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Insertion Loss Method  

Attenuation versus Normalized Frequency  
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Insertion Loss Method (contd.)  
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Insertion Loss Method (contd.)  
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Example – 1  

A maximally flat low-pass filter is to be designed with a cut-off frequency of 
8GHz and a minimum attenuation of 20dB at 11GHz. How many filter 
elements are required?  

We have:  

112 1 1 0.375
2 8c




 
   

N=8 
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Example – 2  

Design a maximally flat low-pass filter with a cut-off frequency of 2GHz, 
impedance of 50Ω and at least 15dB insertion loss at 3GHz.  

• First, find the required order of the maximally flat filter to satisfy the 
insertion loss specification at 3GHz.  

• We have: 

32 1 1 0.5
2 2c




 
   

• It is apparent that  N =5 will be sufficient.  

• From the table we get: 𝑔1 = 0.618, 𝑔2= 1.618, 𝑔3= 2.000, 𝑔4=
1.618, 𝑔5 = 0.618. 
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Example – 2 (contd.)  

• The Analysis of N-element filters give:   

• The elements are therefore:   

2 6.438L nH1 0.984C pF 3 3.183C pF 4 6.438L nH 5 0.984C pF

s
n n

c

R
L g



 
  

 

1
n n

s c

C g
R

 
  

 
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Q: OK, so we now have the solutions for low-pass filters. But what about 
high-pass, band-pass, or band-stop filters? 
A: Surprisingly, the low-pass filter solutions likewise provide us with the 
solutions for any and all high-pass, band-pass and band-stop filters! All we 
need to do is apply filter transformations.  

Insertion Loss Method (contd.)  
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Filter Transformations 

We can use the concept of filter transformations to determine the new 
filter designs from a low-pass design. As a result, we can construct a 

3rd-order Butterworth high-pass filter or a 5th-order Chebychev band-
pass filter! 

It will be apparent that the mathematics for each filter design will be very 
similar. For example, the difference between a low-pass and high-pass filter 

is essentially an inverse—the frequencies below 𝜔𝑐 are mapped into 
frequencies above 𝜔𝑐  —and vice versa. 

It is evident that: 

( 0) T ( ) 1lp hpT      

( ) T ( 0) 0lp hpT      𝝎 

𝝎𝒄 

Τlp(ω) 

𝝎 

𝝎𝒄 

Τhp(ω) 
𝟏 𝟏 
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Filter Transformations (contd.) 

• However: ( ) T ( ) 0.5lp c hp cT       

where α is some positive, real value (i.e., 0 <∝< ∞). 

• Therefore, we can express: 
1

( ) T ( )lp c hp cT    


  

• For example, if ∝= 0.5, then: ( 0.5 ) T ( 2 )lp c hp cT      

In other words, the transmission through a low-pass filter at one half the 
cut-off frequency will be equal to the transmission through a 

(mathematically similar) high-pass filter at twice the cut-off frequency. 

• Now, recall the loss-ratio 
functions for Butterworth and 
Chebychev low-pass filters: 

2

( ) 1

N

lp

LR

c

P





 
   

 

2 2( ) 1lp

LR N

c

P k T





 
   

 

• Note in each case that the argument of the function has the form: 
c





In other words, the frequency is normalized by the cut-off frequency. 
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Filter Transformations (contd.) 

• Now Consider this mapping: c

c

 

 
 

• This mapping transforms the 
low-pass filter response into a 
corresponding high pass filter 
response! i.e.: 

2 2

( ) 1 1

N N

hp c c
LRP

 


 

   
       

   

2 2 2 2( ) 1 1hp c c
LR N NP k T k T

 


 

   
       

   

Q: Yikes! Where did this mapping come from? Are you sure this works? 

Consider again the case where ω =αωc; the low pass responses are: 

 
2

( ) 1
Nlp

LRP     2 2( ) 1lp

LR NP k T  

• Now consider the high-pass 
responses where ω =ωc/α: 

 
2

( ) 1
Nhp

LRP     2 2( ) 1hp

LR NP k T  

• Thus, we can conclude from this mapping that: ( ) ( / )lp hp

LR c LR cP P      
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Filter Transformations (contd.) 
• And since  𝑇 = 𝑃𝐿𝑅

−1: 

1
( ) T ( )lp c hp cT    


  

Exactly the result that we expected! 
Our mapping provides a method for 
transforming a low-pass filter into a 

high-pass filter! 

Q: OK Poindexter, you have succeeded in providing another one of your 
“fascinating” mathematical insights, but does this “mapping” provide anything 
useful for us engineers? 
A: Absolutely! We can apply this mapping one component element (capacitor 
or inductor) at a time to our low-pass schematic design, and the result will be 
a direct transformation into a high-pass filter schematic. 

• Recall the reactance of an inductor 
element in a low-pass filter design is: 

lp lp s
n n n n s

c c

R
jX j L j g jg R


 

 

   
     

   

• while that of a capacitor is: 
1lp s c

n lp

n n

R
jX j

j C g



 

 
    

 
• Now apply the mapping: 

c

c

 

 
 
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• The inductor becomes: 

Filter Transformations (contd.) 

 
1

1hp c n s c
n n s

n s c

g R
jX jg R j

j g R

 

   


 
     

 

• and the capacitor: hp s c s
n

n n c

R R
jX j j

g g




 

  
      

   

It is clear (do you see why?) that the transformation has converted a 
positive (i.e., inductive) reactance into a negative (i.e., capacitive) 

reactance—and vice versa. 

1. Replace each inductor with a capacitor of value: 

• As a result, to transform a low-pass filter schematic into a high-pass filter 
schematic, we: 

2

1 1hp

n lp

n s c c n

C
g R L 

 

2. Replace each capacitor with an inductor of value: 2

1hp s
n lp

n c c n

R
L

g C 
 
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Filter Transformations (contd.) 
• Thus, a high-pass ladder circuit consists 

of series capacitors and shunt inductors 
(compare this to the low-pass) ladder 
circuit!). 

𝐿1 

𝐶2 

𝐿3 𝐿5 

𝐶4 

Q: What about band-pass filters? 
A: The difference between a low-pass and band-pass filter is simply a shift in 
the “center” frequency of the filter, where the center frequency of a low-pass 
filter is essentially 𝜔 = 0. 

• For this case, we find the mapping: 0

0

1

c

  

  

 
  

  

transforms a low-pass function into a band-pass 
function, where Δ is the normalized bandwidth: 

2 1

0

 






ω1 and ω2 define the two 3dB frequencies of the bandpass filter. 
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Filter Transformations (contd.) 
• For example, the Butterworth low-pass function → becomes a Butterworth 

band-pass function: 
2

( ) 1

N

lp

LR

c

P





 
   

 
0

2

0

2

1
( ) 1

N

bp

LR N
P

 


 

 
   

   

• Applying this transform to 
the reactance of a low-
pass inductive element:  

0

0 0

0

1 1bp n s
n n s

n s

g R
jX jg R j

j
g R

 


   


   
      

        
 

• Look what happened! The transformation turned the inductive reactance 
into an inductive reactance in series with a capacitive reactance. 

• A similar analysis of the transformation of the low-pass capacitive reactance 
shows that it is transformed into an inductive reactance in parallel with an 
capacitive reactance. 
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1. Replace each series inductor 
with a capacitor and inductor 
in series, with values: 

Filter Transformations (contd.) 

0

1bp

n

n s

C
g R




0

bp s
n n

R
L g






• As a result, to transform a low-pass filter schematic into a band-pass filter 
schematic, we: 

2. Replace each shunt capacitor 
with an inductor and capacitor 
in parallel, with values: 

0

1bp

n n

s

C g
R




0

1bp s
n

n

R
L

g 




• Thus, the ladder circuit for 
band-pass circuit is simply 
a ladder network of LC 
resonators, both series 
and parallel: 

𝐿1 

𝐶2 

𝐶1 

𝐿2 

𝐿3 𝐶3 

𝐶4 𝐿4 
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Filter Implementations 

Q: So, we now know how to make any and all filters with lumped elements—
but this is a RF/microwave engineering course! 

A: There are many ways to make RF/microwave filters with distributed 
elements. Perhaps the most straightforward is to “realize” each individual 
lumped element with transmission line sections, and then insert these 
approximations in our lumped element solutions. 

You said that lumped elements were difficult to make and implement 
at high frequencies. You said that distributed elements were used to 

make microwave components. So how do we make a filter with 
distributed elements!?! 

The first of these realizations is: Richard’s Transformations 

To easily implement Richard’s Transforms in a microstrip or stripline 
circuit, we must apply one of Kuroda’s Identities. 
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Richard’s Transformations 

• Recall the input impedances of short-circuited and open-circuited 
transmission line stubs. 

Note that the input impedances are purely reactive—just like 
lumped elements! 

0 tans

inZ jZ l

𝑙 

0 coto

inZ jZ l 

𝑙 

• However, the reactance of lumped inductors and capacitors have a much 
different mathematical form to that of transmission line stubs: 

LZ j L
C

j
Z

C



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• In other words, the impedance of transmission line 
stubs and lumped elements (capacitors and inductors) 
are different functions with respect to frequency. 
Therefore, we can say in general that, for example: 

Richard’s Transformations (contd.) 
s

in LZ Z

o

in CZ Z

However, for a given lumped element (L or C) and a given stub (with a given Z0 
and length l) the functions will be equal at precisely one frequency! 

• For example, there is one frequency—let’s 
call it ωc —that satisfies this equation for a 
given L, Z0, and l: 

0 0tan tan c
c c

p

j L jZ l jZ l
v


 

 
   

  

• Similarly: 
0 0cot cot c

c

c p

j
jZ l jZ l

C v






 
     

  

• To make things easier, let’s set the length of our 
transmission line stub to λc/8, where: 

2p

c

c c

v 


 
 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Richard’s Transformations (contd.) 
Q: Why l = λc/8 ? 
A: Well, for one reason, βcl =π/4 and therefore tan (π /4) = 1.0! 

• This greatly simplifies 
our earlier results: 0 0tan

4
cj L jZ jZ




 
  

 
0 0cot

4c

j
jZ jZ

C





  
    

 

• Therefore, if we wish to build a short-
circuited stub with the same impedance 
as an inductor L at frequency ωc, we set 
the characteristic impedance of the 
stub transmission line to be 𝑍0 = 𝜔𝑐𝐿: 

s

L c inZ j L Z 

𝑙 =
λ𝑐
8

 

• Similarly, if we wish to build open-
circuited stub with the same 
impedance as a capacitor C at ωc, we 
set the characteristic impedance of the 
stub transmission line to be 𝑍0 =
1

𝜔𝑐𝐶 : 

o

C in

c

j
Z Z

C
 

𝑙 =
λ𝑐
8

 

We call these two results as Richard’s Transformation.  
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Richard’s Transformations (contd.) 

However, it is important to remember that Richard’s Transformations do 
not result in perfect replacements for lumped elements—the stubs do 

not behave like capacitors and inductors! 

• Instead, the transformation is perfect—the impedances are equal—at 
only one frequency (ωc). 

• We can use Richard’s transformations to replace the inductors and 
capacitors of a designed lumped element filter. In fact, for low-pass filter 
design, the frequency ωc is the filter’s cut-off frequency. 

• Using these stubs to replace inductors and capacitors will result in a filter 
response similar to that of the lumped element design—a low pass filter 
with cut-off frequency ωc. 

• However, the behavior of the filter in the stop-band will be very different 
from the lumped element design. For example, at the (high) frequencies 
where the stub length becomes a multiple of λ/2, the filter response will 
be that of ω = 0—near perfect transmission! 
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Richard’s Transformations (contd.) 
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Q: So why does the filter response match the lumped element response so 
well in the pass-band? 

Richard’s Transformations (contd.) 

• The impedance of Richard’s 
transformation shorted stub at 
some arbitrary frequency ω is 
therefore: 

   0 tan tan
8 4

s c
in c

c

Z jZ j L
  

  


  
    

   

𝜑 is expressed in radians.   and for    𝝋 ≪ 𝟏  𝑡𝑎𝑛𝜑 ≈ 𝜑 𝑐𝑜𝑡𝜑 ≈
1

𝜑
 

A: To see why, we first note that the Taylor Series approximation for 𝑡𝑎𝑛𝜑 
and 𝑐𝑜𝑡𝜑 when 𝜑 is small (i.e., 𝜑 ≪ 1) is: 

• Therefore, when 𝜔 ≪ 𝜔𝑐(i.e., frequencies in the pass-band of a low-pass 
filter!), we can approximate this impedance as: 

     tan
4 4 4

s

in c c

c c

Z j L j L j L
    

   
 

     
       

    
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Richard’s Transformations (contd.) 

Since the value 𝜋 4  is relatively close to one, we find that the Richard’s 
Transformation shorted stub has an input impedance very close to the 

lumped element inductor for all frequencies less than ωc (i.e., all 
frequencies of the low-pass filter pass-band)! 

     tan
4 4 4

s

in c c

c c

Z j L j L j L
    

   
 

     
       

    

Compare this to a lumped 
inductor impedance 

LZ j L

• Similarly, we find that the Richard’s transformation open-circuit stub, 
when 𝜔 ≪ 𝜔𝑐, has an input impedance of approximately: 

 
4 1 4

cot
4

o c
in

c c c

j j
Z

C C j C

  


      

      
       

    

we find that results are approximately the same for all pass-band 
frequencies (i.e., when 𝜔 ≪ 𝜔𝑐). 

1
CZ

j C


Compare this to a lumped 
capacitor impedance 
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Kuroda’s Identities 
• We will find that Kuroda’s Identities can be very useful in making the 

implementation of Richard’s transformations more practicable. 
• Kuroda’s Identities essentially provide a list of equivalent two port 

networks. By equivalent, we mean that they have precisely the same  
scattering/impedance/admittance/transmission matrices. 

• In other words, we can replace one two-port network with its equivalent 
in a circuit, and the behavior and characteristics (e.g., its scattering matrix) 
of the circuit will not change! 

Q: Why would we want to do this? 
A: Because one of the equivalent may be more practical to implement! 

For example, we can use Kuroda’s Identities to: 
1. Physically separate transmission line stubs. 
2. Transform series stubs into shunt stubs. 
3. Change impractical characteristic impedances into more realizable 

ones. 
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Kuroda’s Identities (contd.) 
• Four Kuroda’s identities are provided in a very ambiguous and confusing 

table (Table 8.7) in your book. We will find the first two identities to be the 
most useful. 

• Note that the length of the stub 
and the transmission line are 
identical, but the characteristic 
impedance of each are different. 

01Z

02Z 𝑙 

𝑙 

• Consider the following two-port network, constructed with a length of 
transmission line, and an open-circuit shunt stub: 

Port-1  Port-2  
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• The first Kuroda identity states that the considered two-port network is 
precisely the same two-port network as this one: 

Kuroda’s Identities (contd.) 

• Thus, we can replace the first 
structure in some circuit with the 
one above, and the behavior of that 
circuit will not change in the least! 

 
• Note this equivalent circuit uses a 

short-circuited series stub. 

Port-1  

Port-2  

02

2

Z

n

01

2

Z

n

2 02

01

1
Z

n
Z

 
𝑙 

𝑙 
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• The second of Kuroda’s Identities states that this two port network: 

Kuroda’s Identities (contd.) 

01Z

02Z

𝑙 

𝑙 
Port-1  Port-2  

2

01n Z

2

02n Z

2 02

01

1
Z

n
Z

 

𝑙 

𝑙 

Port-1  

Port-2  

Is precisely identical to this 
two-port network 

With regard to Richard’s Transformation, these identities are useful when 
we replace the series inductors with shorted stubs. 
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Kuroda’s Identities (contd.) 
• To see why this is useful when implementing a lowpass filter with 

distributed elements, consider this third order filter example, realized using 
Richard’s Transformations: 

𝝀𝒄
𝟖

 
𝝀𝒄
𝟖

 

𝝀𝒄
𝟖

 

1cL
3cL

2

1

cC

1L 3L
2C

Note that we have a few 
problems in terms of 

implementing this design! 
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Kuroda’s Identities (contd.) 

• First of all the stubs are ideally infinitely close to each other— how do we 
build that? We could physically separate them, but this would introduce 
some transmission line length between them that would mess up our filter 
response! 

• Secondly, series stubs are 
difficult to construct in 
microstrip/ stripline—we like 
shunt stubs much better! 

𝝀𝒄
𝟖

 
𝝀𝒄
𝟖

 

𝝀𝒄
𝟖

 

1cL
3cL

2

1

cC

0Z 0Z

𝝀𝒄
𝟖

 
𝝀𝒄
𝟖

 

• To solve these problems, 
we first add a short length 
of transmission line (Z0 and 
l= λc/8) to the beginning 
and end of the filter: 
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Kuroda’s Identities (contd.) 

• Note adding these lengths only results in a phase shift in the filter 
response—the transmission and reflection functions will remain 
unchanged. 

• Now we can use the second of Kuroda’s Identities to replace the series 
stubs with shunts: 

2 0
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2

1 0n Z 2

3 0n Z

2

3 3cn L2

1 1cn L

2

1

cC
Now this is a realizable filter! 

Note the three stubs are 
separated, and they are all 

shunt stubs. 
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Stepped-Impedance Low-Pass Filters 

Q: Are there other methods for building microwave filters? 
A: There are a bundle of them! 

All distributed elements (e.g., transmission lines, coupled lines, 
resonators, stubs) exhibit some frequency dependency. If we are 

clever, we can construct these structures in a way that their frequency 
dependency (i.e., S21(ω)) conforms to a desirable function of ω. 

Another distributed element realization of a lumped 
element low-pass filter design is the stepped-

impedance low-pass filter. 
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Q: Won’t you ever stop talking?? 

A: Yup. I’m all done. 


