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 Review – Lecture 2 

• Telegrapher’s 
Equations: 
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• The time-harmonic form of the telegrapher equations are:  
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• In phasor form:  
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As 𝐼(𝑧) and 
𝑉(𝑧) are 

function of 
only position 
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• The equations can be further simplified as:  

Further 
simplified as  
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Differentiating 
with respect to 
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• For  a lossless transmission line the second order differential equation for 
phasors are:  

𝑽𝟎
+ and 𝑽𝟎

− are 

complex constants 
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• Similarly the current phasor for  a lossless line can be described:  
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• For the simple case of 𝑽𝟎

+ and 𝑽𝟎
− being real, the voltage and current 

along the transmission line can be expressed as: 
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• TL Parameters:  
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Two common examples: 

coaxial cable twin line 

r
 a 

b z 

A transmission line is normally used in the balanced mode, meaning equal 
and opposite currents (and charges) on the two conductors. 
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Here’s what they look like in real-life: 

twin line 

coax to twin line 
matching section 

 Example of Transmission Lines (contd.) 

coaxial 
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 Example of Transmission Lines (contd.) 

Twin Line 

a = radius of wires 

d 
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 0 0

1 1
ln

r

d
Z

a

a d


 

 
  

 

 1 2cosh ln 1 ln 2xx x x x    

HW # 0 

 0

1

F/m

cosh
2

rC
d

a

 




 
 
 

 10 cosh H/m
2

d
L

a





  
  

 

 1

0 0

1 1
cosh

2
r

d
Z

a


 

  
  

 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 
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2

m





(skin depth 
of metal) 

d = conductivity of dielectric [S/m]. 

m = conductivity of metal [S/m]. 

Coaxial Cable 
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microstrip line 

Another common example (for printed circuit boards): 

w 

h 
r 

Ground plane helps in 
preventing the field leakage and 
thus reduces the radiation loss 

 Example of Transmission Lines (contd.) 
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• The severity of field leakage also depends on the relative dielectric 
constants 𝜀𝑟 . 

It is apparent that the radiation loss could be 
minimized by using substrates with high dielectric 

constants 

• Alternative approaches to reduce radiation loss and interference are 
shielded microstrip line and multi-layer boards     

 Microstrip Line (contd.) 

Magnetic 
Field Lines 

Electric 
Field Lines 
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microstrip line 

 Microstrip Line (contd.) 
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 Microstrip Transmission Lines Design 

w 

h 

r 

t 

• Simple parallel plate model can not 
accurately define this structure. 

• Because, if the substrate thickness 
increases or the conductor width 
decreases then fringing filed become 
more prominent  (and therefore need to 
be incorporated in the model). 

Case-I: thickness (t) of the line is negligible 

• For narrow microstrips (𝒘 𝒉 ≤ 𝟏): 
0 ln 8

42

f

eff

Z h w
Z

w h

 
  

  

Where, 
0 0/ 377fZ     wave impedance in free space 

1/2 2
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1 12 0.004 1
2 2

r r
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h w

w h

      
        

     

 
 Effective Dielectric 

Constant 
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 Microstrip Transmission Lines Design (contd.) 

• The two distinct expressions give approximate values of characteristic 
impedance and effective dielectric constant for narrow and wide strip 
microstrip lines → these can be used to plot Z0 and εeff as a function of 𝑤 ℎ . 

• For wide microstrips 𝑤
ℎ ≥ 1 : 

0
2

1.393 ln 1.444
3

f

eff

Z
Z

w w

h h


  
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  



• Where the effective dielectric constant is expressed as:  

1/2
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
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 Microstrip Transmission Lines Design (contd.) 

For a desired characteristic 
impedance using known 
substrate, the dimension 

w/h can be identified from 
this curve  
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 Microstrip Transmission Lines Design (contd.) 

Once the line dimensions 
are known, the effective 

dielectric constant can be 
identified 
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 Microstrip Transmission Lines Design (contd.) 

• The effective dielectric constant (εeff) is viewed as the dielectric constant 
of a homogenous material that fills the entire space around the line. 
Therefore: 

0p

eff eff

v c

f f
  




 

Speed 
of Light Free Space 

Wavelength 

• The wavelength in the 
microstrip line for 𝑊 ℎ ≥ 0.6 is:  
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• The wavelength in the 
microstrip line for 𝑊 ℎ ≤ 0.6 is:  
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 Microstrip Transmission Lines Design (contd.) 

• In some specifications, wavelength is known. In that case following curve 
can be used to identify the w/h ratio.  

It is a good 
approximation at lower 
microwave frequencies. 

However, at higher 
microwave frequencies  
this assumption is no 

more valid.  
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• If Z0 and εr is specified or known, following expression can be used to 
determine w/h:  

2

8

2

A

A

w e

h e



For w/h≤2: 

Where: 0 1 1 0.11
2 0.23

2 1
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 Microstrip Transmission Lines Design (contd.) 

12 0.61
1 ln(2 1) ln( 1) 0.39
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 Microstrip Transmission Lines Design (contd.) 

Case-II: thickness (t) of the line is not negligible → in this scenario all the 
formulas are valid with the assumption that the effective width of the line 
increases as:  

2
1 lneff

t x
w w

t

 
   

 

Where 𝒙 = 𝒉   𝒊𝒇   𝒘 > 𝒉
𝟐𝝅   or  𝒙 = 𝟐𝝅𝒘  𝒊𝒇  𝒉 𝟐𝝅 > 𝒘 > 𝟐𝒕 
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 Example – 1  
A microstrip material with εr = 10 and h = 1.016 mm is used to build a narrow 
transmission line. Determine the width for the microstrip transmission line to 
have a characteristic impedance of 50Ω. Also determine the wavelength and the 
effective relative dielectric constant of the microstrip line.  

Using the Formulas: 

2

8

2

A

A

w e

h e



Let us consider the first formula: 

0 1 1 0.11 50 10 1 10 1 0.11
2 0.23 2 0.23

2 1 377 2 10 1 10

r r

f r r

Z
A

Z
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        

    

 
 

 

2.1515A 
2.1515

2(2.1515)

8
0.9563

2

w e

h e
 


Therefore: 

Now: h = 1.016 mm = 0.1016 cm = 0.1016(1000/2.54) mils = 40 mils  

0.9563*40 38.2w mils mils  
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1/2

0
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 Example – 1 (contd.)  
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Using the Design Curves 

0 50Z  

10r 

1
w

h


h = 1.016 mm = 40 mils 
 

=> w = 40 mils 

 Example – 1 (contd.)  
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Using the Design Curves 

1
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h


1.23
TEM






0 0
01.23 1.23 0.389

10r

  
 

 


2 2

0 1
6.61

0.389
eff

   
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 Example – 1 (contd.)  
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 Example – 2   
a. Using the design curves, calculate W, λ, and 𝜀𝑒𝑓𝑓 for a characteristic 

impedance of 50Ω using RT/Duroid with 𝜀𝑟 = 2.23 and ℎ = 0.7874 𝑚𝑚.  
b. Use design equations to show that for RT/Duroid with εr = 2.23 and 

ℎ = 0.7874 𝑚𝑚 , a 50Ω-characteristic impedance is obtained with 
𝑊

ℎ = 3.073. Also show, 𝜀𝑒𝑓𝑓 = 1.91 and λ = 0.7236λ0.  
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Lossless Transmission Line  

𝑽𝟎
+ and 𝑽𝟎

− are 

complex constants 

• For  a lossless transmission line the second order differential equation for 
phasors are:  

2
2

2

2
2

2

V(z)
( ) 0

(z)
( ) 0

d
V z

dz

d I
I z

dz





 

 

LC 

0 0( ) j z j zV z V e V e    

0 0

0 0

( ) j z j zV V
I z e e

Z Z

 
 

  

• Similarly the current phasor for  a lossless line can be described:  

0

L L L
Z

CLC

 

 
  
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Lossless Transmission Line (contd.)  

Q: 𝑍0 and 𝛽 are determined from L, C, and ω. How do we find 𝑉0
+ 𝑎𝑛𝑑  𝑉0

−? 
A: Apply Boundary Conditions! 

We now know that a lossless transmission line is completely 
characterized by real constants  𝑍0 and 𝛽. 

Likewise, the 2 waves propagating on a transmission line are 
completely characterized by complex constants  𝑉0

+ 𝑎𝑛𝑑  𝑉0
−. 

Every transmission line has 2 
“boundaries”:  
1) At one end of the transmission line. 
2) At the other end of the trans line! 

Typically, there is a source 
at one end of the line, and 

a load at the other. 

→ The purpose of the transmission line is to get power from the source, to   
the load! 

Let’s apply the load boundary condition! 
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 Terminated Lossless Transmission Line  
• Now let’s attach something to our transmission line. Consider a lossless 

line, length 𝑙, terminated with a load 𝑍𝑙. 
Reflection 

Coefficient at Load 

Load 
Impedance 

Characteristic 
Impedance 

Input 
Impedance 
to the Line ZL 

z = zl z =zl - l 

Zin 0

Z0 

z 

Q: What is the current and voltage at each and every point on the 
transmission line (i.e., what is 𝐼(𝑧)  and 𝑉(𝑧)  for all points 𝑧  where 
𝑧𝑙 − 𝑙 < 𝑧 < 𝑧𝑙 . 

A: To find out, we must apply boundary conditions! 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Terminated Lossless Transmission Line (contd.)  

• The load is assumed at z = zl 

• The voltage wave couples into the line at z =zl - l  

Reflected Wave Incident Wave 

ZL 

𝐼(𝑧) LI

Z0 

( )V z
( )V z

LI

+ 

− 

+ 

− 

LI

z 

z =zl - l z =zl 

0 0( ) j z j zV z V e V e    

• At the load: the voltage and current must be consistent with a valid 
transmission line solution: 

0 0( ) ( ) ( ) l lj z j z

l l lV z z V z z V z z V e V e
          



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Terminated Lossless Transmission Line (contd.)  

0 0

0 0 0 0

( ) ( )
( ) l lj z j zl l

l

V z z V z z V V
I z z e e

Z Z Z Z

 
   

 
    

• Furthermore, the load voltage and current must be 
related by Ohm’s law: L L LV Z I

• Most importantly, we recognize that 
the values 𝐼 𝑧 = 𝑧𝑙 , 𝑉(𝑧 = 𝑧𝑙)  and 
𝐼𝐿 , 𝑉𝐿 are not independent, but in fact 
are strictly related by Kirchoff’s Laws! 

( )l LV z z V 

( )l LI z z I 

ZL 

𝐼(𝑧 = 𝑧𝑙) LI

Z0 

( )lV z z

+ 

− 

+ 

− 

LI

z 
z =zl - l z =zl 
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 Terminated Lossless Transmission Line (contd.)  

So now we have the boundary conditions for this particular problem. 

• Combining these equations and boundary conditions, we find that: 

( ) ( )l L L L L lV z z V Z I Z I z z    

 
0

( ) ( ) ( ) ( )L
l l l l

Z
V z z V z z V z z V z z

Z

         

• Rearranging, we can conclude: 0

0

( )

( )

l L

l L

V z z Z Z

V z z Z Z





 


 

Careful! Different transmission line problems lead to different 
boundary conditions—you must assess each problem individually 
and independently! 
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 Terminated Lossless Transmission Line (contd.)  

0

j zV e  

0

j zV e 

0

0

( )

( )

l L

l L

V z z Z Z

V z z Z Z





 


 

ratio of reflected to incident 
voltage wave 

Voltage Reflection Coefficient Γ(𝒛 = 𝒛𝒍)  
also holds true for current 

wave but with opposite sign 

This value is of fundamental 
importance for the terminated 
transmission line problem, so 
we provide it with its own 
special symbol (Γ0)! 

0

( )

( )

l

l

V z z

V z z






 



ZL Z0 

0

z =zl - l z =zl 
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 Terminated Lossless Transmission Line (contd.)  

• Therefore:  
0

( )

( )

l

l

V z z

V z z






 


0

0

0

L

L

Z Z

Z Z


 



More useful representation as it involves known 
circuit/system quantities 

Q: I’m confused! Just what are we 
trying to accomplish in this 
handout? 

A: We are trying to find V(z) and I(z) when a 
lossless transmission line is terminated by a 
load ZL! 
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 Terminated Lossless Transmission Line (contd.)  

• We can express the reflected voltage  wave as: 
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• Therefore:  2
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we can further simplify our analysis by arbitrarily assigning the end 
point  𝑧𝑙 a zero value (i.e., 𝑧𝑙 = 0) 
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 Terminated Lossless Transmission Line (contd.)  
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• The current and voltage along the line in this case are: 
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 Terminated Lossless Transmission Line (contd.)  

Q: But, how do we determine 𝑉0
+?? 

A: We require a second boundary condition to determine 𝑉0
+. The only 

boundary left is at the other end of the transmission line. Typically, a source 
of some sort is located there. This makes physical sense, as something must 
generate the incident wave ! 

Now let us consider the Special Values of Load impedances  
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 Special Termination Conditions  

ZL 

z = 0 z =-l 

Zin 0

Z0 

• Let us once again  consider a generic TL terminated in arbitrary impedance ZL 

V(z) 

I(z) 

It’s interesting to note that the load ZL enforces a boundary 
condition that explicitly determines neither V(z) nor I(z)—but 

completely specifies line impedance Z(z)! 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Special Termination Conditions (contd.)  

z = 0 

ZL 

z = -l 

Zin 0

Z0 

I(z) 




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• We define the generalized impedance at any point on the line as: 
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This is the impedance we would measure 
if we cut the line at z and measured its 

impedance there. 
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 Special Termination Conditions (contd.)  
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• Likewise, the load boundary condition leaves 𝑉+(𝑧)  and 𝑉−(𝑧)  
undetermined, but completely determines reflection coefficient function 
Γ(𝒛)! 

0 0
0 0

0 0

cos( ) sin( )
( )

cos( ) sin( )

j z j z

L

j z j z

L

e e Z z jZ z
Z z Z Z

e e Z z jZ z

 

 

 

 

 

 

  
 

  

Let’s look at some specific values of load impedance  𝑍𝐿= 𝑅𝐿 + 𝑗𝑋𝐿 
and see what functions 𝑍(𝑧) and Γ(𝒛) result! 
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 Special Termination Conditions (contd.)  

• 𝒁𝑳 = 𝒁𝟎 

z = 0 

ZL=Z0 

z = -l 
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Z0 

0LR ZFor a lossless TL:  

0LX 

0
0
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The load reflection coefficient: 

means no reflected 
wave V–(z)  

Purely Real 

0( )Z z ZThe impedance at position z: 

reflection coefficient 
is zero at all points 

along the line 

  

The line impedance equals Z0 
→ matched condition 

  Matched Line  the load impedance equals the 
characteristic impedance of the TL 


