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• Stub Matching  
• Double-Stub Matching Networks  
• Quarter-wave Impedance Transformer 
• The Theory of Small Reflections  
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Stub Matching Networks  

• The next logical step in the transition from lumped to distributed element 
networks is the complete elimination of all lumped components → this 
can be achieved by employing open – and/or short – circuited stub lines  
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• Let us consider the following TL configuration with shunt stub.  

Shunt-stub Matching Networks 

The two design parameters of 
this matching network are 

lengths l and d. 
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Shunt-stub Matching Networks (contd.)  

• An equivalent circuit for the shunt-tub TL can be:  

z = 0

stubjB ''

inY

Where: 
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  stubjB 

0 tan( )jY l

0 cot( )jY l

For open-stub 

For short-stub 
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Shunt-stub Matching Networks (contd.)  
• Therefore, for a matched circuit, we require: 

0

''

stub injB Y Y

• Note this complex equation is actually two real equations! 

 "

0Re inY Y  "Im 0stub injB Y  ''

stub inB B 

 ' ''' Im ii nn YB Where: 

• Since  𝑌𝑖𝑛
" is dependent on d only, our design procedure is: 

We have two choice, either Analytical or Smith chart for finding out 
the lengths d and l   
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Shunt-stub Matching Networks (contd.)  

Use of the Smith Chart to determine the lengths! 

• Rotate clockwise around the Smith Chart from 𝑦𝑙  until you intersect the       
𝒈𝒔=1 circle. The “length” of this rotation determines the value 𝒅. Recall 
there are two possible solutions! 

• Rotate clockwise from the short/open circuit point around the 𝒈 = 𝟎 

circle, until 𝑏𝑠𝑡𝑢𝑏 equals −𝑏𝑖𝑛
". The “length” of this rotation determines 

the stub length l. 

Let us take the case where we want to match a load of ZL= (60−j80)Ω (at 2 
GHz) to a transmission line of Z0 =50Ω. 

Example – 1 
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Example – 1 (contd.) 

yL to y1 towards 
generator 

(clockwise) gives 
length d1 (first 

solution) 

yL to y2 towards 
generator 

(clockwise) gives 
length d2 (second 

solution) 

Solution 

zL 

yL 

First intersection, y1 

Second intersection, y2 

(open) 

𝒅𝟏 

𝒅𝟐 

𝒍𝟏 

𝒍𝟐 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Example – 1 (contd.) 

• Determine the respective admittances at the two intersection points  
• These are of the form 1 + jx and 1 – jx  
• Cancel these imaginary part of the admittances by introducing shunt-stubs 

of length  l1 and l2 respectively    
• l1 and l2 are the lengths from open circuit point in the Smith chart (if open 

stub is used) along the  g = 0 circle until the achieved admittances are of 
opposite signs to those at the intersection points in the earlier step    
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Q: Two solutions! Which one do we use? 

Example – 1 (contd.) 

A: The one with the shortest lengths of transmission line! 

Q: Oh, I see! Shorter transmission lines provide smaller and (slightly) cheaper 
matching networks. 

A: True! But there is a more fundamental reason why we select the solution 
with the shortest lines—the matching bandwidth is larger! 

• For example,  consider the frequency response of the two solutions: 

Clearly, solution 1 
provides a wider 

bandwidth! 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Series-stub Matching Networks  
• Consider the following transmission line structure, with a series stub: 

where of course: 

0
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stubjX 

0 cot( )jZ l

0 tan( )jZ l

For open-stub 

For short-stub 

Therefore an 
equivalent 
circuit is: 

stubjX
''

inZ
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Let us take the case where we want to match a load of ZL= (100 + j80)Ω (at 2 
GHz) to a transmission line of Z0 =50Ω. 

Example – 2 
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Example – 2 (contd.) 

zL 

First 
intersection, z1 

Second 
intersection, z2 

𝑧𝑙 to 𝑧1 towards 
generator 

(clockwise) gives 
length d1 (first 

solution) 

𝑧𝑙 to 𝑧2 towards 
generator 

(clockwise) gives 
length d2 (second 

solution) 
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• Determine the respective impedances at the two intersection points and 
these are of the form 1 + jx and 1 – jx  

• Cancel these imaginary part of the impedances by introducing series-stubs 
of length  l1 and l2 respectively    

• l1 and l2 are the lengths from open circuit point in the Smith chart (if open 
stub is used) along the  r = 0 circle until the achieved impedances are of 
opposite signs to those at the intersection points in the earlier step    

Example – 2 (contd.) 
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Example – 2 (contd.) 

Again, we should use the solution 
with the shortest transmission 
lines, although in this case that 

distinction is a bit ambiguous. As 
a result, the bandwidth of each 

design is about the same 
(depending on how you define 

bandwidth!). 
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Example – 3 
For a load impedance of ZL= (60 – j45)Ω, design single-stub (shunt) matching 
networks that transform the load to a Zin =(75 + j90)Ω input impedance. 
Assume both the stub and transmission line have a characteristic impedance 
of Z0 = 75Ω 

Solution 
• Normalize the ZL and Zin with 75Ω  
• Mark these normalized impedances on the Z-Smith chart 
• Move to Y-Smith chart or better use ZY-Smith chart  
• Plot constant conductance (gL) circle  
• Plot SWR circle for normalized input impedance (zin)  
• Two intersection points between constant conductance circle and SWR 

circle can be observed  
• Rotation from intersection points to zin give the lengths d1 and d2 and 

corresponding changes in admittance  
• Look for cancelling the additional admittances using shunt stub by 

equating corresponding stub lengths from ‘open’ in Smith chart  
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Example – 3 (contd.) 

yin to A towards 
generator 

(clockwise) gives 
length d1 (first 

solution) 

yin to B towards 
generator 

(clockwise) gives 
length d2 (second 

solution) 

Constant 
gL circle  

yin 

1.2 0.9Lz j 

Here: 

For stub length, start from here and 
move towards generator to cancel the 

corresponding suceptances 

A 

B 
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Double-stub Matching Networks 
• The single-stub matching networks are quite versatile → allows matching 

between any input and load impedances, so long as they have a non-zero 
real part. 

• Main drawback is the requirement of variable length TL between the stub 
and the input port or the stub and the stub and the load impedance → 
many  a times problematic when variable impedance tuner is needed.   

• In a double-stub matching networks, two short- or open-circuited stubs 
are connected in shunt with a fixed-length TL separating them → the 
usual separation is λ/8, 3λ/8 or 5λ/8. 

Self Study 
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The Quarter Wave Transformer 

• By now you must have noticed that a quarter-wave length of transmission 
line (l = λ/4, 2βl = π) appears often in RF/microwave engineering 
problems. 

• Another application of the l = λ/4 transmission line is as an impedance 
matching network. 

Q: Why does the quarter-wave matching 
network work — after all, the quarter-wave 

line is mismatched at both ends? 
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The Quarter Wave Transformer (contd.) 

• Let us consider a TL (with characteristic impedance Z0) where the end is 
terminated with a resistive (i.e., real) load: 

0Z
LR

Unless RL = Z0 , the resistor is 
mismatched to the line, and thus 
some of the incident power will 

be reflected. 

• We can of course correct this situation by placing a matching network 
between the line and the load: 

0Z LR

In addition to the designs we 
have just studied (e.g., L-

networks, stub tuners), one of 
the simplest matching network 

designs is the quarter-wave 
transformer. 
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The Quarter Wave Transformer (contd.) 

• The quarter-wave transformer is simply a transmission line with 
characteristic impedance Z1 and length l = λ/4 (i.e., a quarter-wave line). 

LR

l = λ/4  

This λ/4 line is the matching network! 

Q: But what about the 
characteristic impedance Z1; what 

should its value be?? 
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The Quarter Wave Transformer (contd.) 
A: Remember, the quarter wavelength case is one of the special cases that 
we studied. We know that the input impedance of the quarter wavelength 
line is: 

In other words, the characteristic 
impedance of the quarter wave line is the 

geometric average of Z0 and RL! 

   
2 2

1 1

in

L L

Z Z

Z R
 Z

• Thus, if we wish for Zin to be numerically equal to Z0, we find: 

 
2

1

0in

L

Z
Z

R
 Z

• Solving for Z1, we find its required value to be: 1 0 LZ Z R
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The Quarter Wave Transformer (contd.) 

Therefore, a λ/4 line with characteristic impedance 𝑍1 = 𝑍0𝑅𝐿 

will match a transmission line with characteristic impedance Z0 to 
a resistive load RL 

LR

l = λ/4  

This ensures that all power is delivered to load 𝑅𝐿! 

Alas, the quarter-wave transformer (like all our designs) have 
a few problems! 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

The Quarter Wave Transformer (contd.) 
Problem #1 

• The matching bandwidth is narrow ! 
• In other words, we obtain a perfect match at precisely the frequency 

where the length of the matching transmission line is a quarter-
wavelength. 

 remember, this length can be a quarter-wavelength at  just one frequency! 

• Wavelength is related to frequency as: 

1pv

f f LC
   vp is propagation velocity of wave  

• For example, assuming that vp = c (c = the speed of light in a vacuum), one 
wavelength at 1 GHz is 30 cm (λ = 0.3m ), while one wavelength at 3 GHz is 
10 cm (λ = 0.1m ). As a result, a TL length l = 7.5cm is a quarter wavelength 
for a signal at 1GHz only. 

Thus, a quarter-wave transformer provides a perfect match (Γin = 0) at one 
and only one signal frequency! 
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The Quarter Wave Transformer (contd.) 

In other words, as the signal frequency (i.e., wavelength) changes, the 
electrical length of the matching TL segment changes. It will no longer be 

a quarter wavelength, and thus we no longer will have a perfect match 

It can be observed that the closer RL (or Rin) is to characteristic impedance 
Z0, the wider the bandwidth of the quarter wavelength transformer 

In principle, the bandwidth can 
be increased by adding 
multiple λ/4 sections! 
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The Quarter Wave Transformer (contd.) 
Problem #2 

Recall the matching solution was limited to loads that were purely real! i.e.: 

0L LZ R j 
Obviously, this is a BIG problem, as most loads 

will have a reactive component! 

• Fortunately, we have a relatively easy solution to this problem, as we can 
always add some length l of TL to the load to make the impedance 
completely real: 

LZ

l   

0 ,Z 

Transforms 
RL + jXL into 

Rin 

Clearly two possible solutions 
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The Quarter Wave Transformer (contd.) 

However, it should be understood that the input impedance will be 
purely real at only one frequency! 

Once the output impedance has been converted to purely real, one can 
then build a quarter-wave transformer to match the line Z0 to resistance Rin  

LZ

l   l = λ/4  

Again, since the transmission lines are lossless, all of the incident 
power is delivered to the load ZL . 
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The Quarter Wave Transformer (contd.) 
• A quarter wave transformer can be thought of as a cascaded series of two 

two-port devices, terminated with a load RL: 

LR

LR

Q: Two two-port devices? It appears to me that a quarter-wave transformer 
is not that complex. What are the two two–port devices? 

A: The first is a “connector”. Note a connector is the interface between one 
transmission line (characteristic impedance Z0) to a second transmission line 
(characteristic impedance Z1 ). 
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The Quarter Wave Transformer (contd.) 

1I
2I

1Port  2Port 

• we earlier determined the scattering matrix of this two-port device as: 

0 11 0

1 0 1 0

0 1 0 1

1 0 1 0

2

2
x

Z ZZ

Z Z Z Z

Z Z Z

Z Z Z Z

 
 

  

 

 
   

Z

S
Z

x

T

T

 
  

 
S

Compact Form 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

The Quarter Wave Transformer (contd.) 

• Therefore signal flow graph of the connector can be given as:  

1xa

2xa1xb

2xb



T

T



• Now, the second two-port device is a quarter wavelength of TL: 
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The Quarter Wave Transformer (contd.) 

• The second device has the scattering matrix and SFG as: 

0

0

j l

y j l

e

e









 
  
 

S

1ya

1yb

j le 

2 ya

2 yb

j le 

• Finally, a load has a “scattering matrix” and SFG as: 

1Z LR 1

1

L
L

L

R Z

R Z

 
   

 
S

1La

1Lb

L
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• Of course, if we connect the ideal connector to a quarter wavelength of 
transmission line, and terminate the whole thing with load RL, we have 
formed a quarter wave matching network! 

The Quarter Wave Transformer (contd.) 

LR

l = λ/4  

• The boundary conditions associated with these connections are likewise: 

1 2y xa b 2 1x ya b 1 2L ya b 2 1y La b

1 2y xa b

2 1x ya b

1 2L ya b

2 1y La b
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The Quarter Wave Transformer (contd.) 

• Therefore, we can put the signal-flow graph pieces together to form the 
signal-flow graph of the quarter wave network: 

• Simplification gives: 
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The Quarter Wave Transformer (contd.) 

Final Simplification 

1xa

1xb

2 2

1

j l

L

L

T e 
 

 

Therefore: 
2 2

1

1 1

j l

x L
in

x L

b T e

a


   

 

1xa

1xb

2 2

1

j l

L

L

T e 





Simplification: 

Q: Hey wait! If the quarter-wave transformer is a matching network, 
shouldn’t  Γin = 0?? 

A: Who says it isn’t! Consider now three important facts. 
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The Quarter Wave Transformer (contd.) 
• For a quarter wave transformer, we set Z1 such that: 

2

1 0 LZ Z R 
2

1
0

L

Z
Z

R


• Inserting this into the scattering parameter S11 of the connector, we find: 

2

1 0 1 1 1

2

1 0 1 1 1

/

/

L L

L L

Z Z R R Z

Z Z Z Z R R Z

  
   

  

Z Z

• For the quarter-wave transformer, the connector S11 value (i.e., Γ ) is the 
same as the load reflection coefficient ΓL : 

1

1

L
L

L

R Z

R Z


   


Fact 1 

• Since the connector is lossless (unitary scattering matrix!), we can 
conclude (and likewise show) that: 

2 2 2 2

11 211 S S T    
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The Quarter Wave Transformer (contd.) 

• Since Z0 , Z1 , and RL are all real, the values Γ and Τ are also real valued. As 
a result, |Γ|2 = Γ2 and |Τ|2 = Τ2, and we can likewise conclude: 

2 2 2 2 1T T      Fact 2 

• Likewise, the Z1 transmission line has l = λ/4 , so that: 

2
2 2

4
l

 
 



 
  

 
1j l je e     Fact 3 

• As a result: 
2 2 2

1 1

j l

L L
in

L L

T e T 
      

  

• And using the newly discovered fact that (for a correctly designed 
transformer) ΓL = Γ: 

2

21
in

T 
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The Quarter Wave Transformer (contd.) 

• We also have a recent discovery that says  Τ2= 1 − Γ2, therefore: 

2 2

2 2
0

1
in

T T

T

 
       

 

A perfect match! The quarter-wave 
transformer does indeed work! 
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Multiple Reflection Viewpoint 
• The quarter-wave transformer brings up an interesting question in μ-wave 

engineering. 

Q: Why is there no reflection at 𝑧 = −𝑙? It appears that the line is 
mismatched at both 𝑧 = 0 and 𝑧 = −𝑙. 
A: In fact there are reflections at these mismatched interfaces—an infinite 
number of them! 

We can use signal flow graph to determine the propagation series, 
once we determine all the propagation paths through the quarter-

wave transformer. 

𝑧 = −𝑙 𝑧 = 0 

𝑙 = λ
4  

𝑅𝐿 
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Multiple Reflection Viewpoint (contd.) 

𝑙 = λ
4  

T 
T 

𝑅𝐿 

• Now, let’s try to interpret what physically happens when the incident 
voltage wave reaches the interface at 𝑧 = −𝑙. 

• We find that there are two forward paths through the quarter-wave 
transformer signal flow graph. 

1

n

n

b a p




 

T 

T 

Γ -Γ  

−𝑗 

−𝑗 

𝑎 

𝑏 

ΓL 

𝑧 = −𝑙 𝑧 = 0 
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Multiple Reflection Viewpoint (contd.) 

Path 1. At 𝑧 = −𝑙, the characteristic impedance of the transmission line 
changes from Z0 to 𝑍1. This mismatch creates a reflected wave, with complex 
amplitude p1a : 

T 

T 

Γ -Γ  Γ𝐿 

−𝑗 

−𝑗 

𝑎 

𝑏 

𝑅𝐿 

𝑧 = −𝑙 𝑧 = 0 

1p Γ
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Multiple Reflection Viewpoint (contd.) 

Path 2. However, a portion of the incident wave is transmitted (Τ) across the 
interface at 𝑧 = −𝑙, this wave travels a distance of 𝛽𝑙 = 90° to the load at 
𝑧 = 0, where a portion of it is reflected (Γ𝐿). This wave travels back 𝛽𝑙 =
90° to the interface at 𝑧 = −𝑙, where a portion is again transmitted (Τ) across 
into the Z0 transmission line—another reflected wave ! 

• So the second direct path is: 
90 90 2

2

j j

L Lp Te e T T       

𝑅𝐿 

note that traveling  2𝛽𝑙 = 180° has produced a minus 
sign in the result. 
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Multiple Reflection Viewpoint (contd.) 

Path 3. However, a portion of this second wave is also reflected (Γ) back into 
the Z1 transmission line at 𝑧 = −𝑙, where it again travels to 𝛽𝑙 = 90° the load, 
is partially reflected (Γ𝐿), travels 𝛽𝑙 = 90° back to 𝑧 = −𝑙, and is partially 
transmitted into Z0(Τ)—our third reflected wave! 

𝑅𝐿 

2b p a

T 

T 

Γ -Γ  Γ𝐿 

−𝑗 

−𝑗 

𝑎 

𝑏 
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Multiple Reflection Viewpoint (contd.) 

Note that path 3 is 
not a direct path! 

Path n. We can see that this “bouncing” back and forth can go on forever, 
with each trip launching a new reflected wave into the Z0 transmission line. 

SFG 
T 

T 

Γ -Γ  
Γ𝐿 

−𝑗 

−𝑗 

𝑎 

𝑏 

   
290 90 90 90 2

3

j j j j

L L Lp Te e e e T T              

Note however, that the power associated with each successive 
reflected wave is smaller than the previous, and so eventually, the 

power associated with the reflected waves will diminish to 
insignificance! 
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Multiple Reflection Viewpoint (contd.) 
Q: But, why then is Γ = 0 ? 
A: Each reflected wave is a coherent wave. That is, they all oscillate at same 
frequency ω; the reflected waves differ only in terms of their magnitude and 
phase. 

• Therefore, to determine the total reflected wave, we must 
perform a coherent summation of each reflected wave—
this summation results in our propagation series, a series 
that must converge for passive devices. 

1

n

n

b a p




 

• It can be shown that the infinite propagation 
series for this quarter-wavelength structure 
converges to the closed-form expression: 

2 2

2
1 1

L L
n

n

b T
p

a





    
 

 


• Thus, the input reflection coefficient is: 
2 2

21

L L
in

b T

a

    
  

 

• Using our definitions, it can be shown 
that the numerator of this expression is: 

 
  

2

1 02 2

1 0 1

2 L

L L

L

Z Z R
T

Z Z R Z
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Multiple Reflection Viewpoint (contd.) 
• It is evident that the numerator (and therefore Γin ) will be zero if: 

2

1 0 0LZ Z R  Just as we 
expected! 

1 0 LZ Z R

Physically, this result ensures that all the reflected waves 
add coherently together to produce a zero value! 

Note all of our transmission line analysis has been steady-state analysis. 
We assume our signals are sinusoidal, of the form exp (𝑗𝜔𝑡). This signal 

exists for all time t—the signal is assumed to have been “on” forever, and 
assumed to continue on forever. 

In other words, in steady-state analysis, all the multiple 
reflections have long since occurred, and thus have reached a 

steady state—the reflected wave is zero! 
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The Theory of Small Reflections 
• Recall that we analysed a quarter-wave transformer using the multiple 

reflection view point. 

𝑙 = λ
4  

𝑅𝐿 

T 
T 

• We found that the solution could be written as an infinite summation of 
terms (the propagation series): 

1

n

n

b a p




  where each term had a specific physical 
interpretation, in terms of reflections, transmissions, 

and propagations. 
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The Theory of Small Reflections (contd.) 
• For example, the third term was path:  

𝑅𝐿 

 
22 2

3

j l

Lp T e   SFG 

T 

T 

Γ -Γ  ΓL 

𝑒−𝑗𝛽𝑙  
𝑎1 

𝑏1 
𝑒−𝑗𝛽𝑙  

𝑏2 

𝑏5 𝑎2 

𝑎5 

• Now let’s consider the magnitude of this path: 

2 2 2

3

j l

Lp T e   
2 2

3 Lp T  
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The Theory of Small Reflections (contd.) 
• Recall that 𝛤 = 𝛤𝐿 for a properly designed quarter-wave transformer : 

1

1

L
L

L

R Z

R Z


   



2 3

3 Lp T 

• As a result, the value  Γ𝐿
3 will be very, very, very small. 

• For the case where values RL and Z1  are 
numerically “close”, i.e.:  

1 1L LR Z R Z 

• We find that the magnitude of the reflection 
coefficient will be very small: 

1

1

1.0L
L

L

R Z

R Z


 



• Moreover, we know (since the connector is 
lossless) that: 

2 2 2 2
1LT T     

• We can thus conclude that the magnitude of 
path p3 is likewise very, very, very small: 

2 3 3

3 1L Lp T   

This is a classic case where we can approximate the propagation series 
using only the forward paths!! 
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The Theory of Small Reflections (contd.) 

• Recall there are two forward paths: 

𝑅𝐿 

T 

T 

Γ -Γ  ΓL 

𝑒−𝑗𝛽𝑙  
𝑎 

𝑝1 = Γ 𝑒−𝑗𝛽𝑙  

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙 

• Therefore if Z0 and RL are very close in value, the approximate reflected 
wave using only the direct paths of the infinite series can be find from the 
SFG: 

   2 2

1 2

j l

Lb p p a T e a    

• Now, if we likewise apply the approximation 
that  𝑇 ≅ 1.0, we conclude for this quarter 
wave transformer (at the design frequency): 

   2

1 2

j l

Lb p p a e a    
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The Theory of Small Reflections (contd.) 

This approximation, where we: 
1. use only the direct paths to calculate the propagation series, 
2. approximate the transmission coefficients as one (i.e., 𝑇 = 1.0). 

is known as the Theory of Small Reflections, and allows us to use the 
propagation series as an analysis tool (we don’t have to consider an 
infinite number of terms!). 
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The Theory of Small Reflections (contd.) 
• Consider again the quarter-wave matching network SFG. Note there is one 

branch (−Γ = 𝑆22 of the connector), that is not included in either direct path. 

T 

T 

Γ -Γ  ΓL 

𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  

𝑎 

𝑝1 = Γ 

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙 

With respect to the theory of small 
reflections (where only direct paths are 

considered), this branch can be removed 
from the SFG without affect. 

T 

T 

Γ ΓL 

𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  

𝑎 

𝑝1 = Γ 

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙 
1.0 

1.0 

Γ ΓL 

𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  

𝑎 

𝑝1 = Γ 

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙 

Moreover, the theory of small 
reflections implements the 

approximation, 𝑇 = 1.0, so that the 
SFG becomes: 
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The Theory of Small Reflections (contd.) 
• Reducing this SFG by combining the 1.0 branch and the 𝑒−𝑗𝛽𝑙 branch via 

the series rule, we get the following approximate SFG: 

The approximate SFG when 
applying the theory of 

small reflections !  
Γ ΓL 

𝑒−𝑗𝛽𝑙  

𝑒−𝑗𝛽𝑙  

2j l

in L

b
e

a

     

Note this approximate SFG provides precisely the results of the theory 
of small reflections! 

Q: But wait! The quarter-wave transformer is a matching network, therefore 
Γ𝑖𝑛 = 0. The theory of small reflections, however, provides the approximate 
result: 2j l

in Le     

Is this approximation very accurate? How close is this approximate value to 
the correct answer of Γ𝑖𝑛 = 0? 
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The Theory of Small Reflections (contd.) 

A: Let’s find out! 

• Recall that Γ=ΓL for a properly designed quarter-wave matching 
network, and so: 

 2 21j l j l

in L Le e        

• Likewise, l = λ/4 (but only at the design frequency!) so that: 

2
2 2

4
l

 
 



 
  

 

where you of course recall that 
𝛽 = 2𝜋

λ ! 

• Thus:  2 1 (1 1) 0j l j

in L L Le e            

Q: Wow! The theory of small reflections appears to be a perfect 
approximation—no error at all!?! 
A: Not so fast. 
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The Theory of Small Reflections (contd.) 

As a result, the solutions derived using the theory of small reflections 
will—generally speaking—exhibit some (hopefully small) error. 

The theory of small reflections is an approximate analysis tool! 

We just got a bit “lucky” for the 
quarter-wave matching network; the 

“approximate” result  Γ𝑖𝑛 = 0 was 
exact for this one case! 

The theory of small reflections most definitely provides an 
approximate solution (e.g., it ignores most of the terms of the 

propagation series, and it approximates connector transmission 
as Τ = 1, when in fact Τ ≠ 1). 
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Example – 4  

• Use the theory of small reflections to determine a numeric value for the 
input reflection coefficient Γ𝑖𝑛, at the design frequency 𝜔0. 

𝑍0 𝑍1 𝑍2 𝑍𝐿 Γ𝑖𝑛 

Γ0 = 0.1 Γ0 = 0.05 Γ0 = 0.15 

𝑙1 =
3λ0

8
  𝑙2 =

λ0
8
  

Note that the transmission line sections have different lengths! 


