HA \# 3

Part-1: Carefully (very carefully) consider the symmetric circuit below:

Use odd-even mode analysis to determine the value of voltage V_{1}.

HA \# 3

Part-2: let's consider a perfect connector-an electrically very small two-port device that allows us to connect the ends of different transmission lines together.

Determine the S-matrix of this ideal connector:

1. First case: it connects two transmission lines with same characteristic impedance of Z_{0}.
2. Second case: it connects two transmission lines with characteristic impedances of Z_{01} and Z_{02} respectively.

HA \# 3

Part-3: A four-port network has the scattering matrix shown as follows.

$$
[S]=\left[\begin{array}{cccc}
0.178 \angle 90^{\circ} & 0.6 \angle 45^{\circ} & 0.4 \angle 45^{\circ} & 0 \\
0.6 \angle 45^{\circ} & 0 & 0 & 0.3 \angle-45^{\circ} \\
0.4 \angle 45^{\circ} & 0 & 0 & 0.5 \angle-45^{\circ} \\
0 & 0.3 \angle-45^{\circ} & 0.5 \angle-45^{\circ} & 0
\end{array}\right] .
$$

(a) Is this network lossless? (b) Is this network reciprocal? (c) What is the return loss at port 1 when all other ports are terminated with matched loads? (d) What is the insertion loss and phase delay between ports 2 and 4 when all other ports are terminated with matched loads?

HA \# 3

Part-4: A certain three-port network is lossless and reciprocal, and has $S_{13}=S_{23}$ and $S_{11}=S_{22}$. Show that if port 2 is terminated with a matched load, then port 1 can be matched by placing an appropriate reactance at port 3.

