Lecture - 15

Date: 30.09.2014

- Stub Matching
- Double-Stub Matching Networks
- Quarter-wave Impedance Transformer
- The Theory of Small Reflections

Stub Matching Networks

- The next logical step in the transition from lumped to distributed element networks is the complete elimination of all lumped components \rightarrow this can be achieved by employing open - and/or short - circuited stub lines

Shunt-stub Matching Networks

- Let us consider the following TL configuration with shunt stub.

Shunt-stub Matching Networks (contd.)

- An equivalent circuit for the shunt-tub TL can be:

Shunt-stub Matching Networks (contd.)

- Therefore, for a matched circuit, we require:

$$
j B_{\text {stub }}+Y_{\text {in }}^{\prime \prime}=Y_{0}
$$

- Note this complex equation is actually two real equations!

$$
\operatorname{Re}\left\{Y_{i n}^{\prime \prime}\right\}=Y_{0}
$$

$$
\begin{aligned}
\operatorname{Im}\left\{j B_{\text {stub }}+Y_{i n}^{\prime \prime}\right\}=0 & \Rightarrow B_{\text {stub }}=-B_{\text {in }}^{\prime \prime} \\
\text { Where: } & -B_{\text {in }}^{\prime \prime}=\operatorname{Im}\left\{Y_{i n}^{\prime \prime}\right\}
\end{aligned}
$$

- Since $Y_{i n}{ }^{"}$ is dependent on d only, our design procedure is:

1) Set d such that $\operatorname{Re}\left\{Y_{i n}^{\prime \prime}\right\}=Y_{0}$.
2) Then set ℓ such that $B_{s t u b}=-B_{i n}^{\prime \prime}$.

We have two choice, either Analytical or Smith chart for finding out the lengths d and l

Shunt-stub Matching Networks (contd.)

Use of the Smith Chart to determine the lengths!

- Rotate clockwise around the Smith Chart from y_{l} until you intersect the $\boldsymbol{g}_{\boldsymbol{s}}=\mathbf{1}$ circle. The "length" of this rotation determines the value \boldsymbol{d}. Recall there are two possible solutions!
- Rotate clockwise from the short/open circuit point around the $\boldsymbol{g}=\mathbf{0}$ circle, until $b_{\text {stub }}$ equals $-b_{\text {in }}$. The "length" of this rotation determines the stub length l.

Example-1

Let us take the case where we want to match a load of $Z_{L}=(60-j 80) \Omega$ (at 2 GHz) to a transmission line of $\mathrm{Z}_{0}=50 \Omega$.

Example - 1 (contd.)

Solution

$\underbrace{y_{\mathrm{L}} \text { to } y_{1} \text { towards }}$| generator |
| :---: |
| (clockwise) gives |
| length d_{1} (first |
| solution) |

y_{L} to y_{2} towards generator (clockwise) gives length d_{2} (second solution)

Example - 1 (contd.)

- Determine the respective admittances at the two intersection points
- These are of the form $1+\mathrm{jx}$ and $1-\mathrm{jx}$
- Cancel these imaginary part of the admittances by introducing shunt-stubs of length l_{l} and l_{2} respectively
- l_{1} and l_{2} are the lengths from open circuit point in the Smith chart (if open stub is used) along the $\mathrm{g}=0$ circle until the achieved admittances are of opposite signs to those at the intersection points in the earlier step

Example - 1 (contd.)

Q: Two solutions! Which one do we use?
A: The one with the shortest lengths of transmission line!
Q: Oh, I see! Shorter transmission lines provide smaller and (slightly) cheaper matching networks.
A: True! But there is a more fundamental reason why we select the solution with the shortest lines-the matching bandwidth is larger!

- For example, consider the frequency response of the two solutions:

Clearly, solution 1 provides a wider bandwidth!

Series-stub Matching Networks

- Consider the following transmission line structure, with a series stub:

$$
\begin{array}{cc}
-j Z_{0} \cot (\beta l) & \text { For open-stub } \\
& \\
j Z_{0} \tan (\beta l) & \text { For short-stub }
\end{array}
$$

where of course:

$$
Z_{i n}^{\prime \prime}=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan (\beta d)}{Z_{0}+j Z_{L} \tan (\beta d)}\right)
$$

Example - 2

Let us take the case where we want to match a load of $Z_{L}=(100+j 80) \Omega$ (at 2 GHz) to a transmission line of $\mathrm{Z}_{0}=50 \Omega$.

Example - 2 (contd.)

Example - 2 (contd.)

- Determine the respective impedances at the two intersection points and these are of the form $1+j x$ and $1-j x$
- Cancel these imaginary part of the impedances by introducing series-stubs of length l_{1} and l_{2} respectively
- l_{1} and l_{2} are the lengths from open circuit point in the Smith chart (if open stub is used) along the $r=0$ circle until the achieved impedances are of opposite signs to those at the intersection points in the earlier step

Solution 1

Solution 2

Example - 2 (contd.)

Again, we should use the solution with the shortest transmission lines, although in this case that distinction is a bit ambiguous. As a result, the bandwidth of each design is about the same (depending on how you define bandwidth!).

Example - 3

For a load impedance of $Z_{L}=(60-j 45) \Omega$, design single-stub (shunt) matching networks that transform the load to a $\mathrm{Z}_{\text {in }}=(75+\mathrm{j} 90) \Omega$ input impedance. Assume both the stub and transmission line have a characteristic impedance of $Z_{0}=75 \Omega$

Solution

- Normalize the Z_{L} and $Z_{\text {in }}$ with 75Ω
- Mark these normalized impedances on the Z-Smith chart
- Move to Y-Smith chart or better use ZY-Smith chart
- Plot constant conductance (g g_{L}) circle
- Plot SWR circle for normalized input impedance (z_{in})
- Two intersection points between constant conductance circle and SWR circle can be observed
- Rotation from intersection points to $z_{\text {in }}$ give the lengths d_{1} and d_{2} and corresponding changes in admittance
- Look for cancelling the additional admittances using shunt stub by equating corresponding stub lengths from 'open' in Smith chart

Example - 3 (contd.)

Here:

$z_{L}=1.2-j 0.9$
$y_{\text {in }}$ to A towards
generator
(clockwise) gives
length d_{1} (first
solution)
$\mathrm{y}_{\text {in }}$ to B towards generator (clockwise) gives length d_{2} (second solution)

Double-stub Matching Networks

- The single-stub matching networks are quite versatile \rightarrow allows matching between any input and load impedances, so long as they have a non-zero real part.
- Main drawback is the requirement of variable length TL between the stub and the input port or the stub and the stub and the load impedance \rightarrow many a times problematic when variable impedance tuner is needed.
- In a double-stub matching networks, two short- or open-circuited stubs are connected in shunt with a fixed-length TL separating them \rightarrow the usual separation is $\lambda / 8,3 \lambda / 8$ or $5 \lambda / 8$.

The Quarter Wave Transformer

- By now you must have noticed that a quarter-wave length of transmission line ($l=\lambda / 4,2 \beta l=\pi$) appears often in RF/microwave engineering problems.
- Another application of the $l=\lambda / 4$ transmission line is as an impedance matching network.

> Q: Why does the quarter-wave matching network work - after all, the quarter-wave line is mismatched at both ends?

The Quarter Wave Transformer (contd.)

- Let us consider a TL (with characteristic impedance Z_{0}) where the end is terminated with a resistive (i.e., real) load:

- We can of course correct this situation by placing a matching network between the line and the load:

In addition to the designs we have just studied (e.g., Lnetworks, stub tuners), one of the simplest matching network designs is the quarter-wave transformer.

The Quarter Wave Transformer (contd.)

- The quarter-wave transformer is simply a transmission line with characteristic impedance Z_{1} and length $l=\lambda / 4$ (i.e., a quarter-wave line).

Q: But what about the characteristic impedance Z_{1}; what should its value be??

The Quarter Wave Transformer (contd.)

A: Remember, the quarter wavelength case is one of the special cases that we studied. We know that the input impedance of the quarter wavelength line is:

$$
Z_{i n}=\frac{\left(Z_{1}\right)^{2}}{Z_{L}}=\frac{\left(Z_{1}\right)^{2}}{R_{L}}
$$

- Thus, if we wish for $Z_{i n}$ to be numerically equal to Z_{0}, we find:

$$
Z_{i n}=\frac{\left(Z_{1}\right)^{2}}{R_{L}}=Z_{0}
$$

- Solving for Z_{1}, we find its required value to be:

$$
Z_{1}=\sqrt{Z_{0} R_{L}}
$$

In other words, the characteristic impedance of the quarter wave line is the geometric average of Z_{0} and R_{L} !

The Quarter Wave Transformer (contd.)

Therefore, a $\lambda / 4$ line with characteristic impedance $Z_{1}=\sqrt{Z_{0} R_{L}}$ will match a transmission line with characteristic impedance Z_{0} to a resistive load R_{L}

This ensures that all power is delivered to load R_{L} !

Alas, the quarter-wave transformer (like all our designs) have a few problems!

The Quarter Wave Transformer (contd.)

Problem \#1

- The matching bandwidth is narrow !
- In other words, we obtain a perfect match at precisely the frequency where the length of the matching transmission line is a quarterwavelength.
remember, this length can be a quarter-wavelength at just one frequency!
- Wavelength is related to frequency as:

$$
\lambda=\frac{v_{p}}{f}=\frac{1}{f \sqrt{L C}}
$$

- For example, assuming that $\mathrm{v}_{\mathrm{p}}=\mathrm{c}$ ($\mathrm{c}=$ the speed of light in a vacuum), one wavelength at 1 GHz is $30 \mathrm{~cm}(\lambda=0.3 \mathrm{~m})$, while one wavelength at 3 GHz is $10 \mathrm{~cm}(\lambda=0.1 \mathrm{~m})$. As a result, a TL length $l=7.5 \mathrm{~cm}$ is a quarter wavelength for a signal at 1 GHz only.

Thus, a quarter-wave transformer provides a perfect match ($\Gamma_{\text {in }}=0$) at one and only one signal frequency!

The Quarter Wave Transformer (contd.)

In other words, as the signal frequency (i.e., wavelength) changes, the electrical length of the matching TL segment changes. It will no longer be a quarter wavelength, and thus we no longer will have a perfect match

It can be observed that the closer $\mathrm{R}_{\mathrm{L}}\left(\right.$ or $\mathrm{R}_{\text {in }}$) is to characteristic impedance Z_{0}, the wider the bandwidth of the quarter wavelength transformer

In principle, the bandwidth can be increased by adding multiple $\lambda / 4$ sections!

The Quarter Wave Transformer (contd.)

Problem \#2

Recall the matching solution was limited to loads that were purely real! i.e.:

$$
Z_{L}=R_{L}+j 0
$$

Obviously, this is a BIG problem, as most loads will have a reactive component!

- Fortunately, we have a relatively easy solution to this problem, as we can always add some length l of TL to the load to make the impedance completely real:

Clearly two possible solutions

The Quarter Wave Transformer (contd.)

However, it should be understood that the input impedance will be purely real at only one frequency!

Once the output impedance has been converted to purely real, one can then build a quarter-wave transformer to match the line Z_{0} to resistance $R_{\text {in }}$

Again, since the transmission lines are lossless, all of the incident power is delivered to the load Z_{L}.

The Quarter Wave Transformer (contd.)

- A quarter wave transformer can be thought of as a cascaded series of two two-port devices, terminated with a load R_{L} :

Q: Two two-port devices? It appears to me that a quarter-wave transformer is not that complex. What are the two two-port devices?

A: The first is a "connector". Note a connector is the interface between one transmission line (characteristic impedance Z_{0}) to a second transmission line (characteristic impedance Z_{1}).

The Quarter Wave Transformer (contd.)

- we earlier determined the scattering matrix of this two-port device as:

$$
S_{x}=\left[\begin{array}{cc}
\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}} & \frac{2 \sqrt{Z_{0} Z_{1}}}{Z_{1}+Z_{0}} \\
\frac{2 \sqrt{Z_{0} Z_{1}}}{Z_{1}+Z_{0}} & \frac{Z_{0}-Z_{1}}{Z_{1}+Z_{0}}
\end{array}\right]
$$

Compact Form

$$
\boldsymbol{S}_{x}=\left[\begin{array}{cc}
\Gamma & T \\
T & -\Gamma
\end{array}\right]
$$

The Quarter Wave Transformer (contd.)

- Therefore signal flow graph of the connector can be given as:

- Now, the second two-port device is a quarter wavelength of TL:

The Quarter Wave Transformer (contd.)

- The second device has the scattering matrix and SFG as:

$$
\boldsymbol{S}_{y}=\left[\begin{array}{cc}
0 & e^{-j \beta l} \\
e^{-j \beta l} & 0
\end{array}\right]
$$

- Finally, a load has a "scattering matrix" and SFG as:

$$
S=\left[\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}\right]=\Gamma_{L}
$$

The Quarter Wave Transformer (contd.)

- Of course, if we connect the ideal connector to a quarter wavelength of transmission line, and terminate the whole thing with load R_{L}, we have formed a quarter wave matching network!

- The boundary conditions associated with these connections are likewise:

$$
a_{1 y}=b_{2 x} \quad a_{2 x}=b_{1 y} \quad a_{1 L}=b_{2 y} \quad a_{2 y}=b_{1 L}
$$

The Quarter Wave Transformer (contd.)

- Therefore, we can put the signal-flow graph pieces together to form the signal-flow graph of the quarter wave network:

- Simplification gives:

The Quarter Wave Transformer (contd.)

Simplification:

Therefore: $\Gamma_{i n} \doteq \frac{b_{1 x}}{a_{1 x}}=\Gamma+\frac{T^{2} \Gamma_{L} e^{-j 2 \beta l}}{1-\Gamma \Gamma_{L}}$
Q: Hey wait! If the quarter-wave transformer is a matching network, shouldn't $\Gamma_{\text {in }}=0$??
A: Who says it isn't! Consider now three important facts.

The Quarter Wave Transformer (contd.)

- For a quarter wave transformer, we set Z_{1} such that:

$$
Z_{1}^{2}=Z_{0} R_{L} \quad \Rightarrow \quad Z_{0}=\frac{Z_{1}^{2}}{R_{L}}
$$

- Inserting this into the scattering parameter S_{11} of the connector, we find:

$$
\Gamma=\frac{Z_{1}-Z_{0}}{Z_{1}+Z_{0}}=\frac{Z_{1}-Z_{1}^{2} / R_{L}}{Z_{1}+Z_{1}^{2} / R_{L}}=\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}
$$

- For the quarter-wave transformer, the connector S_{11} value (i.e., Γ) is the same as the load reflection coefficient Γ_{L} :

$$
\Gamma=\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}=\Gamma_{L}
$$

Fact 1

- Since the connector is lossless (unitary scattering matrix!), we can conclude (and likewise show) that:

$$
1=\left|S_{11}\right|^{2}+\left|S_{21}\right|^{2}=|\Gamma|^{2}+|T|^{2}
$$

The Quarter Wave Transformer (contd.)

- Since Z_{0}, Z_{1}, and R_{L} are all real, the values Γ and T are also real valued. As a result, $|\Gamma|^{2}=\Gamma^{2}$ and $|T|^{2}=T^{2}$, and we can likewise conclude:

$$
|\Gamma|^{2}+|T|^{2}=\Gamma^{2}+T^{2}=1 \quad \longleftrightarrow \text { Fact } 2
$$

- Likewise, the Z_{1} transmission line has $l=\lambda / 4$, so that:

$$
2 \beta l=2\left(\frac{2 \pi}{\lambda}\right) \frac{\lambda}{4}=\pi
$$

$$
e^{-j \beta l}=e^{-j \pi}=-1
$$

Fact 3

- As a result:

$$
\Gamma_{i n}=\Gamma+\frac{T^{2} \Gamma_{L} e^{-j 2 \beta l}}{1-\Gamma \Gamma_{L}}=\Gamma-\frac{T^{2} \Gamma_{L}}{1-\Gamma \Gamma_{L}}
$$

- And using the newly discovered fact that (for a correctly designed transformer) $\Gamma_{\mathrm{L}}=\Gamma$:

$$
\Gamma_{i n}=\Gamma-\frac{T^{2} \Gamma}{1-\Gamma^{2}}
$$

The Quarter Wave Transformer (contd.)

- We also have a recent discovery that says $T^{2}=1-\Gamma^{2}$, therefore:

$$
\Gamma_{i n}=\Gamma-\frac{T^{2} \Gamma}{1-\Gamma^{2}}=\Gamma-\frac{T^{2} \Gamma}{T^{2}}=0
$$

A perfect match! The quarter-wave transformer does indeed work!

Multiple Reflection Viewpoint

- The quarter-wave transformer brings up an interesting question in μ-wave engineering.

$z=0$
Z_{0}

$$
Z_{1}=\sqrt{Z_{0} R_{L}}
$$

$$
-l=\lambda / 4-
$$

Q: Why is there no reflection at $z=-l$? It appears that the line is mismatched at both $z=0$ and $z=-l$.
A: In fact there are reflections at these mismatched interfaces-an infinite number of them!

We can use signal flow graph to determine the propagation series, once we determine all the propagation paths through the quarterwave transformer.

Multiple Reflection Viewpoint (contd.)

$$
b=a \sum_{n=1}^{\infty} p_{n}
$$

- Now, let's try to interpret what physically happens when the incident voltage wave reaches the interface at $z=-l$.
- We find that there are two forward paths through the quarter-wave transformer signal flow graph.

Multiple Reflection Viewpoint (contd.)

Path 1. At $z=-l$, the characteristic impedance of the transmission line changes from Z_{0} to Z_{1}. This mismatch creates a reflected wave, with complex amplitude $p_{1} a$:

Multiple Reflection Viewpoint (contd.)

Path 2. However, a portion of the incident wave is transmitted (T) across the interface at $z=-l$, this wave travels a distance of $\beta l=90^{\circ}$ to the load at $z=0$, where a portion of it is reflected $\left(\Gamma_{L}\right)$. This wave travels back $\beta l=$ 90° to the interface at $z=-l$, where a portion is again transmitted (T) across into the Z_{0} transmission line-another reflected wave!

- So the second direct path is:

$$
p_{2}=T e^{-j 90^{\circ}} \Gamma_{L} e^{-j 90^{\circ}} T=-T^{2} \Gamma_{L}
$$

note that traveling $2 \beta l=180^{\circ}$ has produced a minus sign in the result.

Multiple Reflection Viewpoint (contd.)

Path 3. However, a portion of this second wave is also reflected (Γ) back into the Z_{1} transmission line at $z=-l$, where it again travels to $\beta l=90^{\circ}$ the load, is partially reflected $\left(\Gamma_{L}\right)$, travels $\beta l=90^{\circ}$ back to $z=-l$, and is partially transmitted into $\mathrm{Z}_{0}(\mathrm{~T})$-our third reflected wave!

Multiple Reflection Viewpoint (contd.)

Path n. We can see that this "bouncing" back and forth can go on forever, with each trip launching a new reflected wave into the Z_{0} transmission line.

Note however, that the power associated with each successive reflected wave is smaller than the previous, and so eventually, the power associated with the reflected waves will diminish to insignificance!

Multiple Reflection Viewpoint (contd.)

Q: But, why then is $\Gamma=0$?
A: Each reflected wave is a coherent wave. That is, they all oscillate at same frequency ω; the reflected waves differ only in terms of their magnitude and phase.

- Therefore, to determine the total reflected wave, we must perform a coherent summation of each reflected wavethis summation results in our propagation series, a series

$$
b=a \sum_{n=1}^{\infty} p_{n}
$$ that must converge for passive devices.

- It can be shown that the infinite propagation series for this quarter-wavelength structure converges to the closed-form expression:

$$
\left.\frac{b}{a}=\sum_{n=1}^{\infty} p_{n}=\frac{\Gamma-\Gamma^{2} \Gamma_{L}-T^{2} \Gamma_{L}}{1-\Gamma^{2}}\right)
$$

- Thus, the input reflection coefficient is:

$$
\Gamma_{i n}=\frac{b}{a}=\frac{\Gamma-\Gamma^{2} \Gamma_{L}-T^{2} \Gamma_{L}}{1-\Gamma^{2}}
$$

- Using our definitions, it can be shown that the numerator of this expression is:

$$
\left(\Gamma-\Gamma^{2} \Gamma_{L}-T^{2} \Gamma_{L}=\frac{2\left(Z_{1}^{2}-Z_{0} R_{L}\right)}{\left(Z_{1}+Z_{0}\right)\left(R_{L}+Z_{1}\right)}\right)
$$

Multiple Reflection Viewpoint (contd.)

- It is evident that the numerator (and therefore $\Gamma_{i n}$) will be zero if:

$$
Z_{1}^{2}-Z_{0} R_{L}=0 \quad \rightleftarrows \quad Z_{Z_{1}=\sqrt{Z_{0} R_{L}} \rightleftarrows \begin{array}{l}
\text { Just as we } \\
\text { expected! }
\end{array}}^{\text {a }}
$$

Physically, this result ensures that all the reflected waves add coherently together to produce a zero value!

Note all of our transmission line analysis has been steady-state analysis. We assume our signals are sinusoidal, of the form $\exp (j \omega t)$. This signal exists for all time t-the signal is assumed to have been "on" forever, and assumed to continue on forever.

In other words, in steady-state analysis, all the multiple reflections have long since occurred, and thus have reached a steady state-the reflected wave is zero!

The Theory of Small Reflections

- Recall that we analysed a quarter-wave transformer using the multiple reflection view point.

- We found that the solution could be written as an infinite summation of terms (the propagation series):

$$
\begin{gathered}
\text { where each term had a specific physical } \\
\text { interpretation, in terms of reflections, transmissions, } \\
\text { and propagations. }
\end{gathered}
$$

The Theory of Small Reflections (contd.)

- For example, the third term was path:

- Now let's consider the magnitude of this path:

$$
\left|p_{3}\right|=|T|^{2}\left|\Gamma_{L}\right|^{2}|\Gamma|\left|e^{-j 2 \beta l}\right|
$$

$$
\left.\rightleftarrows p_{3}\left|=|T|^{2}\right| \Gamma_{L}\right|^{2}|\Gamma|
$$

The Theory of Small Reflections (contd.)

- Recall that $\Gamma=\Gamma_{L}$ for a properly designed quarter-wave transformer :

$$
\Gamma=\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}=\Gamma_{L}
$$

$$
\left|p_{3}\right|=|T|^{2}\left|\Gamma_{L}\right|^{3}
$$

- For the case where values R_{L} and Z_{1} are numerically "close", i.e.:

$$
\left|R_{L}-Z_{1}\right| \ll\left|R_{L}+Z_{1}\right|
$$

- We find that the magnitude of the reflection coefficient will be very small:

$$
\left|\Gamma_{L}\right|=\left|\frac{R_{L}-Z_{1}}{R_{L}+Z_{1}}\right|<1.0
$$

- As a result, the value $\left|\Gamma_{L}\right|^{3}$ will be very, very, very small.
- Moreover, we know (since the connector is lossless) that:

$$
|\Gamma|^{2}+|T|^{2}=\left|\Gamma_{L}\right|^{2}+|T|^{2}=1
$$

- We can thus conclude that the magnitude of path p_{3} is likewise very, very, very small:

$$
\left|p_{3}\right|=|T|^{2}\left|\Gamma_{L}\right|^{\beta} \approx\left|\Gamma_{L}\right|^{\beta} \ll 1
$$

This is a classic case where we can approximate the propagation series using only the forward paths!!

The Theory of Small Reflections (contd.)

- Recall there are two forward paths:

- Therefore if Z_{0} and R_{L} are very close in value, the approximate reflected wave using only the direct paths of the infinite series can be find from the SFG:

$$
\left(b \simeq\left(p_{1}+p_{2}\right) a=\left(\Gamma+T^{2} \Gamma_{L} e^{j 2 \beta l}\right) a\right)
$$

- Now, if we likewise apply the approximation that $|T| \cong 1.0$, we conclude for this quarter

$$
b \simeq\left(p_{1}+p_{2}\right) a=\left(\Gamma+\Gamma_{L} e^{j_{2} \beta l l}\right) a
$$ wave transformer (at the design frequency):

The Theory of Small Reflections (contd.)

This approximation, where we:

1. use only the direct paths to calculate the propagation series,
2. approximate the transmission coefficients as one (i.e., $|T|=1.0$).
is known as the Theory of Small Reflections, and allows us to use the propagation series as an analysis tool (we don't have to consider an infinite number of terms!).

The Theory of Small Reflections (contd.)

- Consider again the quarter-wave matching network SFG. Note there is one branch ($-\Gamma=S_{22}$ of the connector), that is not included in either direct path.

With respect to the theory of small

 SFG becomes:

The Theory of Small Reflections (contd.)

- Reducing this SFG by combining the 1.0 branch and the $e^{-j \beta l}$ branch via the series rule, we get the following approximate SFG:

The approximate SFG when applying the theory of small reflections !

Note this approximate SFG provides precisely the results of the theory of small reflections!

Q: But wait! The quarter-wave transformer is a matching network, therefore $\Gamma_{i n}=0$. The theory of small reflections, however, provides the approximate result:

$$
\Gamma_{i n} \approx \Gamma+\Gamma_{L} e^{-j 2 \beta l}
$$

Is this approximation very accurate? How close is this approximate value to the correct answer of $\Gamma_{\text {in }}=0$?

The Theory of Small Reflections (contd.)

A: Let's find out!

- Recall that $\Gamma=\Gamma_{\mathrm{L}}$ for a properly designed quarter-wave matching network, and so:

$$
\Gamma_{i n} \approx \Gamma+\Gamma_{L} e^{j 2 \beta l}=\Gamma_{L}\left(1+e^{-j 2 \beta l}\right)
$$

- Likewise, $l=\lambda / 4$ (but only at the design frequency!) so that:

$$
2 \beta l=2\left(\frac{2 \pi}{\lambda}\right) \frac{\lambda}{4}=\pi
$$

where you of course recall that

$$
\beta=2 \pi / \lambda!
$$

- Thus: $\Gamma_{i n} \approx \Gamma+\Gamma_{L} e^{j 2 \beta l}=\Gamma_{L}\left(1+e^{-j \pi}\right)=\Gamma_{L}(1-1)=0$

Q: Wow! The theory of small reflections appears to be a perfect approximation-no error at all!?!
A: Not so fast.

The Theory of Small Reflections (contd.)

The theory of small reflections most definitely provides an approximate solution (e.g., it ignores most of the terms of the propagation series, and it approximates connector transmission as $\mathrm{T}=1$, when in fact $\mathrm{T} \neq 1$).

As a result, the solutions derived using the theory of small reflections will-generally speaking-exhibit some (hopefully small) error.

We just got a bit "lucky" for the quarter-wave matching network; the "approximate" result $\Gamma_{\text {in }}=0$ was exact for this one case!

The theory of small reflections is an approximate analysis tool!

Example-4

- Use the theory of small reflections to determine a numeric value for the input reflection coefficient $\Gamma_{i n}$, at the design frequency ω_{0}.

Note that the transmission line sections have different lengths!

