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• For a terminated lossless transmission line, the current and voltage along 
the line is:  
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 Review – Lecture 3  
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 Special Termination Conditions  
• Let us consider a generic TL terminated in arbitrary impedance ZL 

ZL 

z = 0 z = -l 

Zin 0

Z0 
V(z) 

I(z) 

It’s interesting to note that the load ZL enforces a boundary 
condition that explicitly determines neither V(z) nor I(z)—but 

completely specifies line impedance Z(z)! 
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 Special Termination Conditions (contd.)  

z = 0 

ZL 

z = -l 

Zin 0
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



( )V z

( )Z z

• We define the generalized impedance at any point on the line as: 
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( )

( )

V z
Z z

I z


This is the impedance we would measure 
if we cut the line at z and measured its 

impedance there. 
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 Special Termination Conditions (contd.)  

2 20
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
    



• Likewise, the load boundary condition leaves 𝑉+(𝑧)  and 𝑉−(𝑧)  
undetermined, but completely determines reflection coefficient function 
Γ(𝒛)! 

0 0
0 0

0 0

cos( ) sin( )
( )

cos( ) sin( )

j z j z

L

j z j z

L

e e Z z jZ z
Z z Z Z

e e Z z jZ z

 

 

 

 

 

 

  
 

  

Let’s look at some specific values of load impedance  𝑍𝐿= 𝑅𝐿 + 𝑗𝑋𝐿 
and see what functions 𝑍(𝑧) and Γ(𝒛) result! 
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 Special Termination Conditions (contd.)  

• 𝒁𝑳 = 𝒁𝟎 

z = 0 

ZL=Z0 

z = -l 

0

Z0 

0LR ZFor a lossless TL:  

0LX 

0
0

0

0L

L

Z Z

Z Z


  


The load reflection coefficient: 

means no reflected 
wave V–(z)  

Purely Real 

0( )Z z ZThe impedance at position z: 

reflection coefficient 
is zero at all points 

along the line 

  

The line impedance equals Z0 
→ matched condition 

  Matched Line  the load impedance equals the 
characteristic impedance of the TL 
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 Special Termination Conditions (contd.)  

• 𝒁𝑳 = 𝟎 

  Short-Circuited Line A device with no load is 
called short circuit 

ZL =0 

z = 0 z =-l 

0

Z0 

l 

0( ) tan( )Z z jZ z 

Short-circuit 
entails setting 

this impedance 
to zero 

Alternatively 

0

2
( ) tan

z
Z z jZ





 
   

 

0LR  0LX 

0
0

0

0
1

0

Z

Z


   



Note that this impedance is purely reactive. This means that the current and 
voltage on the transmission line will be everywhere 90° out of phase. 
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 Special Termination Conditions (contd.)  

0 0( ) 2 sin( )j z j zV z V e e j V z          
0

0

2
( ) cos( )

V
I z z

Z






• The current and voltage along the TL is: 

• Finally, the reflection coefficient function is: 

• Short-Circuited Line 

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  


     Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave! 
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 Special Termination Conditions (contd.)  

• Short-Circuited Line 0( ) tan( )Z l jZ l 

Zin 

 l π/2 3π/2 

inductive 

capacitive 

5π/2 

3 5
0

4 2 4 4

   
 d

0 

It can be observed: 
• At -l=0, the impedance is zero 

(short-circuit condition) 
• Increase in -l leads to inductive 

behavior  
• At -l=λ/4, the impedance equals 

infinity (open-circuit condition) 

• Further increase in -l leads to 
capacitive behavior 

• At -l=λ/2, the impedance 

becomes zero (short-circuit 

condition) 

• The entire periodic sequence 

repeats for -l>λ/2 and so on…  
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 Special Termination Conditions (contd.)  

• Short-Circuited Line 

At low frequency:      0( )
L

Z l jZ l LC l j Ll
C

     

 ( )Z l j Ll 

L*l 

l 

C*l 
Extremely useful 

result for RF Circuit 
Design 

0( ) tan( )Z l jZ l 
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 Example – 1   

For a short-circuited TL of l = 10 cm, compute the magnitude of the input 
impedance when the frequency is swept from f = 1 GHz to 4 GHz. Assume the 
line parameters  L = 209.4 nH/m and C = 119.5 pF/m. 

Solution: 

0 / (209.4*0.1) / (119.5*0.5) 41.86Z L C   

81 1
1.99*10 /

(209.4*0.1)*(119.5*0.5) 41.86
pv m s

LC
  

 

0 0

2
( ) tan( ) tan

p

f
Z z l jZ l jZ l

v




 
      

 

Set l = 10 cm and then write a MATLAB program to obtain the Zin curve 

Compare the MATLAB results to that obtained from ADS simulation 
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 Special Termination Conditions (contd.)  

• 𝒁𝑳 → ∞ 

  Open-Circuited Line A device with infinite 
load is called open-circuit 

LR   LX  

ZL → ∞ 

z = 0 z = -l 

Z(-l) 

0

Z0 

l 

0( ) cot( )Z l jZ l  

Open-circuit entails 
setting this impedance 

to infinite 

Alternatively 
0

2
( ) cot

l
Z l jZ





 
    

 

0
0

0

1L

L

Z Z

Z Z


  



Again note that this impedance is purely reactive. current and voltage on 
the transmission line are  90° out of phase. 
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0 0( ) 2 cos( )j z j zV z V e e V z         
0
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2
( ) sin( )

V
I z j z

Z




 

• The current and voltage along the TL is: 

• Open-Circuited Line 

• Finally, the reflection coefficient function is: 

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  
    Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave! 

 Special Termination Conditions (contd.)  

• At the load, 𝑧 = 0, therefore: 
0(0) 2V V  (0) 0I 

As expected, the current is zero at the end of the transmission line (i.e. the 
current through the open). Likewise, the voltage at the end of the line (i.e., the 

voltage across the open) is at a maximum! 
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 Special Termination Conditions (contd.)  

0( ) cot( )Z l jZ l  

It can be observed: 
• At l=0, the impedance is infinite 

(open-circuit condition) 
• Increase in -l leads to capacitive 

behavior  
• At -l = λ/4, the impedance equals 

zero (short-circuit condition) 

• Further increase in -l leads to 
inductive behavior 

• At -l=λ/2, the impedance 

becomes infinite (open-circuit 

condition) 

• The entire periodic sequence 

repeats for -l >λ/2 and so on…  

Zin 

π 2π 3π 

inductive 

capacitive 

l 

3 5
0

4 2 4 4

   


0 

• Open-Circuited Line 
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 Special Termination Conditions (contd.)  

0( ) cot( )Z l jZ l  
• Open-Circuited Line 

At low frequency:      0
1( ) / 1/

L
Z l jZ l j LC l

j ClC
 


     

Extremely useful 
result for RF Circuit 

Design 

L*l 

l 

C*l 

 ( ) 1/Z l j Cl 
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• Load impedance is purely reactive:  ZL = jXL 

z = 0 

ZL=jXL 

z = -l 

0

Z0 

0 0
0

0 0

L L

L L

Z Z jX Z

Z Z jX Z

 
  

 

Z0 is real for a lossless TL, therefore 
this reflection coefficient is 

generally some complex number 

2

0 1  magnitude is 1 and therefore we can write 

0

je   Where, 
1 0

2 2

0

2
tan L

L

Z X

X Z
 



 
  

 

 Special Termination Conditions (contd.)  

𝑹𝑳 = 𝟎 
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• We can write voltage and current as: 

 0( ) jj z j zV z V e e e    

 0

0

( ) jj z j zV
I z e e e

Z

 


  

• Therefore the line impedance is: 

0

( )
( ) cot

( ) 2

V z
Z z jZ z

I z


  

   
 

Purely Reactive 

• Load impedance is purely reactive:  ZL = jXL 

 Special Termination Conditions (contd.)  

𝑹𝑳 = 𝟎 

2
0( ) 2 cos

2

j

V z V e z






  

  
 

0 2

0

2
( ) sin

2

jV
I z j e z

Z








 

  
 

Again note that this impedance is purely reactive. current and voltage on 
the transmission line are  90° out of phase. 
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• Load impedance is purely reactive:  ZL = jXL 

 Special Termination Conditions (contd.)  

𝑹𝑳 = 𝟎 

→ with a little trigonometry, we can show (trust 
me!) that: 

0

cot
2

LX

Z

 
 

 

0( 0) cot
2

L LZ z Z jZ jX
 

     
 

Expected! 

• The reflection 
coefficient is: 

2
2( )

( )
( )

j zV z
z e

V z


    

 


   ( ) 1z 

The magnitude of forward and backward waves on TL is same → a reactive 
load leads to results very similar to that of an open or short circuit 

0

( 0)
( 0) cot

( 0) 2
L

V z
Z z Z jZ

I z

  
     

  
• At the load end of the line: 

( ) ( )V z V z 
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 Special Termination Conditions (contd.)  

• Load impedance is purely resistive:   ZL = RL  ≠ 50Ω 
𝑿𝑳 = 𝟎 

0 0
0

0 0

L L

L L

Z Z R Z

Z Z R Z

 
  

 
A real value considering 

that 𝑍0 is real valued. 

The current, voltage, and thus the line impedance 
are complex in this case and expressions can’t be 

simplified any further.   

Q: Why is that? When the load was purely imaginary (reactive), we were 
able to simplify our general expressions, and likewise deduce all sorts of 
interesting results! 
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 Special Termination Conditions (contd.)  

• Load impedance is purely resistive:   ZL = RL  ≠ 50Ω 
𝑿𝑳 = 𝟎 

A: True! And here’s why. Remember, a lossless transmission line has series 
inductance and shunt capacitance only. In other words, a length of lossless 
transmission line is a purely reactive device (it absorbs no energy!). 

• If we attach a purely reactive load at the end of the transmission line, we 
still have a completely reactive system (load and transmission line). 
Because this system has no resistive (i.e., real) component, the general 
expressions for line impedance, line voltage, etc. can be significantly 
simplified. 

• However, if we attach a purely real load to our reactive transmission line, 
we now have a complex system, with both real and imaginary (i.e., 
resistive and reactive) components. 

This complex case is exactly what our general expressions already 
describes—no further simplification is possible! 
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 Special Termination Conditions (contd.)  

• Load impedance is complex (the general case):   𝒁𝑳 = 𝑹𝑳 + 𝒋𝑿𝑳 

Q: Haven’t we already determined all the general expressions (e.g., 
Γ0, 𝐼 𝑧 , 𝑉 𝑧 , 𝑎𝑛𝑑 Γ(𝑧) for this general case? Is there anything else left to be 
determined? 
A: There is one last thing we need to discuss. It seems trivial, but its 
ramifications are very important! 

• For you see, the “general” case is not, in reality, quite so general. 
Although the reactive component of the load can be either positive or 
negative (−∞ < 𝑋𝐿 < ∞), the resistive component of a passive load 
must be positive ( 𝑅𝐿 > 0)—there’s no such thing as a (passive) 
negative resistor! 

• This leads to one very important and useful result.  
• You can find out from expression of reflection coefficient that 

conservation of energy is satisfied—the reflected wave from a passive 
load cannot be larger than the wave incident on it. 
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 Transmission Line Input Impedance  

Q: Just what do you mean by input impedance? 
A: The input impedance is simply the line impedance seen at the beginning  
(𝒛 = −𝒍) of the transmission line, i.e.: 

( )
( )

( )
in

V z l
Z Z z l

I z l

 
   

 

Note 𝑍𝑖𝑛 equal to neither the load impedance 𝑍𝐿 nor the characteristic 
impedance 𝑍0! 

𝑍𝑖𝑛 ≠ 𝑍𝐿                              𝑍𝑖𝑛 ≠ 𝑍0 
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 Transmission Line Input Impedance (contd.)  

• We know the line impedance of a 
lossless TL loaded with an 
arbitrary load impedance is: 

0
0

0

cos( ) sin( )
( )

cos( ) sin( )

L

L

Z z jZ z
Z z Z

Z z jZ z

 

 






z = 0 

ZL 

z =-l 

0

Z0 

Length = l 

( )inZ Z z l  
0

0

0

tan( )

tan( )

L
in

L

Z jZ l
Z Z

Z jZ l










This input impedance can be radically different from load 
impedance (ZL) → definitely regulated by β, Z0 and length of 

the line (l) 
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 Transmission Line Input Impedance – Special Cases   

• Now let us look at the input impedances for some important load 
impedances and line lengths  

→ You should commit these 
results to memory 
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1. length of the line is l = m(λ/2) 

• For a transmission line of half wavelength long the input impedance equals 
the load impedance irrespective of the characteristic impedance of the line  

• It means it is possible to design a circuit segment where the transmission 
line’s characteristic impedance plays no role (obviously the length of line 
segment has to equal half wavelength at the operating frequency) 

 Transmission Line Input Impedance – Special Cases   

ZL β, Z0 

l = λ/2 

in LZ Z

0

0

0

2
tan .

2
( / 2)

2
tan .

2

L

in L

L

Z jZ

Z Z z Z Z

Z jZ

 




 



 
  

    
 

  
 
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 Transmission Line Input Impedance – Special Cases (contd.)   
2. length of the line is l = λ/4 or λ/4 + m(λ/2)  

• This result implies that a transmission line segment can be used to 
synthesize matching of any desired real input impedance (Zin) to the 
specified real load impedance (ZL) 

λ/4 

ZL 

LZ Given

inZ Desired

0 L inZ Z Z

This is known as 
quarter-wave 

impedance 
transformer 

20

0
0

0

2
tan .

4
( / 4)

2
tan .

4

L

in

L
L

Z jZ
Z

Z Z l Z
Z

Z jZ

 




 



 
  

    
 

  
 
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ZL=0 β, Z0 

l = λ/4 

inZ 

2. length of the line is l = λ/4 or λ/4 + m(λ/2)  

 Transmission Line Input Impedance – Special Cases (contd.)   

Zin = ∞ ! This is an open circuit ! The quarter wave TL transforms a 
short-circuit into open-circuit and vice-versa  

2

0
in

L

Z
Z

Z


input impedance of a quarter-wave line is inversely 
proportional to the load impedance 

→   Think about what this means! Say the 
load impedance is a short circuit then: 

2 2

0 0

0
in

L

Z Z
Z

Z
   
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• Consider a load resistance 𝑅𝐿 = 100Ω  to be matched to a 50Ω  line with a 
quarter-wave transformer. Find the characteristic impedance of the 
matching section and plot the magnitude of the reflection coefficient 

versus normalized frequency, 𝑓 𝑓0
 , where 𝑓0 is the frequency at which the 

line is λ/4 long. 

Example – 2  

• the necessary characteristic impedance is: 

0 L inZ Z Z
0 50 100 70.71L inZ Z Z     

𝑍𝑖𝑛 is dependent on frequency 

• The reflection coefficient magnitude is given as 

0
0

0

in

in

Z Z

Z Z


 


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Example – 2 (contd.)  

0
0

0

tan
( / 4)

tan

L
in

L

Z jZ l
Z Z l Z

Z jZ l







  



0

0 0

2 2

4 4 2

p

p

vf f
l

v f f

  




    
             

For higher frequencies the matching section looks electrically 
longer, and for lower frequencies it looks shorter. 

Plot the magnitude of the reflection coefficient 

versus 𝑓 𝑓0
  using these two equations 

HW # 0 
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 Transmission Line Input Impedance – Special Cases (contd.)   

3. ZL = Z0 

In other words, if the load impedance (ZL) is equal to the TL characteristic 
impedance (Z0), the input impedance (Zin) likewise will be equal to 

characteristic impedance (Z0) of the TL irrespective of its length 

ZL=Z0 β, Z0 

l 

0inZ Z

the load is numerically equal to the characteristic 
impedance of the transmission line (a real value). 

0 0
0 0

0 0

tan( )

tan( )
in

Z jZ l
Z Z Z

Z jZ l






 


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 Transmission Line Input Impedance – Special Cases (contd.)   

4. ZL = jXL 

ZL=jXL β, Z0 
in LZ jX

Note that the opposite is not true: even if the load is purely resistive (ZL = R), the 
input impedance will be complex (both resistive and reactive components). 

the load is purely reactive (i.e., the resistive 
component is zero) 

0 0
0 0

0 0

tan( ) tan( )
( )

tan( ) tan( )

L L
in

L L

jX jZ l X Z l
Z Z z l Z jZ

Z X l Z X l

 

 

 
    

 

Purely 
Reactive 

In other words, if the load impedance (ZL) is purely reactive then the input 
impedance likewise will be purely reactive irrespective of the line length (l) 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Transmission Line Input Impedance – Special Cases (contd.)   

4. ZL = jXL 

Note that the opposite is not true: even if the load is purely 
resistive (𝑍𝐿 = 𝑅𝐿), the input impedance will be complex (both 

resistive and reactive components). 

Q: Why is this? 
A: ?? 
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5. l << λ 

 Transmission Line Input Impedance – Special Cases (contd.)   

the transmission line is electrically small 

• If length 𝑙 is small with respect to signal 
wavelength λ  then:  

2
2 0

l
l l


 

 
  

• Therefore: cos( ) 1l  s ( ) 0in l 

• Thus the input impedance is: 

0 0
0 0 0

0 0

cos( ) sin( ) (1) (0)

cos( ) sin( ) (1) (0)

L L
in

L L

Z l jZ l Z jZ
Z Z Z Z

Z l jZ l Z jZ

 

 

 
  

 

In other words, if the transmission line length is much smaller than a 
wavelength, the input impedance 𝑍𝑖𝑛 will always be equal to the load 

impedance 𝑍𝐿. 
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5. l << λ 

 Transmission Line Input Impedance – Special Cases (contd.)   

the transmission line is electrically small 

This is the assumption we used in all previous circuits courses (e.g., Linear 
Circuits, Digital Circuits, Integrated Electronics,  Analog Circuit Design etc.)! 
In those courses, we assumed that the signal frequency ω is relatively low, 

such that the signal wavelength λ is very large (λ ≫ 𝑙). 

• Note also for this case (the electrically short  transmission line), the 
voltage and current at each end of the transmission line are 
approximately the same! 

( ) ( 0)V z l V z    ( ) ( 0)I z l I z   

If 𝑙 ≪ λ , our “wire” behaves exactly as it did in Linear Circuits course! 
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 Example – 3  
Determine the input impedance of the following circuit:  

Z
L
=

 1
 +

 j
2

 

??inZ 

2

3j
0 2.0Z 0 1.5Z 

0 1.0Z 

/ 8l / 4l / 2l 

Z
L
=

 1
 +

 j
2

 

??inZ 

2

3j

How about the following solution?  

3*(2 1 2)
2.7 2.1

3 (2 1 2)
in

j j
Z j

j j

  
  
   

Where are the contributions of 
the TL?? 
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 Example – 3 (contd.) 

• Let us define Z1 as the input impedance of the last section as:  

Z
L
=

 1
 +

 j
2

 

1Z
0 2.0Z 

/ 8l 

0
1 0

0

tan( )

tan( )

L

L

Z jZ d
Z Z

Z jZ d










Then the impedance Z1 is: 

Where: 
2

*
8 4

d
  




 

1

(1 2) 2tan( / 4)
2

2 (1 2) tan( / 4)

j j
Z

j j





  
  

  

Therefore: 

1

1 4
2

j
Z

j

 
  

 

1 8 2Z j  
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 Example – 3 (contd.)  

Z
1
=

 8
 –

 j
2
  

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2
The problem simplifies to: Series 

Simplification of 
the problem 

Z
2
=

 1
0
 –

 j
2
  

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2 10 2Z j 
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 Example – 3 (contd.)  

• Now let us define the input impedance of the middle TL as Z3:  

2

3

(1.5)

10 2
Z

j



Therefore: 

3 0.21 0.043Z j  
Z

2
=

 1
0
 –

 j
2
  

3Z
0 1.5Z 

/ 4l 

This is a quarter-wave TL → one of the 
special cases we considered earlier → 

where the input impedance is: 
2

0
3

2

Z
Z

Z


• Then the problem simplifies to:  

Z3= 0.21 + j0.043  

??inZ 
3j0 1.0Z 

/ 2l 

Parallel Combination 

Z4= 0.22 + j0.028  
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 Example – 3 (contd.)  
• Finally the simplified problem is: 

??inZ 
0 1.0Z 

/ 2l 

Z4= 0.22 + j0.028  

TL is a half wavelength → special case we 
discussed earlier → input impedance 

equals the load impedance    

4 0.22 0.028inZ Z j   
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z = 0 z = -l 

β, Z0 β, Z0 
Z0/2 Z0/2 

l =λ/4 

( )
a

V z ( )
a

V z ( )
b

V z ( )
b

V z

For the following circuit determine:  a

a

V

V





b

a

V

V





b

a

V

V





Given:  

( ) ( ) ( ) j z j z

a a a aV z V z V z V e V e          For z < -l 

( ) ( ) ( ) j z j z

b b b bV z V z V z V e V e          For –l < z < 0 

 Example – 4   


