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Q: OK, but how can we determine the scattering matrix of a device? 
A: We must carefully apply our transmission line theory! 

Q: Determining the Scattering Matrix of a multi-port device would seem to be 
particularly laborious. Is there any way to simplify the process? 
A: Many (if not most) of the useful devices made by us humans exhibit a high 
degree of symmetry. This can greatly simplify circuit analysis—if we know 
how to exploit it! 

Q: Is there any other way to use circuit symmetry to our advantage? 
A: Absolutely! One of the most powerful tools in circuit analysis is Odd-Even 
Mode analysis. 
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Circuit Symmetry 
• One of the most powerful concepts in for evaluating circuits is that of 

symmetry. Normal humans have a conceptual understanding of symmetry, 
based on an esthetic perception of structures and figures. 

• On the other hand, mathematicians (as they are wont to do) have defined 
symmetry in a very precise and unambiguous way. Using a branch of 
mathematics called Group Theory, first developed by the young genius 
Évariste Galois (1811-1832), symmetry is defined by a set of operations (a 
group) that leaves an object unchanged. 

• Initially, the symmetric “objects” under consideration by Galois were 
polynomial functions, but group theory can likewise be applied to 
evaluate the symmetry of structures. 

• For example, consider an ordinary 
equilateral triangle; we find that it 
is a highly symmetric object! 
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Circuit Symmetry (contd.) 
Q: Obviously this is true. We don’t need a mathematician to tell us that! 
A: Yes, but how symmetric is it? How does the symmetry of an equilateral 
triangle compare to that of an isosceles triangle, a rectangle, or a square? 

• To determine its level of symmetry, 
let’s first label each corner as corner 1, 
corner 2, and corner 3. 1 

2 

3 

• First, we note that the triangle 
exhibits a plane of reflection 
symmetry: 1 

2 

3 
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Circuit Symmetry (contd.) 

• Thus, if we “reflect” the triangle across this plane we get: 
1 

2 

3 

Note that although corners 1 and 3 have changed places, 
the triangle itself remains unchanged—that is, it has the 

same shape, same size, and same orientation after 
reflecting across the symmetric plane! 

• Mathematicians say that these two triangles are congruent. 
• Note that we can write this reflection operation as a permutation (an 

exchange of position) of the corners, defined as: 

1 → 3 

2 → 2 

3 → 1 
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Circuit Symmetry (contd.) 

Q: But wait! Isn’t there more than just one plane of reflection symmetry? 
A: Definitely! There are two more: 

1 

2 

3 

1 

2 3 

1 → 2 

2 → 1 

3 → 3 

1 

2 

3 

1 → 1 

2 → 3 

3 → 2 1 2 

3 

In addition, an equilateral triangle exhibits 
rotation symmetry! 
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Circuit Symmetry (contd.) 

• Rotating the triangle 120° clockwise also results in a congruent triangle: 

1 

2 

3 

1 

3 2 

1 → 2 
2 → 3  

3 → 1 

• Likewise, rotating the triangle 120° counter-clockwise results in a 
congruent triangle: 

1 

2 

3 

3 

2 1 

1 → 3 

2 → 1  

3 → 2 
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• Additionally, there is one more operation that will result in a congruent 
triangle—do nothing! 

Circuit Symmetry (contd.) 

1 

2 

3 

2 

1 3 

1 → 1 

2 → 2  

3 → 3 

This seemingly trivial operation is known as the identity operation, 
and is an element of every symmetry group. 

These 6 operations form the dihedral symmetry group D3 which has 
order six (i.e., it consists of six operations). An object that remains 

congruent when operated on by any and all of these six operations is 
said to have D3 symmetry. 

An equilateral triangle has D3 symmetry! 
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• By applying a similar analysis to an isosceles trapezoid, rectangle, and 
square, we find that: 

Circuit Symmetry (contd.) 

An isosceles trapezoid has D1  symmetry, a dihedral group 
of order 2. 

A square has D4 symmetry, a dihedral group of order 8. D4 

A rectangle has D2 symmetry, a dihedral group of order 4. D2 

D1 

Thus, a square is the most symmetric object of the four we have 
discussed; the isosceles trapezoid is the least. 

Q: Well that’s all just fascinating—but just what the heck does this have to 
do with RF circuits!?! 
A: Plenty! Useful circuits often display high levels of symmetry. 
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Circuit Symmetry (contd.) 

• For example consider 
these D1 symmetric 
multi-port circuits: 

1 → 2 

2 → 1  

3 → 4 

4 → 3 

100Ω 

50Ω 

200Ω 200Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 

• Or this circuit with D2 
symmetry: which is 
congruent under these 
permutations: 

1 → 3, 2 → 4, 3 → 1, 4 → 2 

1 → 2, 2 → 1, 3 → 4, 4 → 3 

1 → 4, 2 → 3, 3 → 2, 4 → 1 

50Ω 

50Ω 

200Ω 200Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 
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Circuit Symmetry (contd.) 
• Or this circuit with D4 symmetry: which is congruent under these 

permutations: 

1 → 3, 2 → 4, 3 → 1, 4 → 2 

1 → 2, 2 → 1, 3 → 4, 4 → 3 

1 → 4, 2 → 3, 3 → 2, 4 → 1 

1 → 4, 2 → 2, 3 → 3, 4 → 1 

1 → 1, 2 → 3, 3 → 2, 4 → 4 

The importance of this can be seen when considering the scattering matrix, 
impedance matrix, or admittance matrix of these networks. 

50Ω 

50Ω 

50Ω 50Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 
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Circuit Symmetry (contd.) 

• For example, consider again this 
symmetric circuit: 

• This four-port network has a 
single plane of reflection 
symmetry (i.e., D1 symmetry), 
and thus is congruent under 
the permutation: 

1 → 2, 2 → 1, 3 → 4, 4 → 3 

• So, since (for example) 1→2, we find that for this circuit: 

𝑆11 = 𝑆22           𝑍11 = 𝑍22                   𝑌11 = 𝑌22 must be true! 

• Or, since 1→2 and 3→4 we find: 

𝑆13 = 𝑆24           𝑍13 = 𝑍24                   𝑌13 = 𝑌24 

𝑆31 = 𝑆42           𝑍31 = 𝑍42                   𝑌31 = 𝑌42 

100Ω 

50Ω 

200Ω 200Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 
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Circuit Symmetry (contd.) 

• Continuing for all elements of the permutation, 
we find that for this symmetric circuit, the 
scattering matrix must have this form: 

11 21 13 14

21 11 14 13

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

and the impedance and admittance matrices 
would likewise have this same form. 

• Note there are just 8 independent elements in 
this matrix. If we also consider reciprocity (a 
constraint independent of symmetry) we find that 
𝑆31 = 𝑆13 and 𝑆41 = 𝑆14, and the matrix reduces 
further to one with just 6 independent elements: 

11 21 31 41

21 11 41 31

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S
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Circuit Symmetry (contd.) 

11 21 31 41

21 22 41 31

31 41 11 21

41 31 21 22

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Q: Interesting. But why do we care? 
A: This will greatly simplify the analysis of this symmetric circuit, as we 
need to determine only six matrix elements! 

• Or, for circuits with this D1 
symmetry: 

1 → 3, 2 → 4, 3 → 1, 4 → 2 

50Ω 

50Ω 

100Ω 200Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 
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Circuit Symmetry (contd.) 

• For a circuit with D2 
symmetry: 

• we find that the impedance 
(or scattering, or admittance) 
matrix has the form: 

11 21 31 41

21 11 41 31

31 41 11 21

41 31 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Note: there are just four 
independent values! 

50Ω 

50Ω 

200Ω 200Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 
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Circuit Symmetry (contd.) 
• For a circuit with D4 symmetry: • we find that the admittance (or 

scattering, or impedance) matrix 
has the form: 

11 21 21 41

21 11 41 21

21 41 11 21

41 21 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Note: there are just three 
independent values! 

50Ω 

50Ω 

50Ω 50Ω 

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2 

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Circuit Symmetry (contd.) 
• One more interesting thing (yet another one!); recall that we earlier found 

that a matched, lossless, reciprocal 4-port device must have a scattering 
matrix with one of two forms: 

0 0

0 0

0 0

0 0

j

j
S

j

j

 

 

 

 

 
 
 
 
 
 

0 0

0 0

0 0

0 0

j

S

 

 

 

 

 
 


 
 
 

 

Symmetric Anti-symmetric 

• The “symmetric solution” has the 
same form as the scattering matrix of 
a circuit with D2 symmetry! 

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 
 
 
 
 

Q: Does this mean that a matched, lossless, reciprocal four-port device with 
the “symmetric” scattering matrix must exhibit D2 symmetry? 
A: That’s exactly what it means! 



Indraprastha Institute of 

Information Technology Delhi ECE321/521 

Circuit Symmetry (contd.) 
• Not only can we determine from the form of the scattering matrix whether 

a particular design is possible (e.g., a matched, lossless, reciprocal 3-port 
device is impossible), we can also determine the general structure of a 
possible solutions (e.g. the circuit must have D2 symmetry). 

• Likewise, the “anti-symmetric” matched, 
lossless, reciprocal four-port network must 
exhibit D1 symmetry! 

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 


 
 
 

 

We’ll see just what these symmetric, matched, lossless, reciprocal 
four-port circuits actually are later in the course! 
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Example – 1  
• determine the scattering matrix of the simple two-port device shown 

below: 

Port-1 Port-2 
𝑍0, 𝛽 𝑍0, 𝛽 

𝑧 = 0 𝑧 = −𝑙 

𝑆 = 0 𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙 0
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Symmetric Circuit Analysis  
200Ω 

100Ω 100Ω 

50Ω 

𝐼1 𝐼2 

+ 

− 
𝑉1 

+ 

− 
𝑉2 

• Consider this D1 symmetric two-
port device: 

Q: Yikes! The plane of reflection 
symmetry slices through two resistors. 
What can we do about that? 
A: Resistors are easily split into two 
equal pieces: the 200Ω resistor into 
two 100Ω resistors in series, and the 
50Ω resistor as two 100 Ω resistors in 
parallel. 

+ 

− 
𝑉1 

+ 

− 
𝑉2 

𝐼1 𝐼2 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

• Recall that the symmetry of this 
2-port device leads to simplified 
network matrices: 

𝑆 =
𝑆11 𝑆21
𝑆21 𝑆11
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Symmetric Circuit Analysis (contd.)  

Q: can circuit symmetry likewise simplify the procedure of determining these 
elements? In other words, can symmetry be used to simplify circuit analysis? 
A: You bet! 

• First, consider the case where 
we attach sources to circuit in a 
way that preserves the circuit 
symmetry: 

+ 

− 
𝑉1 

+ 

− 
𝑉2 

𝐼1 𝐼2 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

But remember! In order for symmetry to be preserved, the 
source values on both sides (i.e, Vs) must be identical! 
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Symmetric Circuit Analysis (contd.)  

𝐼2 𝐼1 

+ 

− 
𝑉2 

+ 

− 
𝑉1 

𝐼1𝑎 𝐼2𝑎 

𝐼1𝑑 𝐼2𝑑 𝐼1𝑏 𝐼2𝑏 

𝐼1𝑐 𝐼2𝑐 

+ 

− 

𝑉1𝑐 

+ 

− 

𝑉2𝑐 

+ − 𝑉1𝑎 + − 𝑉2𝑎 

+ − 𝑉1𝑏 + − 𝑉2𝑏 

• Since this circuit possesses bilateral (reflection) symmetry (1→2, 2→1), 
symmetric currents and voltages must be equal: 

𝑉1 = 𝑉2        𝑉1𝑎 = 𝑉2𝑎         𝑉1𝑏= 𝑉2𝑏         𝑉1𝑐 = 𝑉2𝑐 

𝐼1 = 𝐼2      𝐼1𝑎 = 𝐼2𝑎       𝐼1𝑏 = 𝐼2𝑏         𝐼1𝑐 = 𝐼2𝑐          𝐼1𝑑= 𝐼2𝑑  

• Now,  consider the voltages and currents within this circuit under this symmetric 
configuration: 
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Symmetric Circuit Analysis (contd.)  
Q: Wait! This can’t possibly be correct! Look at currents 𝐼1𝑎  and 𝐼2𝑎, as well as 

currents 𝐼1𝑑  and 𝐼2𝑑. From KCL, this must be true: 

𝐼1𝑎 = −𝐼2𝑎  𝐼1𝑑= −𝐼2𝑑  

• Yet you say that this must be true: 𝐼1𝑎 = 𝐼2𝑎  𝐼1𝑑= 𝐼2𝑑  

There is an obvious contradiction here! There is no way that both sets of 
equations can simultaneously be correct, is there? 

A: Actually there is! There is one solution that will satisfy both sets of 
equations: 𝐼1𝑎 = 𝐼2𝑎 = 0  𝐼1𝑑= 𝐼2𝑑 = 0  

The currents are zero! 

If you think about it, this makes perfect sense! 
The result says that no current will flow from one 

side of the symmetric circuit into the other. 
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𝐼2 𝐼1 

𝐼1𝑏 𝐼2𝑏 

𝐼1𝑐 𝐼2𝑐 

+ − 𝑉1𝑎 + − 𝑉2𝑎 

+ − 𝑉1𝑏 + − 𝑉2𝑏 

+ 

− 

𝑉1𝑐 

+ 

− 

𝑉2𝑐 
+ 

− 
𝑉2 

+ 

− 
𝑉1 

𝑽𝒊𝒕𝒖𝒂𝒍 𝑶𝒑𝒆𝒏, 𝐈 = 𝟎 

Symmetric Circuit Analysis (contd.)  
• If current did flow across the symmetry plane, then the circuit symmetry 

would be destroyed—one side would effectively become the “source 
side”, and the other the “load side” (i.e., the source side delivers current 
to the load side). 

• Thus, no current will flow across the reflection symmetry plane of a 
symmetric circuit—the symmetry plane thus acts as a open circuit! 

The plane of 
symmetry thus 

becomes a virtual 
open! 
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Symmetric Circuit Analysis (contd.)  

Q: So what? 
A: So what! This means that our circuit can be split apart into two separate 
but identical circuits. Solve one half-circuit, and you have solved the other! 

𝐼1 

𝐼1𝑐 

+ − 𝑉1𝑎 

+ − 𝑉1𝑏 

+ 

− 

𝑉1𝑐 
+ 

− 
𝑉1 

𝐼1𝑏 

𝑉1 = 𝑉2 = 𝑉𝑠 

𝐼1𝑑 = 𝐼2𝑑 = 0  

𝑉1𝑎 = 𝑉2𝑎 = 0 

 𝑉1𝑏= 𝑉2𝑏 =
𝑉𝑠

2  𝑉1𝑐 = 𝑉2𝑐 =
𝑉𝑠

2  

𝐼1 = 𝐼2 =
𝑉𝑠

200   𝐼1𝑎 = 𝐼2𝑎 = 0  

𝐼1𝑏 = 𝐼2𝑏 =
𝑉𝑠

200  𝐼1𝑐 = 𝐼2𝑐 =
𝑉𝑠

200  
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Asymmetric Circuit Analysis 
• Now, consider another type of symmetry, where the sources are equal but 

opposite (i.e., 180 degrees out of phase). 

+ 

− 
𝑉1 

+ 

− 
𝑉2 

𝐼1 𝐼2 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

This situation still preserves the symmetry of the circuit— somewhat. 
The voltages and currents in the circuit will now posses odd 

symmetry—they will be equal but opposite (180 degrees out of 
phase) at symmetric points across the symmetry plane. 
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𝐼2 𝐼1 

+ 

− 
𝑉2 

+ 

− 
𝑉1 

𝐼1𝑎 𝐼2𝑎 

𝐼1𝑑 𝐼2𝑑 𝐼1𝑏 𝐼2𝑏 

𝐼1𝑐 𝐼2𝑐 

+ 

− 

𝑉1𝑐 

+ 

− 

𝑉2𝑐 

+ − 𝑉1𝑎 + − 𝑉2𝑎 

+ − 𝑉1𝑏 + − 𝑉2𝑏 

Asymmetric Circuit Analysis (contd.) 

𝑉1 = −𝑉2        𝑉1𝑎 = −𝑉2𝑎         𝑉1𝑏= −𝑉2𝑏         𝑉1𝑐 = −𝑉2𝑐  

𝐼1 = −𝐼2      𝐼1𝑎 = −𝐼2𝑎       𝐼1𝑏 = −𝐼2𝑏         𝐼1𝑐 = −𝐼2𝑐          𝐼1𝑑= −𝐼2𝑑  
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Asymmetric Circuit Analysis (contd.) 

• Perhaps it would be easier to redefine the circuit variables as: 

𝐼2 𝐼1 

− 

+ 
𝑉2 

+ 

− 
𝑉1 

𝐼1𝑎 𝐼2𝑎 

𝐼1𝑑 𝐼2𝑑 𝐼1𝑏 𝐼2𝑏 

𝐼1𝑐 𝐼2𝑐 

+ 

− 

𝑉1𝑐 

− 

+ 

𝑉2𝑐 

+ − 𝑉1𝑎 − + 𝑉2𝑎 

+ − 𝑉1𝑏 − + 𝑉2𝑏 

𝑉1 = 𝑉2        𝑉1𝑎 = 𝑉2𝑎         𝑉1𝑏= 𝑉2𝑏         𝑉1𝑐 = 𝑉2𝑐 

𝐼1 = 𝐼2      𝐼1𝑎 = 𝐼2𝑎       𝐼1𝑏 = 𝐼2𝑏         𝐼1𝑐 = 𝐼2𝑐          𝐼1𝑑= 𝐼2𝑑  
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Asymmetric Circuit Analysis (contd.) 
Q: But wait! Again I see a problem. By KVL it is evident that: 𝑉1𝑐 = −𝑉2𝑐 

Yet you say that 𝑉1𝑐 = 𝑉2𝑐  must be true! 

A: Again, the solution to both equations is zero! 𝑉1𝑐 = 𝑉2𝑐 = 0 

For the case of odd symmetry, the symmetric plane must be 
a plane of constant potential (i.e., constant voltage)—just 

like a short circuit! 
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𝐼2 𝐼1 

− 

+ 
𝑉2 

+ 

− 
𝑉1 

𝐼1𝑎 𝐼2𝑎 

𝐼1𝑑 𝐼2𝑑 𝐼1𝑏 𝐼2𝑏 

𝐼1𝑐 𝐼2𝑐 

+ 

− 

𝑉1𝑐 

− 

+ 

𝑉2𝑐 

+ − 𝑉1𝑎 − + 𝑉2𝑎 

+ − 𝑉1𝑏 − + 𝑉2𝑏 

• Thus, for odd symmetry, the symmetric plane forms a virtual short. 

Asymmetric Circuit Analysis (contd.)  

𝑽𝒊𝒕𝒖𝒂𝒍 𝑺𝒉𝒐𝒓𝒕, 𝐕 = 𝟎 

This greatly simplifies things, as we can again break the circuit into two 
independent and (effectively) identical circuits! 
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Asymmetric Circuit Analysis (contd.) 

𝑉1 = 𝑉𝑠 

𝐼1𝑑 =
𝑉𝑠

100  

𝑉1𝑎 = 𝑉𝑠 

𝑉1𝑏 = 𝑉𝑠 

𝑉1𝑐 = 0 

𝐼1 =
𝑉𝑠

50
   

𝐼1𝑎 =
𝑉𝑠

100  

𝐼1𝑏 =
𝑉𝑠

100  

𝐼1𝑐 = 0 

+ 

− 
𝑉1 

𝐼1 

𝐼1𝑏 + − 𝑉1𝑏 

+ − 𝑉1𝑎 

𝐼1𝑎 

𝐼1𝑑 

+ 

− 

𝑉1𝑐 

𝐼1𝑐 
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Odd/Even Mode Analysis  

Q: Although symmetric circuits appear to be plentiful in microwave 
engineering, it seems unlikely that we would often encounter symmetric 
sources . Do virtual shorts and opens typically ever occur? 
A: One word—superposition! 

If the elements of our circuit are independent and linear, we can 
apply superposition to analyze symmetric circuits when non-

symmetric sources are attached. 

+ 

− 
𝑉1 

+ 

− 
𝑉2 

𝐼1 𝐼2 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

• For example, say we wish to 
determine the admittance 
matrix of this circuit. We would 
place a voltage source at port 1, 
and a short circuit at port 2—a 
set of asymmetric sources if 
there ever was one! 
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Odd/Even Mode Analysis (contd.)  

• Here’s the really neat part. We find that the source on port 1 can be 
modelled as two equal voltage sources in series, whereas the source at 
port 2 can be modelled as two equal but opposite sources in series. 

+ 

− 

+ 

− 

+ 

− 
𝑉𝑠 

𝑉𝑠
2

 

𝑉𝑠
2

 

+ 

− 

+ 

− 

𝑉𝑠
2

 

−
𝑉𝑠
2

 

+ 

− 
0 
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Odd/Even Mode Analysis (contd.)  

• Therefore an equivalent 
circuit is: 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝐼1 𝐼2 

• Now, the above circuit (due to 
the sources) is obviously 
asymmetric—no virtual ground, 
nor virtual short is present. But, 
let’s say we turn off (i.e., set to 
V =0) the bottom source on 
each side of the circuit: 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝑉𝑠
2

 
𝑉𝑠
2

 

𝐼1 𝐼2 

Our symmetry has been restored! The symmetry plane is 
a virtual open. 
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Odd/Even Mode Analysis (contd.)  

• This circuit is referred to as its even mode, and analysis of it is known as 
the even mode analysis. The solutions are known as the even mode 
currents and voltages! 

• Evaluating the resulting even 
mode half circuit we find: 

𝐼1
𝑒 

100Ω 

100Ω 

100Ω 
𝑉𝑠
2

 
1 2

1

2 200 400

e es sV V
I I  
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• Now, let’s turn the bottom 
sources back on—but turn off the 
top two! 

• We now have a circuit with odd 
symmetry—the symmetry plane 
is a virtual short! 

Odd/Even Mode Analysis (contd.)  

• This circuit is referred to as its odd mode, and analysis of it is known as the 
odd mode analysis. The solutions are known as the odd mode currents 
and voltages! 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝐼1 𝐼2 

𝑉𝑠
2

 −
𝑉𝑠
2

 

𝑉𝑠
2

 

• Evaluating the resulting odd mode 
half circuit we find: 

1 2

1

2 50 100

o os sV V
I I   

𝐼1
𝑜 

100Ω 

100Ω 

100Ω 
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Odd/Even Mode Analysis (contd.)  
Q: But what good is this “even mode” and “odd mode” analysis? After all, the 
source on port 1 is 𝑉𝑠1 = 𝑉𝑠, and the source on port 2 is 𝑉𝑠2 = 0. What are the 
currents 𝐼1 = 𝐼2 for these sources? 
A: Recall that these sources are the sum of the even and odd mode sources: 

• and thus—since all the devices in the circuit are 
linear—we know from superposition that the 
currents 𝐼1 and 𝐼2 are simply the sum of the odd 
and even mode currents ! 

2 2

s s
s

V V
V  First Source: 

2 2

s s
s

V V
V  Second Source: 

1 1 1

e oI I I 

2 2 2

e oI I I 
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Odd/Even Mode Analysis (contd.)  
100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝐼1 = 𝐼1
𝑒 + 𝐼1

𝑜 𝐼2 = 𝐼2
𝑒 + 𝐼2

𝑜 

• Thus, adding the odd 
and even mode analysis 
results together: 

1 1 1
400 100 80

e o s s sV V V
I I I    

2 2 2

3

400 100 400

e o s s sV V V
I I I     

• And then the admittance parameters for this two port network is: 

2

1
11 0

1

1 1
|

80 80s

s
V

s s

I V
y

V V
  

2

2
21 0

1

3 1 3
|

400 400s

s
V

s s

I V
y

V V



   

• And from the symmetry of the 
device we know: 22 11

1

80
y y  12 21

3

400
y y


 

• Thus, the full admittance matrix is: 𝑌 =
1/80 −3/400

−3/400 1/80
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Odd/Even Mode Analysis (contd.)  
Q: What happens if both sources 
are non-zero? Can we use 
symmetry then? 
A: Absolutely! Consider this 
problem, where neither source is 
equal to zero: 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

+ 

− 
𝑉2 

+ 

− 
𝑉1 

𝐼1 𝐼2 

• In this case we can define an even 
mode and an odd mode source as: 

1 2

2

e s s
s

V V
V


 1 2

2

o s s
s

V V
V




+ 

− 

+ 

− 

+ 

− 
𝑉𝑠1 

𝑉𝑠
𝑒 

𝑉𝑠
𝑜 

+ 

− 

+ 

− 

+ 

− 
𝑉𝑠2 

𝑉𝑠
𝑒 

−𝑉𝑠
𝑜 
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Odd/Even Mode Analysis (contd.)  

• We then can analyze the even 
mode circuit: 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝐼1 𝐼2 

𝑉𝑠
𝑒 𝑉𝑠

𝑒 

• And then the odd mode 
circuit: 

100Ω 100Ω 

100Ω 100Ω 

100Ω 100Ω 

𝐼1 𝐼2 

−𝑉𝑠
𝑜 𝑉𝑠

𝑜 

And then combine these results in a linear superposition! 
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Odd/Even Mode Analysis (contd.)  
Q: What about current sources? Can I likewise consider them to be a sum of 
an odd mode source and an even mode source? 
A: Yes, but be very careful! The current of two source will add if they are 
placed in parallel—not in series! Therefore: 

1 2

2

e s s
s

I I
I




1 2

2

o s s
s

I I
I




𝐼𝑠1 𝐼𝑠
𝑜 𝐼𝑠

𝑒 𝐼𝑠2 −𝐼𝑠
𝑜 𝐼𝑠

𝑒 

• One final word (I promise!) about circuit symmetry and even/odd mode 
analysis: precisely the same concept exits in electronic circuit design! 

Specifically, the differential (odd) and common (even) 
mode analysis of bilaterally symmetric electronic circuits, 
such as differential amplifiers! 
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Example – 2  

• Carefully (very carefully) consider the symmetric circuit  below: 

4.0𝑉 𝑍0 = 50Ω 

𝑍0 = 50Ω 

50Ω 

50Ω 

50Ω 50Ω 

50Ω 

50Ω λ 

λ
2  

+ 

− 
𝑽𝟏 

Use odd-even mode analysis to determine the value 
of voltage 𝑽𝟏. 

HA#3 
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 Generalized Scattering Parameters  

4-port 
Linear 

Microwave 
Device 

1 1( )V z
3 3( )V z

2 2( )V z

4 4( )V z

Port-1 

Port-4 

Port-3 

Port-2 

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

04Z

03Z01Z

02Z

2 2( )V z

1 1( )V z 3 3( )V z

4 4( )V z

Consider now this microwave network: 

Boring! We studied this before; this 
will lead to the definition of 

scattering parameters, right? 

Not exactly. For this 
network, the 

characteristic impedance 
of each transmission line 
is different (i.e., Z01 ≠Z02 

≠Z03 ≠Z04)! 
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 Generalized Scattering Parameters (contd.)  

Yikes! You said scattering parameters are dependent on transmission line 
characteristic impedance Z0. If these values are different for each port, 

which Z0 do we use? 

For this general case, we must use generalized scattering parameters! 
First, we define a slightly new form of complex wave amplitudes 

0

n
n

n

V
a

Z




0

n
n

n

V
b

Z





• The key things to note are: 

variable a (e.g., a1,a2, …) denotes the complex amplitude of an 
incident (i.e., plus) wave. 

a 

variable b (e.g., a1,a2, …) denotes the complex amplitude of an 
exiting (i.e., minus) wave. 

b 
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 Generalized Scattering Parameters (contd.)  

We now get to rewrite all our transmission line 
knowledge in terms of these generalized complex 
amplitudes! 

• First, our two propagating wave amplitudes (i.e., plus and minus) are 
compactly written as: 

0n n nV a Z  0n n nV b Z 

• Therefore: 

0( ) . nj z

n n n nV z a Z e
  0( ) . nj z

n n n nV z b Z e
 

2
( ) nj zn

n

n

b

a
z e
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 Generalized Scattering Parameters (contd.)  

• Similarly, the total voltage, current, and impedance at the nth port are: 

 0( ) . n nj z j z

n n n n nV z Z a e b e
  

   

0

.
( )

n nj z j z

n n

n n

n

a e b e
I z

Z

  




.
( )

.

n n

n n

j z j z

n n
n j z j z

n n

a e b e
Z z

a e b e

 

 

 

 






• Assuming that our port planes are defined with znP = 0, we can 
determine the total voltage, current, and impedance at port n as: 

 0( 0)n n n n n nV V z Z a b  
 

0

( 0)
n n

n n n

n

a b
I I z

Z


 

( 0) n n
n n

n n

a b
Z Z z

a b
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 Generalized Scattering Parameters (contd.)  

• Similarly, the power associated with each wave is: 
2 2

02 2

n n

n

n

V a
P

Z



  

2 2

02 2

n n

n

n

V b
P

Z



  

• As such, the power delivered to port n (i.e., the power absorbed by port 
n) is: 

2 2

2

n n

n n n

a b
P P P 


  

So what’s the big deal? This is yet 
another way to express transmission 

line activity.  
Do we really need to know this, or is 
this simply a strategy for making the 

next quiz even harder? 
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 Generalized Scattering Parameters (contd.)  

• You may have noticed that this notation (an, bn) provides descriptions that 
are a bit “cleaner” and more symmetric between current and voltage. 

• However, the main reason for this notation is for evaluating the 
scattering parameters of a device with dissimilar transmission line 
impedance (e.g., Z01 ≠ Z02 ≠ Z03 ≠ Z04). 

• For these cases we must use generalized scattering parameters:  

0

0

nm
mn

n m

ZV
S

V Z




 when Vk

+(zk) = 0 for all k ≠ n) 
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 Generalized Scattering Parameters (contd.)  

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network 

01 50Z   02 50Z  

Port-1 Port-2 
Here, Z01 = Z02 

2
21

1

V
S

V




 when, V2

+ = 0 

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network 

01 50Z   02 75Z  

Port-1 Port-2 
Here, Z01 ≠ Z02 

2
21

1

V
S

V




 when, V2

+ = 0 

Instead 2
21

1

50

75

V
S

V




 when, V2

+ = 0 
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 Generalized Scattering Parameters (contd.)  
• Note that the generalized scattering parameters can be more compactly 

written in terms of our new wave amplitude notation: 

0

0

nm m

nm

n

n

m

Z

a

V

V Z

b
S




 when ak = 0 for all k ≠ n) 

Remember, this is the generalized form of scattering 
parameter—it always provides the correct answer, 

regardless of the values of Z0m or Z0n! 

• But why can’t we define the scattering parameter as Smn =Vm
−/Vn

+, 
regardless of Z0m or Z0n?? Who says we must define it with those awful 
Z0n values in there? 
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 Generalized Scattering Parameters (contd.)  

Recall that a lossless device will always have a unitary scattering 
matrix. As a result, the scattering parameters of a lossless device 

will always satisfy, for example: 
2

1

1
N

mn

m

S




This is true only if 
generalized scattering 
parameters are used 

The scattering parameters of a lossless 
device will form a unitary matrix only if 
defined as Smn = bm/an. If we use Smn = 

Vm
−/Vn

+, the matrix will be unitary only if 
the connecting transmission lines have the 

same characteristic impedance. 
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• Do we really care if the matrix of a lossless device is unitary or not? 

 Generalized Scattering Parameters (contd.)  

Absolutely! we do! 

lossless device ⇔ unitary scattering matrix 

This relationship is a very powerful one. It allows us to 
identify lossless devices, and it allows us to determine if 

specific lossless devices are even possible! 
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 Example – 3 
• let’s consider a perfect connector—an electrically very small two-port 

device that allows us to connect the ends of different transmission lines 
together. 

Determine the S-matrix of this ideal connector: 
1. First case: it connects two transmission lines with same characteristic 

impedance of 𝑍0. 
2. Second case: it connects two transmission lines with characteristic 

impedances of 𝑍01 and 𝑍02 respectively.  

HA#3 
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 Shifting of Planes  
• It is not often easy or feasible to match network ports for determination 

of S-parameters→ in such a situation S-parameters are determined 
through transmission lines of finite length  

• Let us consider a 2-port network to understand these situations 

1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
We can similarly define wave 

functions on the output  
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 Shifting of Planes (contd.) 

• The equations can be combined to form following matrix  

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at 
the network ports shifted by 

TL segments 

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at 
the network ports shifted by 

TL segments 

• We can also deduce that S-parameters are linked to the generalized 
coefficients an and bn  (which in turn can be expressed through voltages) 
through following expressions (if we assume Z01 = Z02) 

11 12

21 22

1

2 2

1V

V

V

S V

S S

S









  
 


  
  

  




  




Indraprastha Institute of 

Information Technology Delhi ECE321/521 

 Shifting of Planes (contd.) 
• Simplification of these three matrix expression results in: 

1 1 1 1

2 22 2

11 12

21

1

22

1

2 2

( )( )

( )

0

00)

0

(

j l
in

ou

j l

in

ou

l

l

t

j

t

j

VS S

S S

e

e

e

e

V l l

V lV l
 

 







 



   
 

  

  
 


 

 
 

 

 
 

    

S-parameters of the shifted network  [S]SHIFT 

 
1 1 2 2

1 1

1

2 2 2 2

1 ( )

(

11 12

21 2

2

2

2)

SH

j l

j l l

j l

FT

l

I
j lS e

e

S

S eS

e  

 





 

 





 
 

S

Physical Meaning 

The first term (S11) reveals that we have to take into account twice the travel 
time for the incident voltage to reach port-1 and, upon reflection, return to 
the end of the TL segment. Similarly for S22 at   port-2. The cross terms (S12 
and S21) require additive phase shifts associated with TL segments at port-1 

and port-2 
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 The Transmission Matrix 

• If a network has two ports, then we can alternatively define the 
voltages and currents at each port as: 

2V

1I

1V

2I

 



2-Port 
Network  

Input 
Port  

Output 
Port  

For such a network, we can relate the input port parameters  (I1 and 
V1) and output port parameters (I2 and V2) using transmission 

parameters also known as ABCD parameters  

1 2 2V AV BI 

1 2 2I CV DI 

21

21

A B V

I

V

C DI

 
 




 
 


 
 

Transmission 
Matrix ‘T’  
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 The Transmission Matrix (contd.) 

• Similar to the impedance and admittance matrices, we determine the 
elements of the transmission matrix using shorts and opens. 

• Note when I2 = 0  then: V1 =AV2  1

2

V
A

V
 A is unitless (i.e., it 

is a coefficient) 

• Note when V2 = 0  then: V1 =BI2  1

2

V
B

I
 B has unit of 

impedance (i.e., 
Ohms) 

• Note when I2 = 0  then: I1 =CV2  1

2

I
C

V
 C has unit of 

admittance (i.e., 
mhos) 

• Note when V2 = 0  then: I1 =DI2  1

2

I
D

I
 D is unitless (i.e., it 

is a coefficient) 
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 The Transmission Matrix (contd.) 

Crying out loud! We already have 
the impedance matrix, the 
scattering matrix, and the 

admittance matrix. Why do we 
need the transmission matrix? Is it 

somehow uniquely useful? 
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 The Transmission Matrix (contd.) 

• Let us consider the case where a 2-port network is created by connecting 
(i.e., cascading) two networks: 

T 

TA TB 

1I

1V




21

21

V V

II

 
 



 


 
 

AT
32

32

B

V V

I I

 



 
 


 


T
3

3

1

1

V

I

V

I

 


 
 
 

 
 

T
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 The Transmission Matrix (contd.) 

• Combining the first two equations we get: 
3

1

21

32

B

VV

I

V

I I

  
   



 
 

    
A A

T T T

• Combining this combined relationship to the third we get: 

2

1 3

1

32

3 3

B

V VV

II I

V

I

    
     

 

 
  

   
A A

T T T T

• Similarly, for N cascaded networks, the total transmission matrix T can 
be determined as the product of all N networks! 

• Note this result is only true for the transmission matrix T. No equivalent 
result exists for S ,Z ,Y ! 


N

1 2 3 N n
n=1

=TT T .............T = TT

BAT = T T

• Thus, the transmission matrix can greatly simplify the analysis of complex 
networks constructed from two-port devices. We find that the T matrix is 
particularly useful when creating design software for CAD applications. 


