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* The Insertion Loss Method (contd.)
e Richard’s Transformation
e Kuroda’s Identities
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Insertion Loss Method (contd.)

TABLE 8.3

Element Values fo1

we = 1, N=11t010)

* Maximally Flat Low-Pass Filter Prototypes (g =1,

N & g2 83 84 g5 86 g7 88 89 £10 811
1 2.0000 1.0000

2 14142 1.4142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 0.7654 1.8478 1.8478 0.7654 1.0000

5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000

6 05176 1.4142 19318 1.9318 1.4142 05176 1.0000

7 04450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000

8 0.3902 1.1111 1.6629 1.9615 1.9615 1.6629 1.1111 0.3902 1.0000

9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473 1.0000

10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 09080 0.3129 1.0000

Source: Reprinted from G. L. Matthae1, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.
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Insertion Loss Method (contd.)

TABLE 84 Element Values for Equal-Ripple Low-Pass Filter Protorypes (gp =1, @0, =
1, N=11010,0.5dB and 3.0 dB ripple)

0.5 dB Ripple

N = P g &1 g g6 g7 gs 8o g1 gu

1 0.6086 1.0000

2 14020 07071 1.0841

3 1.5063 1.0067 1.5963 1.0000

4 1.6703 1.1926 2.3661 08419 1.9841

5 17058 12206 25408 12206 1.7058 1.0000

6 1.7254 12470 26064 13137 24758 08696 10341

7 17372 12583 26381 13444 26381 12583 1.7372 1.0000

8 1.7451 12647 26564 135900 26964 13380 25003 08706 10841

9 1.7504 120690 2.6678 13673 2.7230 13673 206678 12600 1.7504 1.0000

10 1.7543 12721 26754 13725 27392 13806 27231 13485 25230 08842 10841
3.0 dB Ripple

N = & g3 £ gs g6 g7 gs g9 g1 £u

1 1.9953 1.0000

2 31013 05330 58005

3 33487 07117 33487 1.0000

4 34380 0.7433 43471 035920 5.8005

5 34817 07618 45381 0.7618 34817 1.0000

6 3.5045 0.7685 4.6061 079290 44641 0.6033 58005

7 35182 07723 46380 08039 46386 07723 35182 1.0000

8 3.5277 0.7745 4.6575 0.8089 4.6000 0.8018 44990 0.6073 5.8095

9 35340 07760 46602 038118 47272 08118 46602 07760 35340 1.0000

10 3.5384 07771 46768 08136 47425 08164 47260 0.8051 45142 06091 5.8005

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching

Networks, and Coupling Structures, Artech House, Dedham  Mass_ 1980, with permission.
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Example -1

A maximally flat low-pass filter is to be designed with a cut-off frequency of
8GHz and a minimum attenuation of 20dB at 11GHz. How many filter

elements are required? .
m aas
YAV4
/|

We have:

Q 50 7
8 A4

/
/
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Design a maximally flat low-pass filter with a cut-off frequency of 2GHz,
impedance of 50Q and at least 15dB insertion loss at 3GHz.

e First, find the required order of the maximally flat filter to satisfy the
insertion loss specification at 3GHz.

e We have:

0
2n. 1=3_1-05
o, /2x

* Itis apparent that N =5 will be sufficient.

* From the table we get: g4 =0.618, g,= 1.618, g3= 2.000, g, =
1.618, g5 = 0.618.
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Example - 2 (contd.)

 The Analysis of N-element filters give: E_n = gn(—sB

e The elements are therefore:
C,=0984pF L,=6438nH C,=3.183pF L,=6.438nH C,=0.984pF

Rg=50 () L L}

AN ————— Y Y Y Y

o

N _
[~ = = ('} = (! R, =500
. 1 3 5 L

@]
9]
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Q: OK, so we now have the solutions for low-pass filters. But what about
high-pass, band-pass, or band-stop filters?
A: Surprisingly, the low-pass filter solutions likewise provide us with the
solutions for any and all high-pass, band-pass and band-stop filters! All we
need to do is apply filter transformations.



Indraprastha Institute of

Ilr.) Information Technology Delhi ECE321/521
Filter Transformations

We can use the concept of filter transformations to determine the new
filter designs from a low-pass design. As a result, we can construct a
3rd-order Butterworth high-pass filter or a 5th-order Chebychev band-
pass filter!

1t will be apparent that the mathematics for each filter design will be very\
similar. For example, the difference between a low-pass and high-pass filter
is essentially an inverse—the frequencies below w, are mapped into

9 frequencies above w. —and vice versa. )
1 A T|p((.k)) 1 }\Thp(w)
) (~ It is evident that:
T, (0=0)=T (0=00)=1
| w y W T (@=0)=T (0=0)=0
— N > \ J
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Filter Transformations (contd.)

* However: [T.p(G)=a)c)=Thp(a)=a)c):0.5]

1
* Therefore, we can express: [T|p (w=aw,)=T (0=—a,) ]
a

where a is some positive, real value (i.e., 0 <x< o).

* For example, if x= 0.5, then: [T,p(a)zo.Scoc) =T, (0= 260(;)]

" In other words, the transmission through a low-pass filter at one half the )
cut-off frequency will be equal to the transmission through a
L (mathematically similar) high-pass filter at twice the cut-off frequency. y

* Now, recall the loss-ratio - 2N | e
functions for Butterworth and [PL'E(CU)=1+(—] }[P&(w):“k Ty (—B

Chebychev low-pass filters: @

c C

. . )]
* Note in each case that the argument of the function has the form: | —

W,

[In other words, the frequency is normalized by the cut-off frequency.
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Filter Transformations (contd.)

: . : @ @,
* Now Consider this mapping: [—3——]

@, @
* This mapping transforms the 2N 2N
. . hp _ a)c _ C()c
low-pass filter response into a Plr (0))—1+(—Ej _1+(ZJ
corresponding high pass filter -
response! l.e.: [PLhé)(w) =1+k2TNZ (—%jzlﬁ-szNz (% ]

Q: Yikes! Where did this mapping come from? Are you sure this works?
Consider again the case where w =aw_; the low pass responses are:

EDL'E(a)):1+(a)2N] [PLIE(C())ZJ.-F kZTNZ(a):

* Now consider the high-pass [pLhFE(w):lJr(a)ZN] PL“Ff(a)):l—sz,f(a)]
responses where w =w_/a: :

* Thus, we can conclude from this mapping that: [Pﬂg(w:awc) =PP (0= o, /a)]
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Filter Transformations (contd.)
« Andsince T = P, "

Exactly the result that we expecte@

T (w=aw)=T (a)zla)c) Our mapp!ng provides a methgd for
a transforming a low-pass filter into a

\ high-pass filter! y

Q: OK Poindexter, you have succeeded in providing another one of your
“fascinating” mathematical insights, but does this “mapping” provide anything
useful for us engineers?

A: Absolutely! We can apply this mapping one component element (capacitor
or inductor) at a time to our low-pass schematic design, and the result will be
a direct transformation into a high-pass filter schematic.

* Recall the reactance of an inductor ! | R . o
: - o [ IXT = ol = jeg, | — = J9,R| —
C a)C

element in a low-pass filter design is:

e while that of a capacitor is:

- Ip 1 . R [ o, _ @ @,
Xy == =—]—=|— * Now apply the mapping: | == ~"

Ja)Cr:p gn @ C w
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Filter Transformations (contd.)

* The inductor becomes: [jxhIO = jg.R (—%j:—j 9R@, _ = - ]
n n's 1
@ ) @

@ j(9,R®

* and the capacitor: [jx:p:_j&(_&j:jwt R, D
g\ @ In

) ) A
"It is clear (do you see why?) that the transformation has converted a
positive (i.e., inductive) reactance into a negative (i.e., capacitive)

\ reactance—and vice versa. )

* As a result, to transform a low-pass filter schematic into a high-pass filter
schematic, we:

1 1
. . . hp _ _
1. Replace each inductor with a capacitor of value: [Cn = 9 R, = a)fL'r?]

R 1
. . . . th — s —
2. Replace each capacitor with an inductor of value: [ " 0w a)fo]

n--c
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Filter Transformations (contd.) C2 Cy

* Thus, a high-pass ladder circuit consists © | 1
of series capacitors and shunt inductors
(compare this to the low-pass) ladder ng LsZ L5§
circuit!).
Q: What about band-pass filters?
A: The difference between a low-pass and band-pass filter is simply a shift in
the “center” frequency of the filter, where the center frequency of a low-pass
filter is essentially w = 0.

o

o 1l o o

* For this case, we find the mapping: = _(___B

o, Ao o

function, where A is the normalized bandwidth: @y TN

/

[transforms a low-pass function into a band-pass} [A: @, —Cﬂ

w, and w, define the two 3dB frequencies of the bandpass filter.
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Filter Transformations (contd.)
 For example, the Butterworth low-pass function - becomes a Butterworth
band-pass function:

2N 2N
Ip (N _ o 1 o o
PLR(a))_l_i_[a)C) > PLbF?(a))=1+ A (wc — aj]
* Applying this transform to ('Xbp i n o o) . (9R 1 h
the reactance of a low- |1 =190 ;O_; - Jo ,A " iof A
pass inductive element: . %)n%Rs)

 Look what happened! The transformation turned the inductive reactance
into an inductive reactance in series with a capacitive reactance.

* Asimilar analysis of the transformation of the low-pass capacitive reactance
shows that it is transformed into an inductive reactance in parallel with an
capacitive reactance.
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Filter Transformations (contd.)

* As aresult, to transform a low-pass filter schematic into a band-pass filter
schematic, we:

1. Replace each series inductor
] R - 1 A
. . . L p _ S C p_ _—
with a capacitor and inductor n = 90T~ n =
. . . a)OA gn a)ORs
in series, with values:
2. Replace each shunt capacitor 1 AR op 1
. . . bp __ S n o gn
with an inductor and capacitor E—n "0 o J @, AR,
in parallel, with values: A
* Thus, the ladder circuit for 2 ¢ v Ca
' C e o L 001
band-pass circuit is simply | I
a ladder network of LC L, g —C ng —C;
resonators, both series
o

and parallel:
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Q: So, we now know how to make any and all filters with lumped elements—
but this is a RF/microwave engineering course!

You said that lumped elements were difficult to make and implement )
at high frequencies. You said that distributed elements were used to

make microwave components. So how do we make a filter with
\ distributed elements!?!

J
A: There are many ways to make RF/microwave filters with distributed
elements. Perhaps the most straightforward is to “realize” each individual

lumped element with transmission line sections, and then insert these
approximations in our lumped element solutions.

[The first of these realizations is: Richard’s Transformations]

To easily implement Richard’s Transforms in a microstrip or stripline
circuit, we must apply one of Kuroda’s Identities.
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Richard’s Transformations

 Recall the input impedances of short-circuited and open-circuited
transmission line stubs.

o o——j
s = jZ,tan Z,.5 Z° =—jz, cot%I z,.p
o

“— | —> «— | —>

Note that the input impedances are purely reactive—just like
lumped elements!

 However, the reactance of lumped inductors and capacitors have a much
different mathematical form to that of transmission line stubs:

h _

By ——l L
Z, = ja)L> = Zg=—

O— e
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Richard’s Transformations (contd.)
* In other words, the impedance of transmission line

|

Z. #Z
stubs and lumped elements (capacitors and inductors) —
are different functions with respect to frequency. Z° %7,

Therefore, we can say in general that, for example:

However, for a given lumped element (L or C) and a given stub (with a given Z,
and length |) the functions will be equal at precisely one frequency!

* For example, there is one frequency—let’s
call it w, —that satisfies this equation for a | jo L = jZ,tan 8.1 = jZ, tan {&I}
given L, Z,, and I: Vo
* Similarly: _—J:—jz0 cot 5| =—jzocot{&l}
.C v,

* To make things easier, let’s set the length of our [,1 __P 2_”J
transmission line stub to A_/8, where:
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Richard’s Transformations (contd.)
Q: Why | =A_/87
A: Well, for one reason, Bl =n/4 and therefore tan (rt /4) = 1.0!

 This greatly simplifies I i _ - |
our earlier results: jo.L=jZ,tan| — |= jZ,| | —==—14, COt(—j=—JZo
4 @.C 4
Therefore, if we wish to build a short-

circuited stub with the same impedance § oL=27 ,
= {.'l'
as an inductor L at frequency w_, we set - <o

the characteristic impedance of the

stub transmission line to be Z, = wL: «— _k —>

8
Similarly, if we wish to build open- .—._l
circuited stub with the same j \ !
impedance as a capacitor C at w_, we —— Z =w—:Zin Zo=—>

C g
set the characteristic impedance of the : ]

stub transmission line to be Z, =

1/wCC: }

A
§
We call these two results as Richard’s Transformation. ]
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However, it is important to remember that Richard’s Transformations d
not result in perfect replacements for lumped elements—the stubs do
not behave like capacitors and inductors!

* Instead, the transformation is perfect—the impedances are equal—at
only one frequency (w_).

e We can use Richard’s transformations to replace the inductors and
capacitors of a designed lumped element filter. In fact, for low-pass filter
design, the frequency w_is the filter’s cut-off frequency.

* Using these stubs to replace inductors and capacitors will result in a filter
response similar to that of the lumped element design—a low pass filter
with cut-off frequency w..

 However, the behavior of the filter in the stop-band will be very different
from the lumped element design. For example, at the (high) frequencies
where the stub length becomes a multiple of A/2, the filter response will
be that of w = 0—near perfect transmission!
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Richard’s Transformations (contd.)

10

Lumped
elements

Attenuation (dB)

Distributed
elements

40

50 L '

0 5 10

Frequency (GHz)
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Richard’s Transformations (contd.)

Q: So why does the filter response match the lumped element response so
well in the pass-band?

A: To see why, we first note that the Taylor Series approximation for tang
and cotg when @ is small (i.e., ¢ < 1)is:

1
[tamp ~ <p] and [Cotga ~ 5} for p K1 [cp is expressed in radians.]

* The impedance of Richard’s
transformation shorted stub at Zii(w):jzotan(ﬁijzj(a)cL)tan(ﬁzj
some arbitrary frequency w is 8 o, 4
therefore:

* Therefore, when w < w,(i.e., frequencies in the pass-band of a low-pass
filter!), we can approximate this impedance as:

[ziz(w)= J(w&)tan[fjj - J‘<wcL>[§ﬁj: j”L@}
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Richard’s Transformations (contd.) ;. 0are this to a lumped

w T o T - inductor impedance
st e ) ) D

@, W,

/Since the value n/, is relatively close to one, we find that the Richard’s
Transformation shorted stub has an input impedance very close to the
lumped element inductor for all frequencies less than w_(i.e., all
% frequencies of the low-pass filter pass-band)! y,

 Similarly, we find that the Richard’s transformation open-circuit stub,
when w < w,, has an input impedance of approximately:

- ) ompare this to a lumped
Zi‘;(a)):_—Jcot or zl(&ij:L(ij capacitor impedange Z. = -1
®.C w.4) oC\or) JoC\x joC

we find that results are approximately the same for all pass-band
frequencies (i.e., when w < w,).
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Kuroda’s ldentities

* We will find that Kuroda’s Identities can be very useful in making the
implementation of Richard’s transformations more practicable.

 Kuroda’s Identities essentially provide a list of equivalent two port
networks. By equivalent, we mean that they have precisely the same
scattering/impedance/admittance/transmission matrices.

* In other words, we can replace one two-port network with its equivalent
in a circuit, and the behavior and characteristics (e.g., its scattering matrix)
of the circuit will not change!

Indraprastha Institute of
Information Technology Delhi ECE321/521

Q: Why would we want to do this?
A: Because one of the equivalent may be more practical to implement!

For example, we can use Kuroda’s Identities to:

1. Physically separate transmission line stubs.

2. Transform series stubs into shunt stubs.

3. Change impractical characteristic impedances into more realizable
ones.




Indraprastha Institute of ECE321/521

Information Technology Delhi

1D

Kuroda’s Ildentities (contd.)

* Four Kuroda’s identities are provided in a very ambiguous and confusing
table (Table 8.7) in your book. We will find the first two identities to be the

most useful.

 Consider the following two-port network, constructed with a length of
transmission line, and an open-circuit shunt stub:

Port-2

 Note that the length of the stub
and the transmission line are
identical, but the characteristic
impedance of each are different.
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Kuroda’s Identities (contd.)

 The first Kuroda identity states that the considered two-port network is
precisely the same two-port network as this one:

A
n2=1+ﬁ e Thus, we can replace the first
Z,, ] , structure in some circuit with the
—t one above, and the behavior of that
" circuit will not change in the least!
Port-1
H v
3  Note this equivalent circuit uses a
Z_022 short-circuited series stub.
i n :
q‘_ ?
- J g i
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Kuroda’s Identities (contd.)
 The second of Kuroda’s Identities states that this two port network:

Information Technology Delhi
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A Is precisely identical to this

Wtwork
Port-2
l

; Z,, g

& —

E € l > !
Port-1 Port-2

With regard to Richard’s Transformation, these identities are useful when
we replace the series inductors with shorted stubs.
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Kuroda’s Identities (contd.)

e To see why this is useful when implementing a lowpass filter with

distributed elements, consider this third order filter example, realized using
Richard’s Transformations:

o 000 Q00

L T G

0

Note that we have a few
problems in terms of
implementing this design!)
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* First of all the stubs are ideally infinitely close to each other— how do we
build that? We could physically separate them, but this would introduce
some transmission line length between them that would mess up our filter
response!

 Secondly, series stubs are
difficult to construct in
microstrip/ stripline—we like
shunt stubs much better!

e To solve these problems,
we first add a short length
of transmission line (Z, and
|I= A/8) to the beginning
and end of the filter:
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‘Kuroda’s Identities (contd.)

* Note adding these lengths only results in a phase shift in the filter
response—the transmission and reflection functions will remain
unchanged.

* Now we can use the second of Kuroda’s Identities to replace the series

stubs with shuAnts: A
— EC e a— Ec —_

n =1+ 2 n, =1+ —2

2
nl a)cLl

Note the three stubs are

/ /Now this is a realizable filter!\
8

separated, and they are all

Z
° h b
/ / \_ shunt stubs. )
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Stepped-Impedance Low-Pass Filters

Q: Are there other methods for building microwave filters?
A: There are a bundle of them!

” All distributed elements (e.g., transmission lines, coupled lines, )
resonators, stubs) exhibit some frequency dependency. If we are
clever, we can construct these structures in a way that their frequency
\ dependency (i.e., S,;(w)) conforms to a desirable function of w. y

Another distributed element realization of a lumped
element low-pass filter design is the stepped-
impedance low-pass filter.
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Q: Won’t you ever stop talking??

A: Yup. I’'m all done.



