direction $\left(V^{+}(z)\right.$ and $\left.V^{-}(z)\right)$.

> The result is that electromagnetic energy flows along the transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that power go?
A: We can answer that question by determining the power absorbed by the load!

Power Considerations on a TL (contd.)

- Expression for Time-Averaged Power Absorbed by load Z_{L} is:

$$
\begin{aligned}
& P_{P_{a b s}=\frac{1}{2} \operatorname{Re}\left(V_{L} I_{L}^{*}\right)=\frac{1}{2} \operatorname{Re}\left(V(0) I(0)^{*}\right)=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)}^{\left.P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}-\frac{\left|V_{0}^{+} \Gamma_{0}\right|^{2}}{2 Z_{0}}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\right)\left(\begin{array}{l}
\left.V_{0}^{-}\right|^{2} \\
2 Z_{0}
\end{array} \begin{array}{l}
\text { Reflected } \\
\text { Power, } P_{\text {ref }} \\
\text { Power, } P_{\text {inc }}
\end{array}\right.}+\begin{array}{l}
P_{\text {ref }}=\frac{\left|V_{0}^{+} \Gamma_{0}\right|^{2}}{2 Z_{0}}=\left|\Gamma_{0}\right|^{2} P_{\text {inc }}
\end{array}
\end{aligned}
$$

$$
\therefore P_{a b s}=P_{\text {inc }}-P_{r e f} \quad \Rightarrow P_{i n c}=P_{a b s}+P_{r e f}
$$

Conservation of Energy

Power Considerations on a TL (contd.)

- It is thus apparent that the power flowing towards the load $\left(P_{\text {inc }}\right)$ is either absorbed by the load ($P_{\text {abs }}$) or reflected back from the load $\left(P_{\text {ref }}\right)$

Now let us consider some special cases:

1. $\left|\Gamma_{0}\right|=1 \quad$ In this case: $P_{r e f}=\left|\Gamma_{0}\right|^{2} P_{i n c}=P_{i n c} \quad \Rightarrow P_{a b s}=0$

There is no power absorbed by the load \rightarrow all the incident power is reflected

Power Considerations on a TL (contd.)

1. $\left|\Gamma_{0}\right|=1$

2. $\left|\Gamma_{0}\right|=0$

In this case: $P_{r e f}=\left|\Gamma_{0}\right|^{2} P_{i n c}=0 \quad \Rightarrow P_{a b s}=P_{i n c}$

all the incident power is absorbed by the load

None of the incident power is reflected

Power Considerations on a TL (contd.)

3. $0<\left|\Gamma_{0}\right|<1$

In this case: $0<P_{\text {ref }}=\left|\Gamma_{0}\right|^{2} P_{\text {inc }}<0 \quad \Rightarrow 0<P_{\text {abs }}=P_{\text {inc }}\left(1-\left|\Gamma_{0}\right|^{2}\right)<P_{i n c}$
In this case the incident power is divided \rightarrow some of the incident power is absorbed by the loads whereas the remainder is reflected from the load

Power Considerations on a TL (contd.)

4. $\left|\Gamma_{0}\right|>1$

In this case: $\quad P_{r e f}=\left|\Gamma_{0}\right|^{2} P_{i n c}>P_{i n c}$

What type of load it could be?

Power Absorbed is Negative

$$
\Rightarrow P_{a b s}=P_{i n c}\left(1-\left|\Gamma_{0}\right|^{2}\right)<0
$$

Alternatively, we can say that the load creates extra power \rightarrow i.e, acts as a power source and not a sink!

Definitely not a passive load \rightarrow A passive device can't produce power

Therefore: $\quad\left|\Gamma_{0}\right| \leq 1 \quad$ For all passive loads

Power Considerations on a TL (contd.)

Q: Can Γ_{0} every be greater than one?
A: Sure, if the "load" is an active device. In other words, the load must have some external power source connected to it.

Q: What about the case where $\left|\Gamma_{0}\right|<0$, shouldn't we examine that situation as well?
A: That would be just plain silly; do you see why?

Return Loss

- The ratio of the reflected power from a load, to the incident power on that load, is known as return loss. Typically, return loss is expressed in dB:

Return Loss (R.L.): $R L[d B]=-10 \log \left(\frac{P_{r e f}}{P_{i n c}}\right)=-10 \log \left(\left|\Gamma_{0}\right|^{2}\right)$

Return Loss (contd.)

Summary

- The return loss tells us the percentage of the incident power reflected at the point of mismatch
- For example, if the return loss is 10 dB , then 10% of the power is reflected while the $\mathbf{9 0 \%}$ is absorbed/transmitted \rightarrow i.e, we lose 10% of the incident power
- For the return loss of 30 dB , the reflected power is 0.1% of the incident power \rightarrow we lose only 0.1% of the incident power
- A larger numeric value of return loss actually indicates smaller lost power \rightarrow An ideal return loss would be $\infty \rightarrow$ matched condition
- A return loss of OdB indicates that reflection coefficient is ONE \rightarrow reactive termination
- Return Loss (RL) is very helpful as it provides real-valued measures of mismatch (unlike the complex-valued Z_{L} and Γ_{0})

A match is good if the return loss is high. A high return loss is desirable and results in a lower insertion loss.

Standing Wave and Standing Wave Ratio

- Another traditional real-valued measure of load match is Voltage Standing Wave Ratio (VSWR). Consider again the voltage along a terminated transmission line, as a function of position z.

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{0} e^{+j \beta z}\right]
$$

$$
V(-l)=V_{0}^{+}\left[e^{j \beta l}+\Gamma_{0} e^{-j \beta l}\right]
$$

- For a short circuited line: $\boldsymbol{\Gamma}_{\mathbf{0}}=\mathbf{- 1}$

Standing Wave and Standing Wave Ratio (contd.)

$$
v(-l, t)=\operatorname{Re}\left(V(-l) e^{j \omega t}\right)=\operatorname{Re}\left(2 j V_{0}^{+}(z) \sin (\beta l) e^{j \omega t}\right)
$$

$\therefore v(-l, t)=2 V_{0}^{+} \sin (\beta l) \cos (\omega t+(\pi / 2))$

Definitely not a

Always zero for -l=0 i.e., the point of short-circuit

traveling wave!!

Where has the traveling wave $V(z)$ gone?

- As the time and space are decoupled \rightarrow No wave propagation takes place
- The incident wave is 180° out of phase with the reflected wave \rightarrow gives rise to zero crossings of the wave at $0, \lambda / 2, \lambda, 3 \lambda / 2$, and so on \rightarrow standing wave pattern!!!

Standing Wave and Standing Wave Ratio (contd.)

Standing Wave Pattern for Various Instances of Time

Standing Wave and Standing Wave Ratio (contd.)

\rightarrow for arbitrarily terminated line:

$$
\begin{aligned}
& V(-l)= V_{0}^{+}\left(e^{+j \beta l}+\Gamma_{0} e^{-j \beta l}\right)=V_{0}^{+} e^{+j \beta l} \\
& \mathbf{A}(-l)
\end{aligned}
$$

$$
\text { Similarly: } \quad I(-l)=\frac{A(-l)}{Z_{0}}(1-\Gamma(-l))
$$

- Under the matched condition, $\Gamma_{0}=0$ and therefore $\Gamma(-l)=0 \rightarrow$ as expected, only positive traveling wave exists.
- For other arbitrary impedance loads: Standing Wave Ratio (SWR) or Voltage Standing Wave Ratio (VSWR) is the measure of mismatch.

Standing Wave and Standing Wave Ratio (contd.)

- SWR is defined as the ratio of maximum voltage (or current) amplitude and the minimum voltage (or current) amplitude along a line \rightarrow therefore, for an arbitrarily terminated line:

$$
V S W R=I S W R=S W R=\left|\frac{V(-l)_{\max }}{V(-l)_{\min }}\right|=\left|\frac{I(-l)_{\max }}{I(-l)_{\min }}\right|
$$

We have: $V(-l)=V_{0}^{+} e^{+j \beta l}\left(1+\Gamma_{0} e^{-j 2 \beta l}\right)$

Recall this is a complex function, the magnitude of which expresses the magnitude of the sinusoidal signal at position z, while the phase of the complex value represents the relative phase of the sinusoidal signal.

- Therefore two possibilities for extreme values:

$$
\Gamma_{0} e^{-j \beta l}=1
$$

$$
\Gamma_{0} e^{-j \beta l}=-1
$$

Standing Wave and Standing Wave Ratio (contd.)

Max. voltage: $|\mathrm{V}(-l)|_{\max }=\left|V_{0}^{+}\right|\left(1+\left|\Gamma_{0}\right|\right) \quad$ Min. voltage: $\quad|\mathrm{V}(-l)|_{\min }=\left|V_{0}^{+}\right|\left(1-\left|\Gamma_{0}\right|\right)$

$$
\therefore V S W R=\frac{1+\left|\Gamma_{0}\right|}{1-\left|\Gamma_{0}\right|}
$$

Apparently: $0 \leq \Gamma_{0} \leq 1$

$$
\therefore 1 \leq V S W R<\infty
$$

- Note if $\left|\Gamma_{0}\right|=0$ (ie., $Z_{L}=Z_{0}$), then VSWR $=1$. We find for this case:

$$
|V(z)|_{\max }=|V(z)|_{\min }=\left|V_{0}^{+}\right|
$$

In other words, the voltage magnitude is a constant with respect to position z.

- Conversely, if $\left|\Gamma_{0}\right|=0$ (ie., $Z_{L}=Z_{0}$), then VSWR $=\infty$. We find for this case:

$$
\left.\left|V(z)_{\max }=\right| V(z)\right)_{\min }=V_{0}^{+} \mid
$$

$$
\left(\left.V(z)\right|_{\max }=|V(z)|_{\min }=\left|V_{0}^{+}\right|\right)
$$

In other words, the voltage magnitude varies greatly with respect to position z.

Standing Wave and Standing Wave Ratio (contd.)

- Similarly, We have: $I(-l)=\frac{V^{+}}{Z_{0}}\left(e^{+j \beta l}+\Gamma_{0} e^{-j \beta l}\right)$

$$
|\mathrm{I}(d)|_{\max }=\left(\frac{V^{+}}{Z_{0}}\right)\left(1+\left|\Gamma_{0}\right|\right) \quad \text { and } \quad|\mathrm{I}(d)|_{\min }=\left(\frac{V^{+}}{Z_{0}}\right)\left(1-\left|\Gamma_{0}\right|\right)
$$

$$
\therefore I S W R=\frac{1+\left|\Gamma_{0}\right|}{1-\left|\Gamma_{0}\right|}
$$

$$
\Longrightarrow \quad \therefore 1 \leq I S W R<\infty
$$

Thus: VSWR=ISWR=SWR

In our course we will mention both as VSWR

As with return loss, VSWR is dependent on the magnitude of

$$
\left.\left|\Gamma_{0}\right| \text { (i.e, }\left|\Gamma_{0}\right|\right) \text { only ! }
$$

In practice, SWR can only be defined for lossless line as the SWR equation is not valid for attenuating voltage and current

Standing Wave and Standing Wave Ratio (contd.)

- It is apparent that the maximum and minimum repeats periodically and its values can be used to identify the degree of mismatch by calculating the Standing Wave Ratio

Insertion Loss

- This is another parameter to address the mismatch problem and is defined as:

$$
I L[d B]=-10 \log \left(\frac{P_{\text {transsitted }}}{P_{\text {incident }}}\right)=-10 \log \left(\frac{P_{\text {incident }}-P_{\text {reflected }}}{P_{\text {incident }}}\right)-10 \log \left(1-\left|\Gamma_{\text {in }}\right|^{2}\right)
$$

For open- and short-circuit conditions

$$
I L \rightarrow \infty
$$

For perfectly matched
conditions

$$
I L=0
$$

insertion loss signifies the loss of signal power resulting from the insertion of a device in a transmission line.

Example - 2

- The following two-step procedure has been carried out with a 50Ω coaxial slotted line to determine an unknown load impedance:

1. short circuit is placed at the load plane, resulting in a standing wave on the line with infinite SWR and sharply defined voltage minima, as
 shown in Figure.

On the arbitrarily positioned scale on the slotted line, voltage minima are recorded at:

$$
z=0.2 \mathrm{~cm}, \quad 2.2 \mathrm{~cm}, \quad 4.2 \mathrm{~cm}
$$

Example - 2 (contd.)

2. The short circuit is removed and replaced with the unknown load. The standing wave ratio is measured as SWR = 1.5, and voltage minima, which are not
 as sharply defined as those in step 1, are recorded at:

$$
z=0.72 \mathrm{~cm}, \quad 2.72 \mathrm{~cm}, \quad 4.72 \mathrm{~cm}
$$

Find the load impedance.

Example - 2 (contd.)

- Knowing that voltage minima repeat every $\lambda / 2$, we have from the data of step 1 that $\lambda=4.0 \mathrm{~cm}$.
- In addition, because the reflection coefficient and input impedance also repeat every $\lambda / 2$, we can consider the load terminals to be effectively located at any of the voltage minima locations listed in step 1.
- Thus, if we say the load is at 4.2 cm , then the data from step 2 show that the next voltage minimum away from the load occurs at 2.72 cm .
- It gives:

$$
l_{\min }=4.2-2.72=1.48 \mathrm{~cm}=0.37 \lambda
$$

- Now: $\Gamma_{0} \left\lvert\,=\frac{S W R-1}{S W R+1}\right.$

$$
\left|\Gamma_{0}\right|=\frac{1.5-1}{1.5+1}=0.2
$$

$$
\theta_{\Gamma}=\pi+2 \beta l_{\min }
$$

$$
\theta_{\Gamma}=\pi+\left(2 \times \frac{2 \pi}{\lambda} l_{\min }\right)=86.4^{\circ}
$$

Example - 2 (contd.)

- Therefore:

$$
\Gamma_{0}=0.2 e^{j 86.4^{\circ}}=0.0126+j 0.1996
$$

- The unknown impedance is then:

$$
Z_{L}=Z_{0}\left(\frac{1+\Gamma_{0}}{1-\Gamma_{0}}\right) \quad Z_{L}=50\left(\frac{1+\Gamma_{0}}{1-\Gamma_{0}}\right)=47.3+j 19.7 \Omega
$$

Sourced and Loaded Transmission Line

- Thus far, we have discussed a TL with terminated load impedance \rightarrow Let us now consider a TL with terminated load impedance and a source at the input (with line-to-source mismatch)

- At $z=0$

$$
\Gamma_{0}=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}
$$

- The current and voltage along the TL is:

$$
V(z)=V_{0}^{+}\left[e^{-j \beta z}+\Gamma_{0} e^{+j \beta z}\right]
$$

$$
I(z)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{-j \beta z}-\Gamma_{0} e^{+j \beta z}\right]
$$

Sourced and Loaded Transmission Line (contd.)

- We are left with the question: just what is the value of complex constant $V_{0}{ }^{+}$?
- This constant depends on the signal source! To determine its exact value, we must now apply boundary conditions at $z=-l$.
- We know that at the beginning of the transmission line:

$$
V(z=-l)=V_{0}^{+}\left[e^{+j \beta l}+\Gamma_{0} e^{-j \beta l}\right]
$$

$$
I(z=-l)=\frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta l}-\Gamma_{0} e^{-j \beta l}\right]
$$

- Likewise, we know that the source must satisfy:

$$
V_{G}=V_{i}+Z_{G} I_{i}
$$

To relate these three expressions, we need to apply boundary conditions at $z=-l$.

Sourced and Loaded Transmission Line (contd.)

- From KVL we find:

$$
V_{i}=V(z=-l)
$$

- From KCL we find:

$$
I_{i}=I(z=-l)
$$

Sourced and Loaded Transmission Line (contd.)

- Combining these equations, we find:

$$
V_{G}=V_{0}^{+}\left[e^{+j \beta l}+\Gamma_{0} e^{-j \beta l}\right]+Z_{G} \frac{V_{0}^{+}}{Z_{0}}\left[e^{+j \beta l}-\Gamma_{0} e^{-j \beta l}\right]
$$

One equation \rightarrow one unknown $\left(V_{0}{ }^{+}\right)!$!

- Solving, we find the value of $V_{0}{ }^{+}$:

$$
V_{0}^{+}=V_{G} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{G}\left(1-\Gamma_{i n}\right)}
$$

$$
\Gamma_{i n}=\Gamma(z=-l)=\Gamma_{0} e^{-j \beta l}
$$

- Note this result looks different than the equation in your book (Pozar):

$$
\Gamma_{G}=\frac{Z_{G}-Z_{0}}{Z_{G}+Z_{0}}
$$

$$
V_{0}^{+}=V_{G} \frac{Z_{0}}{Z_{0}+Z_{G}} \frac{e^{-j \beta l}}{\left(1-\Gamma_{0} \Gamma_{G} e^{-j \beta l}\right)}
$$

Sourced and Loaded Transmission Line (contd.)

Although the two equations are equivalent, first expression is explicitly written in terms of $\Gamma_{\text {in }}=\Gamma(z=-l)$ (a very useful, precise, and unambiguous value), while the book's expression is written in terms of this so-called "source reflection coefficient" Γ_{G} (a misleading, confusing, ambiguous, and mostly useless value).

Specifically, we might be tempted to equate Γ_{G} with the value $\Gamma_{\text {in }}=\Gamma(z=-l)$, but it is not $\Gamma_{G} \neq \Gamma(z=-l)$!

Example - 3

- Consider the circuit below:

- It is known that the current along the transmission line is:

$$
I(z)=0.4 e^{-j \beta z}-B e^{+j \beta z} \quad \text { Amp } \quad \text { for } z>0
$$

where B is some unknown complex value.
Determine the value of B.

Sourced and Loaded Transmission Line (contd.)

Q: If the purpose of a transmission line is to transfer power from a source to a load, then exactly how much power is delivered to Z_{L} for the circuit shown below ??

A: We of course could determine $V_{0}{ }^{+}$and $V_{0}{ }^{-}$, and then determine the power absorbed by the load ($\mathrm{P}_{\mathrm{abs}}$) as:

$$
\square \gg
$$

Sourced and Loaded Transmission Line (contd.)

- However, if the transmission line is lossless, then we know that the power delivered to the load must be equal to the power "delivered" to the input $\left(P_{\text {in }}\right)$ of the transmission line:

$$
P_{a b s}=P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-l) I^{*}(z=-l)\right\}
$$

- However, we can determine this power without having to solve for $V_{0}{ }^{+}$and $V_{0}{ }^{-}$(i.e., $\mathrm{V}(\mathrm{z})$ and $\mathrm{I}(\mathrm{z})$). We can simply use our knowledge of circuit theory!
- We can transform load Z_{L} to the beginning of the transmission line, so that we can replace the transmission line with its input impedance Z_{in} :

Sourced and Loaded Transmission Line (contd.)

- Note by voltage division we can determine: $V(z=-l)=V_{G} \frac{Z_{\text {in }}}{Z_{G}+Z_{\text {in }}}$
- And thus, the power $P_{\text {in }}$ delivered to $Z_{i n}$ (and thus the power $P_{a b s}$ delivered to the load Z_{L}) is:

$$
P_{a b s}=P_{i n}=\frac{1}{2} \operatorname{Re}\left\{V(z=-l) I^{*}(z=-l)\right\}=\frac{1}{2} \operatorname{Re}\left\{V_{G} \frac{Z_{i n}}{Z_{G}+Z_{i n}} \frac{V_{G}^{*}}{\left(Z_{G}+Z_{i n}\right)^{*}}\right\}
$$

$$
\Rightarrow P_{a b s}=P_{i n}=\frac{1}{2} \frac{\left|V_{G}\right|^{2}}{\left|Z_{G}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\}=\frac{1}{2}\left|V_{G}\right|^{2} \frac{\left|Z_{i n}\right|^{2}}{\left|Z_{G}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Y_{i n}\right\}
$$

Sourced and Loaded Transmission Line (contd.)

- Note that we could also determine $\mathrm{P}_{\mathrm{abs}}$ from our earlier expression:
$P_{a b s}=\frac{1}{2} \operatorname{Re}\left\{V(z=0) I^{*}(z=0)\right\}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)$
But we would of course have to first determine $V_{0}{ }^{+}(!)$:

$$
V_{0}^{+}=V_{G} e^{-j \beta l} \frac{Z_{0}}{Z_{0}\left(1+\Gamma_{i n}\right)+Z_{G}\left(1-\Gamma_{i n}\right)}
$$

- Let's look at specific cases of Z_{G} and Z_{L}, and determine how they affect $V_{0}{ }^{+}$and $\mathrm{P}_{\mathrm{abs}}$.
$Z_{G}=Z_{0}$ - For this case, we find that $V_{0}{ }^{+}$simplifies greatly:

$$
V_{0}^{+}=\frac{1}{2} V_{G} e^{-j \beta l}
$$

Sourced and Loaded Transmission Line (contd.)

$$
V_{0}^{+}=\frac{1}{2} V_{G} e^{-j \beta l}
$$

It says that the incident wave in this case is independent of the load attached at the other end!

Thus, for the one case $Z_{G}=Z_{0}$, we in fact can consider $V^{+}(z)$ as being the source wave, and then the reflected wave $V^{-}(z)$ as being the result of this stimulus.

- Remember, the complex value $V_{0}{ }^{+}$is the value of the incident wave evaluated at the end of the transmission line $\left(V_{0}{ }^{+}=V^{+}(z=0)\right)$. We can likewise determine the value of the incident wave at the beginning of the transmission line (i.e. $V^{+}(z=-l)$). For this case, where $Z_{G}=Z_{0}$, we find that this value can be very simply stated (!):

$$
V^{+}(z=-l)=V_{0}^{+} e^{-j \beta(z=-l)}=\left(\frac{1}{2} V_{G} e^{-j \beta l}\right) e^{+j \beta l}=\frac{V_{G}}{2}
$$

Sourced and Loaded Transmission Line (contd.)

- Likewise, we find that the delivered power for this case can be simply stated as:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)=\frac{\left|V_{G}\right|^{2}}{8 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)
$$

$Z_{L}=Z_{0}$

- In this case, we find that $\Gamma_{0}=0$, and thus $\Gamma_{\text {in }}=0$. As a result:

$$
V_{0}^{+}=V_{G} e^{-j \beta l} \frac{Z_{0}}{Z_{0}+Z_{G}}
$$

- Likewise, we find that:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}
$$

Here the delivered power $\mathrm{P}_{\text {abs }}$ is simply that of the incident wave (P^{+}), as the matched condition causes the reflected power to be zero $\left(P^{-}=0\right)$!

Sourced and Loaded Transmission Line (contd.)

- Inserting the value of $V_{0}{ }^{+}$, we find:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}=\frac{\left|V_{G}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0}+Z_{G}\right|^{2}}
$$

Note that this result can likewise be found by recognizing that $Z_{\text {in }}=Z_{0}$ when $Z_{L}=Z_{0}$.
$Z_{i n}=Z_{G}{ }^{*}$
For this case, we find Z_{L} takes on whatever value required to make $\mathbb{Z}_{\text {in }}=Z_{G}{ }^{*}$. This is a very important case!

- First, we can express:

$$
\Gamma_{i n}=\frac{Z_{i n}-Z_{0}}{Z_{i n}+Z_{0}}=\frac{Z_{G}^{*}-Z_{0}}{Z_{G}^{*}+Z_{0}}
$$

We can show that

$$
V_{0}^{+}=V_{G} e^{-j \beta l} \frac{Z_{G}^{*}+Z_{0}}{4 \operatorname{Re}\left\{Z_{G}\right\}}
$$

Sourced and Loaded Transmission Line (contd.)

- let's look at the absorbed power:

$$
P_{a b s}=\frac{1}{2} \frac{\left|V_{G}\right|^{2}}{\left|Z_{G}+Z_{i n}\right|^{2}} \operatorname{Re}\left\{Z_{i n}\right\}
$$

$\square P_{a b s}=\frac{1}{2} \frac{\left|V_{G}\right|^{2}}{\left|Z_{G}+Z_{G}^{*}\right|^{*}} \operatorname{Re}\left\{Z_{G}^{*}\right\}$

HW \#1 (part-4)

$$
\therefore P_{a b s}=\frac{1}{2}\left|V_{G}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{G}^{*}\right\}} \doteq P_{a v l}
$$

It can be shown that-for a given V_{G} and Z_{G}-the value of input impedance $Z_{\text {in }}$ that will absorb the largest possible amount of power is the value $Z_{i n}=Z_{G}{ }^{*}$.

This case is known as the conjugate match, and is essentially the goal of every transmission line problem-to deliver the largest possible power to Z_{in}, and thus to Z_{L} as well! \rightarrow This power is known as the available power (P_{av}) of the source.

Sourced and Loaded Transmission Line (contd.)

$$
P_{a b s}=\frac{1}{2}\left|V_{G}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{G}^{*}\right\}} \doteq P_{a v l}
$$

There are two very important things to understand about this result!

Very Important Thing \#1

- Consider again the terminated transmission line:

- Recall that if $Z_{L}=Z_{0}$, the reflected wave will be zero, and the absorbed power will be:

$$
P_{a b s}=\frac{\left|V_{G}\right|^{2}}{2} \frac{Z_{0}}{\left|Z_{0}+Z_{G}\right|^{2}} \leq P_{a v l}
$$

Sourced and Loaded Transmission Line (contd.)

- But note if $Z_{L}=Z_{0}$, the input impedance $Z_{\text {in }}=Z_{0}$-but then $Z_{\text {in }} \neq Z_{G}{ }^{*}$ (generally)! In other words, $Z_{L}=Z_{0}$ does not (generally) result in a conjugate match, and thus setting $Z_{L}=Z_{0}$ does not result in maximum power absorption!

Q: Huh!? This makes no sense! A load value of $Z_{L}=Z_{0}$ will minimize the reflected wave ($P^{-}=0$) -all of the incident power will be absorbed.

- Any other value of Z_{L} will result in some of the incident wave being reflected-how in the world could this increase absorbed power?
- After all, just look at the expression for absorbed power:

$$
P_{a b s}=\frac{\left|V_{0}^{+}\right|^{2}}{2 Z_{0}}\left(1-\left|\Gamma_{0}\right|^{2}\right)
$$

Clearly, this value is maximized when

$$
\left.\Gamma_{0}=0 \text { (i.e., when } Z_{L}=Z_{0}\right)
$$

Sourced and Loaded Transmission Line (contd.)

A: You are forgetting one very important fact! Although it is true that the load impedance Z_{L} affects the reflected wave power P^{-}, the value of Z_{L} as we have shown - likewise helps determine the value of the incident wave (i.e., the value of P^{+}) as well.

- Thus, the value of Z_{L} that minimizes P^{-}will not generally maximize P^{+}!
- Likewise the value of Z_{L} that maximizes P^{+}will not generally minimize P^{-}.
- Instead, the value of Z_{L} that maximizes the absorbed power $P_{a b s}$ is, by definition, the value that maximizes the difference $P^{+}-P^{-}$.
- We find that this impedance Z_{L} is the value that results in the ideal case of $Z_{\text {in }}=Z_{G}{ }^{*}$.

Sourced and Loaded Transmission Line (contd.)

Q: Yes, but what about the case where $Z_{G}=Z_{0}$? For that case, we determined that the incident wave is independent of Z_{L}. Thus, it would seem that at least for that case, the delivered power would be maximized when the reflected power was minimized (i.e., $Z_{L}=Z_{0}$).
A: True! But think about what the input impedance would be in that case$Z_{\text {in }}=Z_{0}$. Oh by the way, that provides a conjugate match $\left(Z_{i n}=Z_{0}=\right.$ $\left.Z_{G}{ }^{*}\right)$.

- Thus, in some ways, the case $Z_{G}=Z_{0}=Z_{L}$ (i.e., both source and load impedances are numerically equal to Z_{0}) is ideal. A conjugate match occurs, the incident wave is independent of Z_{L}, there is no reflected wave, and all the math simplifies quite nicely:

$$
V_{0}^{+}=\frac{1}{2} V_{G} e^{-j \beta l}
$$

$$
P_{a b s}=P_{a v l}=\frac{\left|V_{G}\right|^{2}}{8 Z_{0}}
$$

Sourced and Loaded Transmission Line (contd.)

Very Important Thing \#2

Note the conjugate match criteria says:
Given source impedance Z_{G}, maximum power transfer occurs when the input impedance is set at value $Z_{i n}=Z_{G}{ }^{*}$.

It does NOT say:
Given input impedance $Z_{i n}$, maximum power transfer occurs when the source impedance is set at value $Z_{G}=Z_{i n}{ }^{*}$.

This last statement is in fact false!

A factual statement is this:
Given input impedance $Z_{i n}$, maximum power transfer occurs when the source impedance is set at value $Z_{G}=0-\mathrm{j} X_{\text {in }}$ (i.e., $\boldsymbol{R}_{G}=0$).

Q: Huh??

Sourced and Loaded Transmission Line (contd.)

A: Remember, the value of source impedance Z_{G} affects the available power $P_{a v l}$ of the source. To maximize $P_{a v l}$, the real (resistive) component of the source impedance should be as small as possible (regardless of $Z_{i n}$!), a fact that is evident when observing the expression for available power:

$$
P_{a v l}=\frac{1}{2}\left|V_{G}\right|^{2} \frac{1}{4 \operatorname{Re}\left\{Z_{G}^{*}\right\}}=\frac{\left|V_{G}\right|^{2}}{8 R_{G}}
$$

- Thus, maximizing the power delivered to a load $\left(P_{a b s}\right)$, from a source, has two components:

1. Maximize the power available ($P_{\text {avl }}$) from a source (e.g., minimize R_{G}).
2. Extract all of this available power by setting the input impedance $\mathbb{Z}_{\text {in }}$ to a value $Z_{i n}=Z_{G}{ }^{*}$ (thus $P_{a b s}=P_{a v l}$).

Example-4

- Consider this circuit, where the transmission line is lossless and has length $l=\lambda / 4$:

Determine the magnitude of source voltage V_{G} (i.e., determine $\left|V_{G}\right|$).
Hint: This is not a boundary condition problem. Do not attempt to find $V(z)$ and/or $I(z)$!

Lossy Transmission Lines

- Recall that we have been approximating low-loss transmission lines as lossless ($\mathrm{R}=\mathrm{G}=0$):

$$
\alpha=0
$$

$$
\beta=\omega \sqrt{L C}
$$

- But, long low-loss lines require a better approximation:

$$
\alpha=\frac{1}{2}\left(\frac{R}{Z_{0}}+G Z_{0}\right) \quad \beta=\omega \sqrt{L C}
$$

- Now, if we have really long transmission lines (e.g., long distance communications), we can apply no approximations at all:

$$
\alpha=\operatorname{Re}\{\gamma\}
$$

$$
\beta=\operatorname{Im}\{\gamma\}
$$

For these very long transmission lines, we find that $\beta=\operatorname{Im}\{\gamma\}$ is a function of signal frequency ω. This results in an extremely serious problem—signal dispersion.

Lossy Transmission Lines (contd.)

- Recall that the phase velocity $\boldsymbol{v}_{\boldsymbol{p}}$ (i.e., propagation velocity) of a wave in a transmission line is:

$$
v_{p}=\frac{\omega}{\beta}
$$

$$
\beta=\operatorname{Im}\{\gamma\}=\operatorname{Im}\{\sqrt{(R+j \omega L)(G+j \omega C)}\}
$$

Thus, for a lossy line, the phase velocity $\boldsymbol{v}_{\boldsymbol{p}}$ is a function of frequency ω (i.e., $\boldsymbol{v}_{\boldsymbol{p}}(\boldsymbol{\omega})$)-this is bad!

- Any signal that carries significant information must has some non-zero bandwidth. In other words, the signal energy (as well as the information it carries) is spread across many frequencies.
- If the different frequencies that comprise a signal travel at different velocities, that signal will arrive at the end of a transmission line distorted. We call this phenomenon signal dispersion.
- Recall for lossless lines, however, the phase velocity is independent of frequency-no dispersion will occur!

Lossy Transmission Lines (contd.)

- For lossless line:

$$
v_{p}=\frac{1}{\sqrt{L C}}
$$

however, a perfectly lossless line is impossible, but we find phase velocity is approximately constant if the line is low-loss.

Therefore, dispersion distortion on low-loss lines is most often not a problem.

Q: You say "most often" not a problem-that phrase seems to imply that dispersion sometimes
 is a problem!

Lossy Transmission Lines (contd.)

A: Even for low-loss transmission lines, dispersion can be a problem if the lines are very long-just a small difference in phase velocity can result in significant differences in propagation delay if the line is very long!

- Modern examples of long transmission lines include phone lines and cable TV. However, the original long transmission line problem occurred with the telegraph, a device invented and implemented in the $19^{\text {th }}$ century.
- Telegraphy was the essentially the first electrical engineering technology ever implemented, and as a result, led to the first ever electrical engineers!
- Early telegraph "engineers" discovered that if they made their telegraph lines too long, the dots and dashes characterizing Morse code turned into a muddled, indecipherable mess. Although they did not realize it, they had fallen victim to the heinous effects of dispersion!
- Thus, to send messages over long distances, they were forced to implement a series of intermediate "repeater" stations, wherein a human operator received and then retransmitted a message on to the next station. This really slowed things down!

Lossy Transmission Lines (contd.)

Q: Is there any way to prevent dispersion from occurring?

A: You bet! Oliver Heaviside figured out how in the $\mathbf{1 9}^{\text {th }}$ Century!

- Heaviside found that a transmission line would be distortionless (i.e., no dispersion) if the line parameters exhibited the following ratio:

$$
\frac{R}{L}=\frac{G}{C}
$$

- Let's see why this works. Note the complex propagation constant γ can be expressed as:

$$
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}=\sqrt{L C(R / L+j \omega)(G / C+j \omega)}
$$

Lossy Transmission Lines (contd.)

- Then IF: $\frac{R}{L}=\frac{G}{C}$
- we find:

$$
\gamma=\sqrt{L C(R / L+j \omega)(R / L+j \omega)}=(R / L+j \omega) \sqrt{L C}=R \sqrt{\frac{C}{L}}+j \omega \sqrt{L C}
$$

- Thus: $\alpha=\operatorname{Re}\{\gamma\}=R \sqrt{\frac{C}{L}}$

$$
\beta=\operatorname{Im}\{\gamma\}=\omega \sqrt{L C}
$$

- The propagation velocity of the wave is thus:

$$
v_{p}=\frac{\omega}{\beta}=\frac{1}{\sqrt{L C}}
$$

The propagation velocity is independent of frequency! This lossy transmission line is not dispersive!

Lossy Transmission Lines (contd.)

Q: Right. All the transmission lines I use have the property that $R / L>G / C$. I've never found a transmission line with this ideal property $R / L=G / C$!
 is equal to G / C) by adding series inductors periodically along the transmission line.

This was Heaviside's solution—and it worked! Long distance transmission lines were made possible.

Q: Why don't we increase G instead?
A:

