Lecture - 13

Date: 16.09.2014

- The Signal Flow Graph (Contd.)
- Impedance Matching and Tuning
- L - Type Matching Network
- Example

Signal Flow Graph (contd.)

Splitting Rule

- Now consider the three equations

- These equations can be equivalently written as

Rule 4 - Splitting Rule

If a node has one (and only one!) incoming branch, and one (or more) exiting branches, the incoming branch can be "split", and directly combined with each of the exiting branches.

Signal Flow Graph (contd.)

Splitting Rule Gives
$-j 0.3$

Signal Flow Graph (contd.)

- The splitting rule is particularly useful when we encounter signal flow

Signal Flow Graph (contd.)

Q: Can we split the other branch of the loop?

A: NO!! Do not make this mistake! We cannot split the 0.3 branch because it terminates in a node with two incoming branches (i.e., -j and 0.3). This is a violation of rule 4.

Example-1

Consider the basic 2-port network, terminated with load Γ_{L} :

determine the value: $\Gamma_{1}=\frac{b_{1}}{a_{1}}$
Solution:

- Isn't this simply S_{11} ?
- Only if $\Gamma_{\mathrm{L}}=0$ (and in this situation it is not!)

Example-1 (contd.)

- let's decompose (simplify) the signal flow graph and find out!

Step-1: splitting rule on node a_{2}

Step-3: series rule gives

Step-2: self-loop rule on node b_{2}

Step-4: parallel rule gives

Example - 2

Below is a single-port device (with input at port $1 x$) constructed with two two-port devices (\mathbf{S}_{x} and \mathbf{S}_{y}), a quarter wavelength transmission line, and a load impedance.

Given
$\mathrm{Z}_{0}=50 \Omega \quad S_{x}=\left[\begin{array}{cc}0.35 & 0.5 \\ 0.5 & 0\end{array}\right]$

$$
S_{y}=\left[\begin{array}{cc}
0 & 0.8 \\
0.8 & 0.4
\end{array}\right]
$$

Draw the complete signal flow graph of this circuit, and then reduce the graph to determine: a) The total current through load Γ_{L}; b) The power delivered to (i.e., absorbed by) port 1x.

Example - 2 (contd.)

- The signal flow graph describing this network is:

- We know that the value of the wave incident on port 1 of device \mathbf{S}_{x} is:

$$
a_{l}^{x}=\frac{V_{1 x}^{+}\left(z_{1 x}=z_{1 x P}\right)}{\sqrt{Z_{0}}}=\frac{j 2}{50}=\frac{j \sqrt{2}}{5}
$$

Example - 2 (contd.)

- Let us place the given numeric values of branches on this SFG:

Example - 2 (contd.)

- Remove the zero valued branches:

Example - 2 (contd.)

- Now apply "splitting" rule at node $\mathrm{a}_{2 \mathrm{y}}$

Example - 2 (contd.)

- Then apply "self-loop" rule at node $b_{2 y}$

Example - 2 (contd.)

- let's use this simplified signal flow graph to find the solutions to our questions!
a) The total current through load Γ_{L}

$$
I_{L}=-I\left(z_{2 y}=z_{2 y P}\right)=-\frac{V_{2 y}^{+}\left(z_{2 y}=z_{2 y P}\right)-V_{2 y}^{-}\left(z_{2 y}=z_{2 y P}\right)}{Z_{0}}
$$

$$
\Rightarrow I_{x}=-\frac{a_{2 y}-b_{2 y}}{}=\frac{b_{2 y}-a_{2 y}}{\quad \text { Thus, we need to }}
$$ determine the value of nodes $a_{2 y}$ and $b_{2 y}$

- Using the "series" rule on the SFG gives

Therefore,

$$
\begin{gathered}
b_{2 y}=-j 0.5 * a_{l}^{x}=-j 0.5 * \frac{j \sqrt{2}}{5}=0.1 \sqrt{2} \\
a_{2 y}=0.5 * b_{2 y}=0.05 \sqrt{2}
\end{gathered}
$$

Example - 2 (contd.)

- Thus the total current through Γ_{L} is:

$$
I_{L}=\frac{b_{2 y}-a_{2 y}}{\sqrt{50}}=\frac{(0.1-0.05) \sqrt{2}}{\sqrt{50}}=\frac{0.05}{5}=10 \mathrm{~mA}
$$

b) The power delivered to (i.e., absorbed by) port 1 x is:

$$
\begin{aligned}
& P_{a b s}=P^{+}-P^{-}=\frac{\left|V_{1 x}^{+}\left(z_{1 x}=z_{1 x P}\right)\right|^{2}}{2 Z_{0}}-\frac{\left|V_{1 x}^{-}\left(z_{1 x}=z_{1 x P}\right)\right|^{2}}{2 Z_{0}} \\
& \Rightarrow P_{a b s}=\frac{\left|a_{1 x}\right|^{2}-\left|b_{1 x}\right|^{2}}{2} \quad \begin{array}{c}
\text { Requires knowledge of } \\
\text { nodes } \mathrm{a}_{1 \mathrm{x}} \text { and } \mathrm{b}_{1 \mathrm{x}}
\end{array}
\end{aligned}
$$

Example - 2 (contd.)

- We have:

apply "series" rule
$a_{1 x}=j \sqrt{2} / 5$
$0.35-0.1=0.25$
$b_{1 x}$
apply "parallel" rule

Therefore:

$$
b_{1 x}=0.25 a_{1 x}=(0.25 * j \sqrt{2} / 5)=j 0.05 \sqrt{2}
$$

Example - 2 (contd.)

- Therefore, the power delivered to (i.e., absorbed by) port 1 x is:

$$
\Rightarrow P_{a b s}=\frac{|j \sqrt{2} / 5|^{2}-|j 0.05 \sqrt{2}|^{2}}{2}=\frac{0.08-0.005}{2}=37.5 \mathrm{~mW}
$$

Introduction - Impedance Transformation

One of the most important and fundamental two-port networks that microwave engineers design is a lossless matching network (otherwise known as an impedance transformer).

Q: In high frequency circuits, a source and load are connected by a TL. Can we implement matching networks in transmission line circuits?

Furthermore, these matching networks seem too good to be true-can we really design and construct them to provide a perfect match?

A: We can easily provide a near perfect match at precisely one frequency

But, since lossless matching and transmission lines are made of entirely reactive elements (not to mention the reactive components of source and load impedance),
we find that changing the frequency will typically "unmatch" our circuit!

Introduction (contd.)

Therefore, a difficult challenge for any RF/microwave design engineer is to design a wideband matching network-a matching network that provides an "adequate" match over a wide range of frequencies.

- Generally speaking, matching network design requires a tradeoff between following parameters for desirable attributes:

1. Bandwidth
2. Complexity
3. Implementation
4. Adjustability

Matching with Lumped Components

- let's begin to examine how matching networks are built!
- we begin with the simplest solution: An L-network, consisting of a single capacitor and a single inductor.

Q: Just two elements! That seems simple enough. Do we always use these L-networks when constructing lossless matching networks?

A: Nope. L-networks have two major drawbacks:

1. They are narrow-band.
2. Capacitors and inductors are difficult to make at microwave frequencies!
Soon we will see how these L-networks actually work

Matching Network Analysis

- Consider following circuit where a passive load is attached to an active source:

It will absorb power power that is delivered to it by the source \rightarrow given by expression

$$
P_{L}=\frac{1}{2}\left\{V_{L} I_{L}^{*}\right\}
$$

$\Rightarrow P_{L}=\frac{1}{2} \operatorname{Re}\left\{\left(V_{g} \frac{Z_{L}}{Z_{g}+Z_{L}}\right)\left(\frac{V_{g}}{Z_{g}+Z_{L}}\right)^{*}\right\} \longmapsto=\frac{1}{2}\left|V_{g}\right|^{2} \frac{\operatorname{Re}\left\{Z_{L}\right\}}{\left|Z_{g}+Z_{L}\right|^{2}}=\frac{1}{2}\left|V_{g}\right|^{2} \frac{R_{L}}{\left|Z_{g}+Z_{L}\right|^{2}}$

Recall that the power delivered to the load will be maximized (for a given V_{g} and Z_{g}) if the load impedance is equal to the complex conjugate of the source impedance $\left(\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{g}}{ }^{*}\right)$

Matching Network Analysis (contd.)

- We call the maximized power, the available power $P_{a v l}$ from the source \rightarrow it is, after all, the largest amount of power that the source can ever deliver!

$$
P_{L}^{\max } \doteq P_{a v l}=\frac{1}{2}\left|V_{g}\right|^{2} \frac{R_{g}}{\left|Z_{g}+Z_{g}^{*}\right|^{2}}=\frac{1}{2}\left|V_{g}\right|^{2} \frac{R_{g}}{\left|2 R_{g}\right|^{2}}=\frac{\left|V_{g}\right|^{2}}{8 R_{g}}
$$

- Note the available power of the source is dependent on source parameters only (i.e., V_{g} and R_{g}). This makes sense! Do you see why?
- Thus, we can say that to "take full advantage" of all the available power of the source, we must make the load impedance the complex conjugate of the source impedance.
- Otherwise, the power delivered to the load will be less than power made available by the source! In other "words":

$$
P_{L} \leq P_{a v l}
$$

Matching Networks and Transmission Lines

Note: we can construct a network to transform the input impedance of the transmission line into the complex conjugate of the source impedance:

Q: But, do we have to place the matching network between the source and the transmission line?
A: Nope! We could also place a (different) matching network between the transmission line and the load.

Matching Networks and Transmission Lines (contd.)

Q: So which method should we choose? Do engineers typically place the matching network between the source and the transmission line, or place it between the transmission line and the load?

A: Actually, the typical solution is to do both!

- We find that often there is a matching network between the a source and the transmission line, and between the line and the load.

Matching Networks and Transmission Lines (contd.)

- The first network matches the source to the transmission line-in other words, it transforms the output impedance of the equivalent source to a value numerically equal to characteristic
 impedance Z_{0} :
- The second network matches the load to the transmission line-in other words it transforms the load impedance to a value numerically equal to characteristic impedance Z_{0} :

Q: Yikes! Why would we want to build two separate matching networks, instead of just one?

Matching Networks and Transmission Lines (contd.)

A: By using two separate matching networks, we can decouple the design problem. Recall again that the design of a single matching network solution would depend on four separate parameters:

- Alternatively, the design of the network matching the source and transmission line depends on only:
- In addition, the design of the network matching the load and transmission line depends on only:

1. the source impedance Z_{g}
2. load impedance Z_{L}
3. the TL characteristic impedance Z_{0}
4. the TL length l

Note that neither design depends on the transmission line Length l !

A: Remember the case where $\mathrm{Z}_{\mathrm{g}}=\mathrm{Z}_{0}=\mathrm{Z}_{\mathrm{L}}$. For that Q: How is that possible?

1. the source impedance Z_{g}
2. the transmission line characteristic impedance Z_{0}
3. the source impedance Z_{L}
4. the transmission line characteristic impedance Z_{0} special case, we found that a conjugate match was the result-regardless of the transmission line length.

Matching Networks and Transmission Lines (contd.)

Thus, by matching the source to line impedance Z_{0} and likewise matching the load to the line impedance, a conjugate match is assured-but the length of the transmission line does not matter!

In fact, the typical problem for microwave engineers is to match a load (e.g., device input impedance) to a standard transmission line impedance (typically $Z_{0}=50 \Omega$); or to independently match a source (e.g., device output impedance) to a standard line impedance.

A conjugate match is thus obtained by connecting the two with a transmission line of any length!

L-Network Analysis

- Let us consider the first matching L-network, and denote it as matching network (A):

Note that this matching network consists of just two lumped elements, which must be purely reactive - in other words, a capacitor and an inductor!

- To make $\Gamma_{\text {in }}=0$, the input impedance of the network must be:

$$
Z_{i n}=Z_{0}
$$

L-Network Analysis (contd.)

- Using basic circuit analysis we can find that:

$$
Z(z=0)=Z_{i n}=j X+\frac{(1 / j B) Z_{L}}{(1 / j B)+Z_{L}}=j X+\frac{Z_{L}}{1+j B Z_{L}}
$$

- Note that a matched network, with $\mathrm{Z}_{\text {in }}=\mathrm{Z}_{0}$, means that:

Gives two equations and aids in the determination of two unknowns (X , and B)

Essentially, the L-network matching network can be viewed as consisting of two distinct parts, each attempting to satisfy a specific requirement.

L-Network Analysis (contd.)

Part 1: Selecting Y = jB

- Since the shunt element Y and Z_{L} are in parallel, we can combine them into one element Y_{1} :

$$
Y_{1} \doteq Y+\frac{1}{Z_{L}}=j B+Y_{L}
$$

The impedance of this element is therefore: $Z_{1}=\frac{1}{Y_{1}}=\frac{1}{j B+Y_{L}}=\frac{Z_{L}}{Z_{L}+j B Z_{L}}$

L-Network Analysis (contd.)

- To achieve a perfect match, we must set the value of susceptance B such that:

$$
\operatorname{Re}\left\{Z_{i n}\right\}=\operatorname{Re}\left\{Z_{1}\right\} \quad \Rightarrow Z_{0}=\operatorname{Re}\left\{\frac{Z_{L}}{Z_{L}+j B Z_{L}}\right\}
$$

reactive part

- Thus if B is properly selected: of matching

L-Network Analysis (contd.)

Part 2: Selecting $\mathrm{Z}=\mathrm{jX}$

- Note that the impedance $Z_{1}=Z_{L} \|(1 / j B)$ has the ideal real value of Z_{0}. However, it also posses an annoying imaginary part of:

$$
X_{1}=\operatorname{Im}\left\{Z_{1}\right\}=\operatorname{Im}\left\{\frac{Z_{L}}{Z_{L}+j B Z_{L}}\right\}
$$

- However, this imaginary component can be easily removed by setting the series element $\mathrm{Z}=\mathrm{jX}$ to its equal but opposite value!

$$
X=-X_{1}=-\operatorname{Im}\left\{\frac{Z_{L}}{Z_{L}+j B Z_{L}}\right\}
$$

It gives

$$
Z_{0}, \beta \quad \begin{array}{ll}
\Gamma(0)=\Gamma_{\text {in }} \\
Z(0)=Z_{\text {in }}
\end{array} \quad Z=-j X_{1},\left\{\begin{array}{l}
Z_{1}=Z_{0}+j X_{1} \\
\Rightarrow Z_{\text {in }}=-j X_{1}+Z_{0}+j X_{1}=Z_{0}
\end{array}\right.
$$

L-Network Analysis (contd.)

- we can solve the preceding equations for the required values X and B to satisfy these two equations - to create a matched network!

$$
B=\frac{X_{L} \pm \sqrt{R_{L} / Z_{0}} \sqrt{R_{L}^{2}+X_{L}^{2}-Z_{0} R_{L}}}{R_{L}^{2}+X_{L}^{2}}
$$

$$
X=\frac{1}{B}+\frac{X_{L} Z_{0}}{R_{L}}-\frac{Z_{0}}{B R_{L}}
$$

$$
\text { Where, } \quad Z_{L}=R_{L}+j X_{L}
$$

Note:

1) Because of the \pm, there are two solutions for B (and thus X)
2) For $j B$ to be purely imaginary (i.e., reactive), B must be real $\rightarrow R_{L}$ must be greater than $Z_{0}\left(R_{L}>Z_{0}\right)$ to insure that B and thus X is real.

In other words, this matching network (type-A) can only be used when $R_{L}>Z_{0}$. Notice that this condition means that the normalized load $z_{L}{ }^{\prime}$ lies inside the $r=1$ circle on the Smith Chart!

L-Network Analysis (contd.)

- Now let's consider the second of the two L-networks, which we call network (B). Note it is also formed with just two lumped elements.

- To make $\Gamma_{\text {in }}=0$, the input admittance of the network must be:

$$
Y_{i n}=Y_{0}
$$

- From circuit theory we can determine that the input admittance for this network is:

$$
Y_{i n}=j B+\frac{1}{j X+Z_{L}}
$$

L-Network Analysis (contd.)

- We can describe a matched network, with $Y_{i n}=Y_{0}$ as:

Gives two equations and aids in the determination of two unknowns (X, and B)

- For this design, we set the value of $Z=j X$ such that the admittance Y_{1} :

L-Network Analysis (contd.)

- It is apparent that a perfect match will occur if the shunt element $Y=j B$ is set to "cancel" the reactive component of Y_{1} :

$$
B=-\operatorname{Im}\left\{Y_{1}\right\}=-\operatorname{Im}\left\{\frac{1}{j X+Z_{L}}\right\}
$$

So that:

$$
Y_{\text {in }}=Y+Y_{1}=-j B_{1}+\left(Y_{0}+j B_{1}\right)=Y_{0} \quad \text { Perfect Match!!! }
$$

L-Network Analysis (contd.)

- we can solve the preceding equations for the required values X and B to satisfy these two equations - to create a matched network!

$$
X= \pm \sqrt{R_{L}\left(Z_{0}-R_{L}\right)}-X_{L}
$$

$$
B= \pm \frac{\sqrt{\left(Z_{0}-R_{L}\right) / R_{L}}}{Z_{0}}
$$

$$
\text { Where, } Z_{L}=R_{L}+j X_{L}
$$

Note:

1) Because of the \pm, there are two solutions for B (and thus X)
2) For $j B$ and $j X$ to be purely imaginary (i.e., reactive), B and X must be real
$\rightarrow R_{L}$ must be less than $Z_{0}\left(R_{L}<Z_{0}\right)$ to insure that B and X are real.
In other words, this matching network (type-B) can only be used when $R_{L}<Z_{0}$. Notice that this condition means that the normalized load z_{L} ' lies outside the $\mathrm{r}=1$ circle on the Smith Chart!

L-Network Analysis (contd.)

Smith Chart Regions Depicting the Validity Regions for Networks A and B

L - Type Matching Network (contd.)

- Once the values of X and B are found, we can determine the required values of inductance L and/or capacitance C, for the signal frequency ω_{0} !

$$
X=\left\{\begin{array}{ccc}
\omega_{0} L & \text { If } & x>0 \\
-\frac{1}{\omega_{0} C} & \text { If } & x<0
\end{array}\right.
$$

and

$$
B=\left\{\begin{array}{ccc}
\omega_{0} C & \text { If } & \mathrm{B}>0 \\
-\frac{1}{\omega_{0} L} & \text { If } & \mathrm{B}<0
\end{array}\right.
$$

Make sure that you see and know why these equations are true

As a result, we see that the reactance or susceptance of the elements of our L-network will have the proper values for matching at precisely one and only one frequency!

And this frequency better be the signal frequency ω_{0} !

L - Type Matching Network (contd.)

If the signal frequency changes from the design frequency, the reactance and susceptance of the matching network inductors and capacitors will change \rightarrow As a result the circuit will no longer be matched

Therefore the L-Type matching network has a narrow bandwidth!

Solution 2

L - Type Matching Network (contd.)

- In addition; it becomes very difficult to build quality lumped elements with useful values past 1 or 2 GHz . Thus, L-network solutions are generally applicable only in the relatively low RF region (i.e., < 2GHz).

Example - 1

The output impedance of a transmitter operating at a frequency of $2 \mathbf{G H z}$ is $Z_{T}=$ $(150+j 75) \Omega$. Design an L-Type matching network, as shown below, such that maximum power is delivered to the antenna whose input impedance is $Z_{A}=$ $(75+j 15) \Omega$.

Example - 1 (contd.)

Analytical Approach

The condition of the maximum power transfer implies that:

Series connection of L and an element (of parallel combination of C and Z_{T})

$$
\text { Let us write: } \quad Z_{T}=R_{T}+j X_{T} \quad Z_{A}=R_{A}+j X_{A}
$$

$$
\frac{R_{T}+j X_{T}}{1+j B_{C}\left(R_{T}+j X_{T}\right)}+j X_{L}=R_{A}-j X_{A}
$$

Example - 1 (contd.)

Simplification gives:

$$
\begin{aligned}
& R_{T}=R_{A}\left(1-B_{C} X_{T}\right)+\left(X_{A}+X_{L}\right) B_{C} R_{T} \\
& X_{T}=R_{T} R_{A} B_{C}-\left(1-B_{C} X_{T}\right)\left(X_{A}+X_{L}\right)
\end{aligned}
$$

$$
B_{C}=\frac{X_{T} \pm \sqrt{\frac{R_{T}}{R_{A}}\left(R_{T}^{2}+X_{T}^{2}\right)-R_{T}^{2}}}{R_{T}^{2}+X_{T}^{2}}
$$

In this example, $R_{T}>R_{A}$; therefore the square root is +ve and therefore for positive B_{C} (capacitor) we must choose the plus sign in this expression.

Therefore:

$$
X_{L}=\frac{1}{B_{C}}-\frac{R_{A}\left(1-B_{C} X_{T}\right)}{B_{C} R_{T}}-X_{A}
$$

- Insert the given values in the obtained expressions to get:

$$
B_{C}=9.3 \mathrm{mS} \Rightarrow C=\frac{B_{C}}{\omega}=0.73 p F \quad X_{L}=76.9 \Omega \Rightarrow L=\frac{X_{L}}{\omega}=6.1 \mathrm{nH}
$$

Example - 1 (contd.)

Smith Chart Based Approach

- Before we tread this path, let us have a look on Smith chart navigation when series/shunt reactances are added to any impedance (Z)
Series Connection of Inductance to a given Impedance

Example - 1 (contd.)

Series Connection of Capacitance to a given Impedance

Normalized "Z"

Example - 1 (contd.)

Shunt Connection of Inductance to a given Impedance

Example - 1 (contd.)

Shunt Connection of Capacitance to a given Impedance

Shunt C

Example - 1 (contd.)

Normalize the transmitter and antenna impedances

- Since no Z_{0} is given, one can choose any. In this example, $Z_{0}=75 \Omega$ makes simplification easier

$$
z_{T}^{\prime}=Z_{T} / Z_{0}=2+j 1 \quad z_{A}^{\prime}=Z_{A} / Z_{0}=1+j 0.2
$$

- C is in shunt with $\mathrm{Z}_{\mathrm{T}} \rightarrow$ the movement will be downward on a constant conductance circle \rightarrow starting point will be z_{T}^{\prime} and the end point will be its intersection with $\mathrm{z}_{\mathrm{M}}=1$ - j0.2 circle
- Then the movement will be upward on a constant resistance circle (from $\mathrm{z}_{\mathrm{M}}=$ $\left.\left(z_{A}{ }^{\prime}\right)^{*}=1-j 0.2\right) \rightarrow$ to account for the series inductance L

Example - 1 (contd.)

Example - 1 (contd.)

Therefore, the normalized susceptance jb_{c} is:

$$
j b_{c}=y_{T C}^{\prime}-y_{T}^{\prime}=0.4+j 0.49-(0.4-j 0.2)=j 0.69
$$

Similarly, the normalized reactance $\mathrm{j} x_{\mathrm{L}}$ is:

$$
j x_{L}=z_{A}^{* \prime}-z_{T C}^{\prime}=1-j 0.2-(1-j 1.22)=j 1.02
$$

Finally,

$$
\begin{aligned}
& L=\frac{x_{L} Z_{0}}{\omega}=6.09 \mathrm{nH} \\
& C=\frac{b_{c}}{\omega Z_{0}}=0.73 \mathrm{pF}
\end{aligned}
$$

