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• Frequency Response of Quarter Wave Transformer 
• Multi-Section Transformer  
• Binomial Multi-section Transformer  
• Chebyshev Multi-section Transformer  
• Tapered Lines  
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Frequency Response of a λ/4 Matching Network 

• You could have left this simple and precise analysis alone— BUT NOOO!! 

• You had to foist upon us a long, rambling 
discussion of “the propagation series” and 
“direct paths” and “the theory of small 
reflections”, culminating with the 
approximate (i.e., less accurate!) SFG: 

Γ ΓL 

𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  

Using our reduction rules, we 
can quickly conclude that: 
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Q: You have once again provided us with confusing and perhaps useless 
information. The quarter-wave matching network has an exact SFG of: 
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A: In a word: frequency response*. * OK, two words. 

Freq. Response of a λ/4 Matching Network (contd.) 

• From the approximate SFG we were able to conclude the approximate (i.e., 
less accurate!) result: 

2j l

in L

b
e

a

    

Q: What exactly would we be analysing and/or evaluating? 
A: The frequency response of the matching network, for one thing. 

Remember, all matching networks must be lossless, and so must be made 
of reactive elements (e.g., lossless transmission lines). The impedance of 
every reactive element is a function of frequency, and so too then is Γ𝑖𝑛. 

The exact result was simple—and exact! Why did you 
make us determine this approximate result? 

the mathematical form of the result is much simpler to analyze 
and/or evaluate (e.g., no fractional terms!). 
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Q: Isn’t Γ𝑖𝑛 𝜔 = 0 for a quarter 
wave matching network? 
A: Oh my gosh no! A properly 
designed matching network will 
typically result in a perfect match 
(i.e., Γ𝑖𝑛 𝜔 = 0) at one frequency 
(i.e., the design frequency). 
However, if the signal frequency is 
different from this design frequency, 
then no match will occur (i.e., 
Γ𝑖𝑛(𝜔) ≠ 0). 

Freq. Response of a λ/4 Matching Network (contd.) 

Recall we discussed this 
behavior before: 

Say we wish to determine function Γ𝑖𝑛(𝜔). 
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A: Look closer! 

Freq. Response of a λ/4 Matching Network (contd.) 

Q: But why is the result: or its approx form: 

dependent on frequency? I don’t see frequency variable 𝝎 anywhere in these 
results! 

2 2

1

j l

L
in

L

T e 
   

 
2j l

in Le     

• Remember that the value of spatial frequency β (in 
radians/meter) is dependent on the frequency 𝝎 of our eigen 
function (aka “the signal”): 

1

pv
 

 
   
 

• This velocity is a constant (i.e., 𝑣𝑝 = 1
𝐿𝐶 ), and so the spatial frequency β is 

directly proportional to the temporal frequency ω. 

Where 𝑇 = 𝑙
𝑣𝑝  is the time required for the wave to 

propagate a distance l down a transmission line. 

where you will recall that 𝒗𝒑 is the propagation velocity of a wave moving 

along a transmission line. 

1

pv
 

 
   
 

• Thus, we can rewrite: 
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Freq. Response of a λ/4 Matching Network (contd.) 

• As a result, we can write the input reflection 
coefficient as a function of spatial frequency β: 

2( ) j l

in Le      

• Or equivalently as a function of temporal frequency ω: 2( ) j T

in Le      

• Frequently, the reflection coefficient is simply written in 
terms of the electrical length θ of the transmission line, 
which is simply the difference in relative phase between the 
wave at the beginning and end of the length l of the TL. 

l T   

• So that: 2( ) j

in Le      

• Now, we know that  Γ = Γ𝐿 for a properly designed 
quarter-wave matching network, so the reflection 
coefficient function can be written as: 

 2( ) 1 j

in L e     

Note we can simply insert the value 𝜃 = 𝛽𝑙 into this expression to get 
Γ𝑖𝑛(𝛽), or insert 𝜃 = 𝜔𝑇 into the expression to get Γ𝑖𝑛(𝜔). 
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Freq. Response of a λ/4 Matching Network (contd.) 

• Note that: 0 ( )1 j j j je e e e         • And that: 2 ( )j j j je e e e         

• And so:  2( ) 1 j

in L e       j j j j

L e e e e        

 j j j

Le e e        2cosj

Le   

• Now,  magnitude of our result is: ( ) 2 cos 2 cosj

in L Le       

• Note:  Γ𝑖𝑛(𝜃)  is zero-valued only when 
𝑐𝑜𝑠𝜃 = 0. This of course occurs when 𝜃 = 𝜋

2 . /2
( ) 2 cos 0

2
in L 





   

As we (should have) suspected, the match occurs at the frequency whose wavelength 
is equal to four times the matching (𝑍1) transmission line length, i.e. λ = 4𝑙. 

/2
( ) 2 cos 0

2
in L 





   A: Remember, 𝜃 = 𝛽𝑙. Thus if 𝜃 = 𝜋

2 : 

Q: What the heck does this mean? 
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Freq. Response of a λ/4 Matching Network (contd.) 

In other words, a perfect match occurs at the frequency where 𝑙 = λ
4 . 

• Note the physical length l of the transmission line does not 
change with frequency, but the signal wavelength does: 

pv

f
 

Q: So, at precisely what frequency does a quarter-wave transformer with 
length l provide a perfect match? 
A: Recall that 𝜃 = 𝜔𝑇, where 𝑇 = 𝑙

𝑣𝑝 . Thus, for 𝜃 = 𝜋
2 : 

2
T


  

1

2 2
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T l

 
  

• This frequency is called the design frequency of the matching network—
it’s the frequency where a perfect match occurs. We denote this as 
frequency 𝜔0, which has wavelength λ0, i.e.: 

0
2 2
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Indraprastha Institute of 

Information Technology Delhi ECE321/521 

• Given this, yet another way of 
expressing 𝜃 = 𝛽𝑙 is: 

• First, we must define what we mean by bandwidth. Say the maximum 
acceptable level of the reflection coefficient is value Γ𝑚. This is an arbitrary 
value, set by you the microwave engineer (typical values of Γ𝑚 range from 
0.05 to 0.2). 

Freq. Response of a λ/4 Matching Network (contd.) 
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 

• Thus, we conclude: 
0

(f) 2 cos
2

in L

f

f

 

    
 

This expression helps in the determination (approximately) of the 
bandwidth of the quarter-wave transformer! 

0

(f f ) 2 cos
2

m
in m m L

f

f

 

       
 

• Let us denote the frequencies where 
this maximum value Γ𝑚 occurs 𝑓𝑚. In 
other words: 
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• There are two solutions to this equation, the first is: 

• And the second: 

• You will find that 𝑓𝑚1 < 𝑓0 < 𝑓𝑚2. 
So the values 𝑓𝑚1 and 𝑓𝑚2 define 
the lower and upper limits on 
matching network bandwidth. 

𝑓𝑚1 𝑓𝑚2 

Freq. Response of a λ/4 Matching Network (contd.) 
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Important note! Make sure 𝑐𝑜𝑠−1𝑥 is expressed in radians! 

All this analysis was brought to you 
by the “simple” mathematical form 

of Γ𝑖𝑛(𝑓) that resulted from the 
theory of small reflections! 
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The Multi-section Transformer 

• Where the marginal 
reflection coefficients are: 

1 0
0

1 0

Z Z

Z Z






1

1

n n
n

n n

Z Z

Z Z









L N

N

L N

Z Z

Z Z






• If the load resistance RL is less 
than Z0, then we should design 
the transformer such that: 

𝑍0 > 𝑍1 > 𝑍2 > 𝑍3 > ⋯ > 𝑍𝑁 > 𝑅𝐿 

• Conversely, if RL is greater than Z0, 
then we will design the 
transformer such that: 

𝑍0 < 𝑍1 < 𝑍2 < 𝑍3 < ⋯ < 𝑍𝑁 < 𝑅𝐿 

• Consider a sequence of N transmission line sections; each section has 
equal length l, but dissimilar characteristic impedances: 

Γ0 Γ1 Γ2 Γ𝑁−1 Γ𝑁 

𝑙 𝑙 𝑙 

𝑅𝐿 
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The Multi-section Transformer (contd.) 

In other words, we gradually transition from Z0 to RL! 

Note that since RL is real, and since we assume lossless transmission 
lines, all Γ𝑛 will be real (this is important!). 

• Likewise, since we gradually transition from one section to another, each 
value: 

will be small. 1n nZ Z 

• As a result, each marginal reflection coefficient Γ𝑛 will be real and have a 
small magnitude. 

This is also important, as it means that we can apply the “theory of 
small reflections” to analyse this multi-section transformer! 

Γ0 Γ1 Γ2 Γ𝑁−1 Γ𝑁 

𝑙 𝑙 𝑙 

𝑅𝐿 

• The theory of small reflections 
allows us to approximate the 
input reflection coefficient of 
the transformer as: 
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The Multi-section Transformer (contd.) 

0

0

( )in

b

a
  2 4 2

0 1 2 ...j l j l j N l

Ne e e           
2

0

N
j n l

n

n

Γ e 





• We can alternatively express the input reflection coefficient as a function 
of frequency (𝛽𝑙 = 𝜔𝑇): 

2 4 2

0 1 2( ) ...j T j T j N T

in Ne e e              
(2 )

0

N
j nT

n

n

Γ e 





The approximate SFG when 
applying the theory of small 

reflections! 

𝑒−𝑗𝛽𝑙  𝑒−𝑗𝛽𝑙  𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  𝑒−𝑗𝛽𝑙  𝑒−𝑗𝛽𝑙  

Γ0 Γ1 Γ2 Γ𝑁−1 Γ𝑁 = 𝛤𝐿 

𝑎0 

𝑏0 

𝑎1 

𝑏1 

𝑎2 

𝑏2 

𝑎𝑁−1 

𝑏𝑁−1 

𝑎𝑁 

𝑏𝑁 

where: 𝑇 =
𝑙

𝑣𝑝
← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 1 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 
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The Multi-section Transformer (contd.) 

• We find, therefore, that by selecting the proper values of basis weights 
𝑐𝑛(i.e., the proper values of reflection coefficients Γ𝑛), we can synthesize 
any function Γ𝑖𝑛(𝜔) of frequency ω, provided that: 

1. Γin(ω) is periodic in ω = 1
2T . 

2. we have sufficient number of sections N. 

• We see that the function Γ𝑖𝑛(𝜔) is expressed as a weighted set of N basis 
functions! i.e., 

Γ𝑖𝑛(𝜔) =  𝑐𝑛Ψ(𝜔

𝑁

𝑛=0

) 

Ψ(𝜔) = 𝑒−𝑗(2𝑛𝑇)𝜔 𝑐𝑛 = Γ𝑛 

Q: What function should we synthesize? 
A: Ideally, we would want to make Γin ω = 0 (i.e., the reflection coefficient 
is zero for all frequencies). 

Bad News: this ideal function Γin ω = 0 would require an 
infinite number of sections (i.e., 𝑁 = ∞)! 
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The Multi-section Transformer (contd.) 

• To simplify this process, we can make the transformer symmetrical, such 
that: 

Γ0 = Γ𝑁, Γ1 = Γ𝑁−1,   Γ2 = Γ𝑁−2, . …… 

Therefore, we seek to find an “optimal” function for Γin ω , 
given a finite number of N elements. 

Once we determine these optimal functions, we can find the values of 
coefficients  Γn (or equivalently, 𝑍𝑛) that will result in a matching 

transformer that exhibits this optimal frequency response. 

Note: this does NOT mean that: 

𝑍0 = 𝑍𝑁, 𝑍1 = 𝑍𝑁−1,   𝑍2 = 𝑍𝑁−2, . …… 
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The Multi-section Transformer (contd.) 

• we can write for N 
even: 

Γ 𝜔 = 2𝑒−𝑗𝑁𝜔𝑇  Γ0𝑐𝑜𝑠𝑁𝜔𝑇 + Γ1cos (𝑁 − 2)𝜔𝑇 + ⋯

+ Γ𝑛cos (𝑁 − 2𝑛)𝜔𝑇 + ⋯ +
1

2
Γ𝑁

2 
  

• and since: 𝑒𝑗𝑥 + 𝑒−𝑗𝑥 = 2cos (𝑥) 

• We then find that: 

Γ 𝜔 = 𝑒−𝑗𝑁𝜔𝑇 Γ0 𝑒𝑗𝑁𝜔𝑇 + 𝑒−𝑗𝑁𝜔𝑇 + Γ1 𝑒𝑗(𝑁−2)𝜔𝑇 + 𝑒−𝑗(𝑁−2)𝜔𝑇

+ Γ2 𝑒𝑗(𝑁−4)𝜔𝑇 + 𝑒−𝑗(𝑁−4)𝜔𝑇 + ⋯   

• whereas for N odd: 
Γ 𝜔 = 2𝑒−𝑗𝑁𝜔𝑇

 Γ0𝑐𝑜𝑠𝑁𝜔𝑇 + Γ1cos (𝑁 − 2)𝜔𝑇 + ⋯

+ Γ𝑛cos (𝑁 − 2𝑛)𝜔𝑇 + ⋯ + Γ 𝑁−1
2 
𝑐𝑜𝑠𝜔𝑇  

The remaining question then is this: given an optimal and realizable function 
Γin ω , how do we determine the necessary number of sections N, and how 

do we determine the values of all reflection coefficients Γn?? 
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The Multi-section Transformer (contd.) 

Multi-section transformer is often used to maximize the 
bandwidth of transformer.  

Alternatively, we can say that one way to maximize bandwidth is to 
construct a multi-section matching network with a function Γ(𝑓) that is 

either maximally flat or can be considered flat albeit with pass-band ripple. 

Binomial Function satisfies the condition of maximum flatness  

Chebyshev Polynomial can be considered flat with pass-band ripple 
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Maximally Flat Functions 

• Consider some function 𝑓(𝑥). Say that we know the value of the function 
at 𝑥 = 1 is 5: 

( 1) 5f x  

• We can additionally determine the first derivative of this function, and 
likewise evaluate this derivative at 𝑥 = 1. Say that this value turns out to 
be zero: 

1

( )
| 0x

df x

dx
 

This of course says something about the function 
𝑓(𝑥), but it doesn’t tell us much! 

Note that this does not mean that the derivative of 𝑓(𝑥) 
is equal to zero, it merely means that the derivative of 

𝑓(𝑥) is zero at the value 𝑥 = 1. Presumably, 𝑑𝑓(𝑥)
𝑑𝑥  is 

non-zero at other values of 𝑥. 

So, we now have two pieces of information about the function 𝑓(𝑥). 
We can add to this list by continuing to take higher order derivatives 

and evaluating them at the single point 𝑥 = 1. 
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Maximally Flat Functions (contd.) 

• Let’s say that the values of all the derivatives (at 𝑥 = 1) turn out to have a 
zero value: 

𝑑𝑓𝑛(𝑥)

𝑑𝑥𝑛
 
𝑥=1

= 0    𝑓𝑜𝑟 𝑛 = 1,2,3, … , ∞ 

We say that this function is completely flat at the point 𝑥 = 1. 
Because all the derivatives are zero at 𝑥 = 1, it means that the 

function cannot change in value from that at 𝑥 = 1. 

In other words, if the function has a value of 5 at 𝑥 = 1, (i.e., 𝑓 𝑥 = 1 = 5), 
then the function must have a value of 5 at all x ! 

The function 𝑓(𝑥) thus must be the constant function: 𝑓 𝑥 = 5.  
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Maximally Flat Functions (contd.) 

• Now let’s consider the following problem—say some function 𝑓(𝑥) has 
the following form: 

3 2( )f x ax bx cx  

• We wish to determine the values a, b, and c so that: ( 1) 5f x  

• and that the value of the function 𝑓(𝑥) is as close to a value of 5 as 
possible in the region where 𝑥 = 1. 

• In other words, we want the function to have the value of 5 at 
𝑥 = 1, and to change from that value as slowly as possible as we 
“move” from 𝑥 = 1. 

Q: Don’t we simply want the completely flat function 𝑓 𝑥 = 5? 
A: That would be the ideal function for this case, but notice that solution is 
not an option. Note there are no values of 𝑎, 𝑏, and 𝑐 that will make: 
𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 = 5 for all values x. 
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Maximally Flat Functions (contd.) 
Q: So what do we do? 
A: Instead of the completely flat solution, we can find the maximally flat 
solution! 

The maximally flat solution comes from determining the values 𝑎, 𝑏, and 
𝑐 so that as many derivatives as possible are zero at the point 𝑥 = 1. 

• For example, we wish to make the first derivate equal to zero at 𝑥 = 1: 

0 =
𝑑𝑓 (𝑥)

𝑑𝑥
 
𝑥=1

 0 = 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐  
𝑥=1

 3𝑎 + 2𝑏 + 𝑐 = 0 

• Similarly, we wish to make the second derivative equal to zero at 𝑥 = 1: 

0 =
𝑑𝑓2 (𝑥)

𝑑𝑥2  
𝑥=1

 0 = 6𝑎𝑥 + 2𝑏  
𝑥=1

 6𝑎 + 2𝑏 = 0 

Here we must stop taking derivatives, as our solution only has three 
degrees of design freedom (i.e., 3 unknowns 𝑎, 𝑏, and 𝑐). 
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Maximally Flat Functions (contd.) 

Q: But we only have taken two derivatives, can’t we take one more? 
A: No! We already have a third “design” equation: the value of the function 
must be 5 at 𝑥 = 1: 

5 ( 1)f x a b c    

• So, we have used the maximally flat criterion at 𝑥 = 1 to generate three 
equations and three unknowns: 

3𝑎 + 2𝑏 + 𝑐 = 0 6𝑎 + 2𝑏 = 0 𝑎 + 𝑏 + 𝑐 = 5 

• Solving, we find: 𝑎 = 5,        𝑏 = −15,              𝑐 = 15 
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Maximally Flat Functions (contd.) 

• Therefore, the maximally flat function (at 𝑥 = 1) is: 3 2( ) 5 15 15f x x x x  
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The Binomial Multi-Section Transformer 

• Recall that a multi-section matching network can be described using the 
theory of small reflections as: 

2 4 2

0 1 2( ) ...j T j T j N T

in Ne e e              
(2 )

0

N
j nT

n

n

Γ e 





where: 𝑇 =
𝑙

𝑣𝑝
← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 1 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 

Note that for a multi-section transformer, we have N degrees of design 
freedom, corresponding to the N characteristic impedance values 𝑍𝑛. 

Q: What should the values of Γ𝑛 (i.e., 𝑍𝑛) be? 
A: We need to define N independent design equations, which we can then 
use to solve for the N values of characteristic impedance 𝑍𝑛. 
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The Binomial Multi-Section Transformer (contd.) 

• First, we start with a single design frequency 𝜔0, where we wish to achieve 
a perfect match: 

 0 0in    
That’s just one design equation: we 

need N -1 more! 

• These addition equations can be selected using many criteria—one such 
criterion is to make the function Γ𝑖𝑛(𝜔) maximally flat at the point 
𝜔 = 𝜔0. 

• To accomplish this, we first consider the 
Binomial Function: 

   21
N

jA e    

• This function has the desirable 
properties that:    1 1 1 0

2

N NjA e A
  

       
 

• and that: 
𝑑𝑛Γ (𝜃)

𝑑𝜃𝑛  
𝜃=𝜋

2 

= 0         𝑓𝑜𝑟   𝑛 = 1,2,3,… , 𝑁 − 1 
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The Binomial Multi-Section Transformer (contd.) 

   21
N

jA e    

In other words, this Binomial Function is 
maximally flat at the point 𝜃 = 𝜋

2 , where it has a 
value of Γ 𝜃 = 𝜋

2 = 0. 

Q: So? What does this have to do with our multi-section matching network? 
A: Let’s expand (multiply out the N identical product terms) of the Binomial 
Function: 

   21
N

jA e      2 4 6 2

0 1 2 3 ...N N j N j N j N j N

NA C C e C e C e C e           

where: 
 

!

! !

N

n

N
C

N n n

• Compare this to an N-section 
transformer function: 

  2 4 2

0 1 2 ...j T j T j N T

in Ne e e              

• it is obvious the two functions have 
identical forms, provided that: 

N

n nAC  T 
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The Binomial Multi-Section Transformer (contd.) 

Moreover, we find that this function is very desirable 
from the standpoint of the a matching network. Recall 

that Γ 𝜃 = 0 at 𝜃 = 𝜋
2  —a perfect match! 

Additionally, the function is maximally flat at 𝜃 = 𝜋
2 , therefore 

Γ 𝜃 ≈ 0  over a wide range around 𝜃 = 𝜋
2  — a wide bandwidth! 

Q: But how does 𝜃 = 𝜋
2  relate to frequency ω? 

A: Remember that 𝜔𝑇 = 𝜃, so the value 𝜃 = 𝜋
2  corresponds to the frequency: 

   21
N

jA e    

0

1

2 2

pv

T l

 
  

This frequency (ω0) is therefore our design 
frequency—the frequency where we have a perfect 

match. 

• Note that the length l has an interesting relationship with this frequency: 

0 0

0 0

1

2 2 2 2 4

pv
l

    

  
   
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The Binomial Multi-Section Transformer (contd.) 

• In other words, a Binomial Multi-section matching network will have a 
perfect match at the frequency where the section lengths l are a quarter 
wavelength! 

Thus, we have our first design rule: 

Set section lengths l so that they are a quarter-wavelength λ0
4  at 

the design frequency ω0. 

Q: I see! And then we select all the values 𝑍𝑛 such that Γ𝑛 = 𝐴𝐶𝑛
𝑁. But 

wait! What is the value of A ?? 
A: We can determine this value by evaluating a boundary condition! 
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The Binomial Multi-Section Transformer (contd.) 

• Specifically, we can easily determine the value of Γ(ω) at ω = 0. 

𝑙 𝑙 𝑙 

𝑅𝐿 

• Note as ω approaches zero, the electrical length 𝛽𝑙 of each section will 
likewise approach zero. Thus, the input impedance Zin will simply be equal 
to RL as ω → 0. 

• As a result, the input reflection coefficient Γ(ω = 0) must be: 

 
 
 

0 0

0 0

0
0

0

in L

in L

Z Z R Z

Z Z R Z






  
   

  

• However, we likewise know that:      2(0)0 1 1 1 2
N Nj NA e A A     
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The Binomial Multi-Section Transformer (contd.) 

• Equating the two expressions: 

0

0

2N L

L

R Z
A

R Z






• therefore: 

0

0

2 N L

L

R Z
A

R Z

 




• We now have a formulation to calculate the required marginal reflection 
coefficients  Γ𝑛: 

0

0

! !
2

( )! ! ( )! !

N N L
n n

L

AN R Z N
AC

N n n R Z N n n

 
   

  

we also know that these marginal 
reflection coefficients are physically 

related to the characteristic impedances 
of each section as: 

1

1

n n
n

n n

Z Z

Z Z






 



• Equating the two and solving, we find that 
that the section characteristic impedances 
must satisfy: 

0

0

! !
2

( )! ! ( )! !

N N L
n n

L

AN R Z N
AC

N n n R Z N n n

 
   

  

(A can be negative!) 
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The Binomial Multi-Section Transformer (contd.) 

Note this is an iterative procedure—we determine Z1 from Z0, Z2 

from Z1, and so forth. 

Q: This result appears to be our second design equation. 
A: Alas, there is a big problem with this result.  

• Note that there are N+1 coefficients Γn (i.e., n∈{0,1,…,N}) in the 
Binomial series, yet there are only N design degrees of freedom (i.e., 
there are only N transmission line sections!). 

• Thus, our design is a bit over constrained, a result that manifests itself 
the finally marginal reflection coefficient ΓN. 

• Note from this iterative solution, the last transmission line impedance ZN is 
selected to satisfy the mathematical requirement of the penultimate 
reflection coefficient ΓN-1. 

1
1 1

1

NN N
N N

N N

Z Z
AC

Z Z


 




  


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The Binomial Multi-Section Transformer (contd.) 

• Therefore the last impedance must be: 1
1

1

1

1

N

N
N N N

N

AC
Z Z

AC











• But there is one more mathematical requirement! 
The last marginal reflection coefficient must 
likewise satisfy: 

0

0

2N N L
N N

L

R Z
AC

R Z

 
  



where we use the fact that 𝐶𝑁
𝑁 = 1. 

But, we selected ZN to satisfy the requirement for ΓN-1,—we have no physical 
design parameter to satisfy this last mathematical requirement for ΓN! 

• As a result, we find to our great consternation that the last requirement is 
not satisfied: 

NL N
N N

L N

R Z
AC

R Z


  





Indraprastha Institute of 

Information Technology Delhi ECE321/521 

The Binomial Multi-Section Transformer (contd.) 

Q: Yikes! Does this mean that the resulting matching network will not have 
the desired Binomial frequency response? 
A: That’s exactly what it means! 

Q: You big #%@#$%&!!!! Why did you waste all my time discussing an over-
constrained design problem that can’t be built? 
A: Relax; there is a solution to our dilemma—albeit an approximate one. 

• You undoubtedly have previously used the approximation: 

1
ln

2

y x y

y x x

  
  

  

This approximation is especially accurate when y−x 
is small (i.e., when 𝑦 𝑥 ≈ 1). 
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The Binomial Multi-Section Transformer (contd.) 
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• Now, we know that the values of 𝑍𝑛+1 and 𝑍𝑛 in a multi-section matching 
network are typically very close, such that 𝑍𝑛+1 − 𝑍𝑛  is small. 

• Thus, we use the approximation: 

The Binomial Multi-Section Transformer (contd.) 

1 1

1

1
ln

2

n n n
n

n n n

Z Z Z

Z Z Z

 



 
    

  

• Likewise, we can also apply this 
approximation (although not as accurately) 
to the value of A: 

( 1)0

0 0

2 2 lnN NL L

L

R Z R
A

R Z Z

    
   

  

• So, let’s start over, only this time we’ll use these approximations. First, 
determine A: 

( 1)

0

2 lnN LR
A

Z

   
  

 
(A can be negative!) 

• Now use this result to calculate the 
mathematically required marginal reflection 
coefficients Γn: 

!

( )! !

N

n n

AN
AC

N n n
  


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The Binomial Multi-Section Transformer (contd.) 

• Of course, we also know that these marginal 
reflection coefficients are physically related to the 
characteristic impedances of each section as: 

11
ln

2

n
n

n

Z

Z


 

   
 

• Equating the two and solving, we find that that the 
section characteristic impedances must satisfy:  1 exp 2n n nZ Z  

This is our second design rule. Note it is an iterative 
rule—we determine Z1 from Z0, Z2 from Z1, and so forth. 

Q: Huh? How is this any better? How does applying approximate math lead to 
a better design result?? 
A: Applying these approximations help resolve our over constrained problem. 
Recall that the over-constraint resulted in: 

NL N
N N

L N

R Z
AC

R Z


  


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The Binomial Multi-Section Transformer (contd.) 

• But, as it turns out, the approximations leads to the happy situation where: 

1
ln

2

NL
N N

N

R
AC

Z

 
   

 

provided that the value A is the 
approximation as well. 

• Effectively, these approximations couple the results, such that each value 
of characteristic impedance Zn approximately satisfies both Γn and Γn+1. 
Summarizing: 

a. If you use the “exact” design equations to determine the 
characteristic impedances Zn, the last value Γn will exhibit a significant 
numeric error, and your design will not appear to be maximally flat. 

b. If you instead use the “approximate” design equations to determine 
the characteristic impedances Zn, all values Γn will exhibit a slight 
error, but the resulting design will appear to be maximally flat, 
Binomial reflection coefficient function Γ(ω)! 
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The Binomial Multi-Section Transformer (contd.) 

Note that as we increase the 
number of sections, the 

matching bandwidth 
increases. 

Q: Can we determine the value of this bandwidth? 
A: Sure! But we first must define what we mean by bandwidth. 
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The Binomial Multi-Section Transformer (contd.) 

• As we move from the design 
(perfect match) frequency 𝑓0 
the value Γ(𝑓)  will increase. 
At some frequency (say, 𝑓𝑚) the 
magnitude of the reflection 
coefficient will increase to some 
unacceptably high value (say, 
Γ𝑚). At that point, we no longer 
consider the device to be 
matched. 

Γ(𝑓)   

Γ𝑚 

𝑓0 𝑓𝑚1 𝑓𝑚2 

𝑓 

∆𝑓 

• Note there are two values of frequency 𝑓𝑚 —one value less than design 
frequency 𝑓0, and one value greater than design frequency 𝑓0. These two 

values define the bandwidth ∆𝑓 of the matching network: 

   2 1 0 1 2 02 2m m m mf f f f f f f      
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The Binomial Multi-Section Transformer (contd.) 
Q: So what is the numerical value of Γ𝑚? 
A: I don’t know—it’s up to you to decide! 

Every engineer must determine what they consider to be an acceptable 
match (i.e., decide Γ𝑚). This decision depends on the application involved, 
and the specifications of the overall microwave system being designed. 

However, we typically set Γ𝑚 to be 0.2 or less. 

Q: OK, after we have selected Γ𝑚, can we determine the two frequencies 𝑓𝑚? 
A: Sure! We just have to do a little algebra. 

• We start by rewriting the Binomial function: 

   21
N

jA e      
N

jN j jAe e e       2cos
NjNAe  

• Now, we take the magnitude of this function: 

  2 cos
NN jNA e      2 cos

NN A  
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The Binomial Multi-Section Transformer (contd.) 

• Now, we define the values 𝜃 where Γ(𝜃) = Γ𝑚  as 𝜃𝑚. i.e., : 

  2 cos
NN

m m mA      

• We can now solve for 𝜃𝑚(in radians!) in terms of Γ𝑚: 

1/

1

1

1
cos

2

N

m
m

A
 

  
       

1/

1

2

1
cos

2

N

m
m

A
 

  
        

Note that there are two solutions to the above equation 
(one less than 𝜋 2  and one greater than 𝜋 2  )! 

• Now, we can convert the values of 𝜃𝑚 into specific frequencies. 
• Recall that ωT =θ, therefore: 

1 p

m m m

v

T l
   
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The Binomial Multi-Section Transformer (contd.) 

• But recall also that 𝑙 = λ0
4 , where λ0 is the wavelength at the design 

frequency 𝑓0(not 𝑓𝑚!), and where λ0 =
𝑣𝑝

𝑓0
 . 

• Thus we can conclude: 

 0

0

4
4

p p

m m m m

v v
f

l
   


  

 02

2

mm
m

f
f



 
 

where 𝜃𝑚 is 
expressed in 

radians.  

• Therefore: 
1/

10
1

2 1
cos

2

N

m
m

f
f

A


  
       

1/

10
2

2 1
cos

2

N

m
m

f
f

A


  
        

• Thus, the bandwidth of the 
binomial matching network can 
be determined as: 

 

1/

10
0 1 0

4 1
2 2 cos

2

N

m
m

f
f f f f

A


  
           

Note that this equation can be used to determine the bandwidth of a 
binomial matching network, given Γ𝑚 and number of sections N. 
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The Binomial Multi-Section Transformer (contd.) 

 

1/

10
0 1 0

4 1
2 2 cos

2

N

m
m

f
f f f f

A


  
           

It can also be used to determine 
the number of sections N 
required to meet a specific 
bandwidth requirement! 

• Finally, we can list the design steps for a binomial matching network: 

1. Determine the value N required to meet the bandwidth (∆𝑓 and Γ𝑚) 
requirements. 

2. Determine the approximate value A from Z0, RL and N. 

3. Determine the marginal reflection coefficients Γ𝑛 = 𝐴𝐶𝑛
𝑁 required by 

the binomial function. 
4. Determine the characteristic impedance of each section using the 

iterative approximation: 𝑍𝑛+1 = 𝑍𝑛𝑒𝑥𝑝 2Γ𝑛 . 

5. Perform the sanity check: Γ𝑁 ≈
1

2
𝑙𝑛

𝑅𝐿

𝑍𝑛
= 𝐴𝐶𝑛

𝑁. 

6. Determine section length 𝑙 = λ0
4  for design frequency 𝑓0. 
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Chebyshev Multi-section Matching Transformer 

Self Study  
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Tapered Lines 
• We can also build matching networks where the characteristic 

impedance of a transmission line changes continuously with position 𝑧. 
• We call these matching networks tapered lines.  
• Note all our multi-section transformer designs have involved a 

monotonic change in characteristic impedance, from Z0 to RL  (e.g., 
𝑍0 < 𝑍1 < 𝑍2 < ⋯ < 𝑅𝐿).  

• Now, instead of having a 
stepped change in 
characteristic impedance 
as a function of position 
𝑧 (i.e., a multi-section 
transformer), we can also 
design matching networks 
with continuous tapers. 

𝑍 

𝑧 

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  
𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑇𝑎𝑝𝑒𝑟 

𝑀𝑢𝑙𝑡𝑖 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛  
𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑇𝑎𝑝𝑒𝑟 

0 −𝑙 −2𝑙 −3𝑙 

𝑅𝐿 

𝑍3 

𝑍2 

𝑍1 

𝑍0 
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Tapered Lines (contd.) 
• A tapered impedance matching network is defined by two 

characteristics—its length L and its taper function 𝑍1(𝑧). 

There are of course an infinite number of possible functions 𝑍1(𝑧). 
Your book discusses three: the exponential taper, the triangular taper, 

and the Klopfenstein taper. 

𝑅𝐿 

𝑧 = 0 𝑧 = 𝐿 
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Tapered Lines (contd.) 
• For example, the exponential taper 

has the form: 

 1 0

azZ z Z e 0 < 𝑧 < 𝐿 

• where: 

0

1
ln LZ

a
L Z

 
  

 

Note for the exponential taper, we get the expected result that  
𝑍1 𝑧 = 0 = 𝑍0 and  𝑍1 𝑧 = 𝐿 = 𝑅𝐿. 

Recall the bandwidth of a multi-section matching transformer increases 
with the number of sections. Similarly, the bandwidth of a tapered line will 

typically increase as the length L is increased. 
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Tapered Lines (contd.) 

Impedance variations for the 
triangular, exponential, and 

Klopfenstein tapers. 

Resulting reflection 
coefficient magnitude versus 

frequency for the tapers 
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Tapered Lines (contd.) 

Q: But how can we physically taper the characteristic impedance of a 
transmission line? 
A: Most tapered lines are implemented in stripline or microstrip. As a result, 
we can modify the characteristic impedance of the transmission line by simply 
tapering the width W of the conductor (i.e., 𝑊(𝑧)). 

In other words, we can continuously increase or decrease the 
width of the microstrip or stripline to create the desired 

impedance taper 𝑍1(𝑧). 


