Lecture - 12

Date: 13.09.2014

- The Signal Flow Graph

Signal Flow Graph

Q: Using individual device scattering parameters to analyze a complex microwave network results in a lot of messy math! Isn't there an easier way?
A: Yes! We can represent a microwave network with its signal flow graph and then decompose this graph using a standard set of rules \rightarrow results into simpler analysis.

It provides a sort of a graphical way to do algebra!

Signal Flow Graph (SFG) can also help us understand the fundamental physical behavior of a network or device. It can even help us approximate the network in a way that makes it simpler to analyze and/or design!

Signal Flow Graph (contd.)

- To understand the significance of SFG, let us consider a complex 3-port microwave network constructed of $\mathbf{5}$ simpler microwave devices

The S-parameter (S) of the whole network can be obtained from the knowledge of S-parameter of individual devices

Signal Flow Graph (contd.)

Signal flow graphs are helpful in three ways!

Way 1 - It provide us with a graphical means of solving large systems of simultaneous equations.
Way 2 - We'll see that it can provide us with a road map of the wave propagation paths throughout a HF device or network. If we're paying attention, we can glean great physical insight as to the inner working of the device represented by the graph.
Way 3-It provide us with a quick and accurate method for approximating a network or device. We will find that we can often replace a rather complex graph with a much simpler one that is almost equivalent.

We find this to be very helpful when designing microwave components. From the analysis of these approximate graphs, we can often determine design rules or equations that are tractable, and allow us to design components with (near) optimal performance.

Signal Flow Graph (contd.)

Some definitions!

Every SFG consists of a set of nodes. These nodes are connected by branches, which are simply contours with a specified direction. Similarly, each branch has an associated complex value.

Q: What could this possibly have to do with RF/microwave engineering?

Signal Flow Graph (contd.)

- In high frequency applications, each port of a device is represented by two nodes-the "a" node and the "b" node. The "a" node simply represents the value of the normalized amplitude of the wave incident on that port, evaluated at the plane of that port:

$$
a_{n}=\frac{V_{n}^{+}\left(z_{n}=z_{n P}\right)}{\sqrt{Z_{0 n}}}
$$

- Similarly, the "b" node simply represents the normalized amplitude of the wave exiting that port, evaluated at the plane of that port:

$$
b_{n}=\frac{V_{n}^{-}\left(z_{n}=z_{n P}\right)}{\sqrt{Z_{0 n}}}
$$

- Note then that the total voltage at a port is simply:

$$
V_{n}\left(z_{n}=z_{n P}\right)=\left(a_{n}+b_{n}\right) \sqrt{Z_{0 n}}
$$

Signal Flow Graph (contd.)

- The value of the branch connecting two nodes is simply the value of the scattering parameter relating these two voltage values.

$$
a_{n}=\frac{V_{n}^{+}\left(z_{n}=z_{n P}\right)}{\sqrt{Z_{0 n}}}
$$

- The signal flow graph above is simply a graphical representation of the equation:

$$
b_{m}=a_{n} S_{m n}
$$

- Moreover, if multiple branches enter a node, then the voltage represented by that node is the sum of the values from each branch. For

$$
b_{1}=S_{11} a_{1}+S_{12} a_{2}+S_{13} a_{3}
$$

Signal Flow Graph (contd.)

- Now, consider a two-port device with a scattering matrix S:

$$
S=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]
$$

So that:

$$
b_{1}=S_{11} a_{1}+S_{12} a_{2} \quad b_{2}=S_{21} a_{1}+S_{22} a_{2}
$$

- We can then graphically represent a two-port device as:

Signal Flow Graph (contd.)

- Now, consider a two-port device where the second port is terminated by some load Γ_{L} :

- Therefore, the signal flow graph of this terminated network is:

Signal Flow Graph (contd.)

- Now consider cascading of two different two-port networks

Signal Flow Graph (contd.)

- Now consider networks connected with a transmission line segment:

Signal Flow Graph (contd.)

Note that there is one (and only one!) independent variable in this graphical representation (i.e., SFG) $\rightarrow \mathrm{a}_{1}{ }^{\mathrm{x}}$

This is the only node of the SFG that does not have any incoming branches. As a result, its value depends on no other node values in the SFG

Signal Flow Graph (contd.)

Independent nodes in the SFG are called sources!

- This makes sense physically (do you see why?)
- The node value $a_{1}{ }^{x}$ represents the complex amplitude of the wave incident on the one-port network. If this value is zero, then no power is incident on the network-the rest of the nodes (i.e., wave amplitudes) will be zero!

Now, say we wish to determine, for example:

1. The reflection coefficient $\Gamma_{\text {in }}$ of the one-port device
2. The total current at port 1 of second network (i.e., network y)
3. The power absorbed by the load at port 2 of the second (y) network.

Signal Flow Graph (contd.)

- In the first case, we need to determine the value of dependent node $b_{1}{ }^{x}$:

$$
\Gamma_{i n}=\frac{b_{1}^{x}}{a_{1}^{x}}
$$

- For the second case, we must determine the value of wave amplitudes $a_{1}{ }^{y}$ and $b_{1}{ }^{y}$:

$$
I_{1}^{y}=\frac{a_{1}^{y}-b_{1}^{y}}{\sqrt{Z_{0}}}
$$

- For the third and final case, the values of nodes a_{2}^{y} and b_{2}^{y} are required:

$$
P_{a b s}=\frac{\left|b_{2}^{y}\right|^{2}-\left|a_{2}^{y}\right|^{2}}{2}
$$

solve the simultaneous equations that describe this network.
How do we determine the values of these wave amplitude "nodes"?

Decompose (reduce) the SFG!

Signal Flow Graph (contd.)

- SFG reduction is a method for simplifying the complex paths of that SFG into a more direct (but equivalent!) form.
- Reduction is really just a graphical method of decoupling the simultaneous equations that are described by the SFG.
- SFGs can be reduced by applying one of four simple rules.

Q: Can these rules be applied in any order?
A: YES! The rules can only be applied when/where the structure of the SFG allows. You must search the SFG for structures that allow a rule to be applied, and the SFG will then be (a little bit) reduced. You then search for the next valid structure where a rule can be applied. Eventually, the SFG will be completely reduced!

It's a bit like solving a puzzle. Every SFG is different, and so each requires a different reduction procedure. It requires a little thought, but with a little practice, the reduction procedure can be easily mastered \rightarrow You may find its kind of a fun! (TRUST ME)

Signal Flow Graph (contd.)

Series Rule

- Consider these two complex equations: $b_{1}=\alpha a_{1} \quad a_{2}=\beta b_{1}$
- These two equations can combined to form an equivalent set of equations:

$$
b_{1}=\alpha a_{1} \quad a_{2}=\beta b_{1}=\beta\left(\alpha a_{1}\right)=\alpha \beta a_{1}
$$

- Graphically they can be represented as:

Signal Flow Graph (contd.)

This last discussion leads us to our first SFG reduction rule:
Rule 1 - Series Rule
If a node has one (and only one!) incoming branch, and one (and only one!) outgoing branch, the node can be eliminated and the two branches can be combined, with the new branch having a value equal to the product of the original two.

Example:

Signal Flow Graph (contd.)

Parallel Rule

- Consider these two complex equations: $b_{1}=\alpha a_{1}+\beta a_{1}$
- The equation can also be expressed as: $b_{1}=(\alpha+\beta) a_{1}$
- These equations can be expressed in terms of SFG as:

Signal Flow Graph (contd.)

This last discussion leads us to our second SFG reduction rule:
Rule 2 - Parallel Rule
If two nodes are connected by parallel branches-and the branches have the same direction-the branches can be combined into a single branch, with a value equal to the sum of each two original branches.

Example:

Signal Flow Graph (contd.)

What about this signal flow graph?

Signal Flow Graph (contd.)

Actually from this SFG we can only conclude that

$$
b_{1}=0.3 a_{1}
$$

$$
a_{1}=0.2 b_{1}
$$

SFG can be

$$
a_{1}=0.06 a a_{1}=0.3 a_{1}
$$

of the form
Branches that begin and end at the same node are called self-loops

In practical situations, self-loop node will always have at least one other incoming branch

Signal Flow Graph (contd.)

Practical example of node with self-loop:

Signal Flow Graph (contd.)

Self-Loop Rule

- Consider the complex equation:
- A little bit of algebra allows us to determine the value of node b_{1} :

Equivalent

Signal Flow Graph (contd.)

This last discussion leads us to our third SFG reduction rule:
Rule 3 - Self-Loop Rule
A self-loop can be eliminate by multiplying all of the branches "feeding" the self-loop node by $1\left(1-S_{\text {sl }}\right)$, where $S_{\text {sl }}$ is the value of the self loop branch.

Signal Flow Graph (contd.)

Example

Only the incoming branches are modified by the self-loop rule! Here, the 0.3 branch is exiting the self-loop node a_{1} and therefore doesn't get modified. Only the -j branch(incoming at node a_{1}) to the self-loop node are modified by the self-loop rule!

