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Odd/Even Mode Analysis 

Q: Although symmetric circuits appear to be plentiful in microwave engineering, it
seems unlikely that we would often encounter symmetric sources . Do virtual shorts
and opens typically ever occur?
A: One word—superposition!

If the elements of our circuit are independent and linear, we can apply superposition 
to analyze symmetric circuits when non-symmetric sources are attached.
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• For example, we wish to determine
the admittance matrix of this
circuit. We would place a voltage
source at port 1, and a short circuit
at port 2—a set of asymmetric
sources if there ever was one!

Odd/Even Mode Analysis (contd.) 

• Here’s the really neat part. Actually the source on port 1 can be modelled as two
equal voltage sources in series, whereas the source at port 2 can be modelled as
two equal but opposite sources in series.
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Odd/Even Mode Analysis (contd.) 

• Therefore an equivalent
circuit is:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

• the above circuit (due to the
sources) is obviously asymmetric—
no virtual ground, nor virtual short
is present. But, let’s say we turn off
(i.e., set to V =0) the bottom source
on each side of the circuit:
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100Ω 100Ω

100Ω 100Ω
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2

𝑉𝑠
2

𝐼1 𝐼2

Our symmetry has been restored! The symmetry plane is a virtual open.

• The circuit is referred to as its even mode, and analysis of it is known as the even
mode analysis. The solutions are known as the even mode currents and voltages!
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Odd/Even Mode Analysis (contd.) 

• Evaluating the resulting even
mode half circuit we find:

𝐼1
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• Now, let’s turn the bottom sources back on—but turn off the top two!
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• We now have a circuit with odd
symmetry—the symmetry plane is
a virtual short!

This circuit is referred to as its odd 
mode, and analysis of it is known as 

the odd mode analysis. 
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Odd/Even Mode Analysis (contd.) 

𝑉𝑠
2

• Evaluating the resulting odd mode half
circuit we find:
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Q: But what good is this “even mode” and “odd mode” analysis? After all, the source
on port 1 is 𝑉𝑠1 = 𝑉𝑠, and the source on port 2 is 𝑉𝑠2 = 0. What are the currents 𝐼1 =
𝐼2 for these sources?
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A: Recall that these sources are the sum of the even and odd mode sources:

• and thus—since all the devices in the circuit are linear—we know
from superposition that the currents 𝐼1 and 𝐼2 are simply the sum
of the odd and even mode currents !
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Odd/Even Mode Analysis (contd.) 

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 = 𝐼1
𝑒 + 𝐼1

𝑜
𝐼2 = 𝐼2

𝑒 + 𝐼2
𝑜

• Thus, adding the odd and even
mode analysis results together:
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• And then the admittance parameters for this two port network is:

2

1
11 0

1

1 1
|

80 80s

s
V

s s

I V
y

V V
  

2

2
21 0

1

3 1 3
|

400 400s

s
V

s s

I V
y

V V



   

• And from the symmetry of the device we know:
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• Thus, the full admittance matrix is: 𝑌 =
1/80 −3/400

−3/400 1/80
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Odd/Even Mode Analysis (contd.) 

Q: What happens if both sources are
non-zero? Can we use symmetry then?

• In this case we can define an even
mode and an odd mode source as:
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A: Absolutely! Consider this problem,
where neither source is equal to zero:
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Odd/Even Mode Analysis (contd.) 

• We can then analyze the even
mode circuit:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

𝑉𝑠
𝑒 𝑉𝑠

𝑒

• And then the odd mode circuit:
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−𝑉𝑠
𝑜𝑉𝑠
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And then combine these results in a linear superposition!
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Odd/Even Mode Analysis (contd.) 
Q: What about current sources? Can I likewise consider them to be a sum of an odd
mode source and an even mode source?

𝐼𝑠1 𝐼𝑠
𝑜 𝐼𝑠

𝑒
𝐼𝑠2 −𝐼𝑠

𝑜 𝐼𝑠
𝑒

• One final word (I promise!) about circuit symmetry and even/odd mode analysis:
precisely the same concept exits in electronic circuit design!

Specifically, the differential (odd) and common (even) mode analysis
of bilaterally symmetric electronic circuits, such as differential
amplifiers!
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A: Yes, but be very careful! The current of
two source will add if they are placed in
parallel—not in series! Therefore:
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Example – 1 

• Carefully (very carefully) consider the symmetric circuit below:

4.0𝑉 𝑍0 = 50Ω

𝑍0 = 50Ω

50Ω

50Ω

50Ω50Ω

50Ω

50Ω λ

 λ 2

+

−
𝑽𝟏

Use odd-even mode analysis to determine the value 
of voltage 𝑽𝟏.
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Generalized Scattering Parameters 

4-port 
Linear 

Microwave 
Device

1 1( )V z
3 3( )V z

2 2( )V z

4 4( )V z

Port-1

Port-4

Port-3

Port-2

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

04Z

03Z01Z

02Z

2 2( )V z

1 1( )V z 3 3( )V z

4 4( )V z

Consider now this microwave network:

Boring! We studied this before; this 
will lead to the definition of scattering 

parameters, right?

Not exactly. For this 
network, the characteristic 

impedance of each 
transmission line is different

(i.e., Z01 ≠Z02 ≠Z03 ≠Z04)!
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Generalized Scattering Parameters (contd.) 

Yikes! You said the s-parameters are dependent on transmission line characteristic 
impedance Z0. If these values are different for each port, which Z0 do we use?

For this general case, we must use generalized scattering parameters! First, 
we define a slightly new form of complex wave amplitudes

0

n
n

n

V
a

Z




0

n
n

n

V
b

Z





• The key things to note are:

variable a (e.g., a1,a2, …) denotes the complex amplitude of an incident (i.e.,
plus) wave.a

variable b (e.g., a1,a2, …) denotes the complex amplitude of an exiting (i.e.,
minus) wave.b

We now get to rewrite all our transmission line knowledge in
terms of these generalized complex amplitudes!
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Generalized Scattering Parameters (contd.) 

• First, our two propagating wave amplitudes
(i.e., plus and minus) are compactly written as: 0n n nV a Z  0n n nV b Z 

• Therefore: 0( ) . nj z

n n n nV z a Z e
  0( ) . nj z

n n n nV z b Z e
 

2
( ) nj zn

n

n

b

a
z e


 

• Similarly, the total voltage, current, and 
impedance at the nth port are:  0( ) . n nj z j z

n n n n nV z Z a e b e
  

 

 

0

.
( )

n nj z j z

n n

n n

n

a e b e
I z

Z

  



.

( )
.

n n

n n

j z j z

n n
n j z j z

n n

a e b e
Z z

a e b e

 

 

 

 






• Assuming that our port planes are defined with
znP = 0, we can determine the total voltage,
current, and impedance at port n as:

 0( 0)n n n n n nV V z Z a b  

 

0

( 0)
n n

n n n

n

a b
I I z

Z


  ( 0) n n

n n

n n

a b
Z Z z

a b


 


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Generalized Scattering Parameters (contd.) 

• Similarly, the power associated
with each wave is:

2 2

02 2

n n

n

n

V a
P

Z


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2 2

02 2

n n

n

n

V b
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Z



  

• As such, the power delivered to port n
(i.e., the power absorbed by port n) is:

2 2

2

n n

n n n

a b
P P P 


  

So what’s the big deal? This is yet another 
way to express transmission line activity. 

Do we really need to know this, or is this simply a 
strategy for making the next quiz even harder?

• You may have noticed that this notation (an, bn) provides descriptions that are a
bit “cleaner” and more symmetric between current and voltage.

• However, the main reason for this notation is for evaluating the scattering
parameters of a device with dissimilar transmission line impedance (e.g., Z01 ≠
Z02 ≠ Z03 ≠ Z04).
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Generalized Scattering Parameters (contd.) 

0

0

nm
mn

n m

ZV
S

V Z






when Vk
+(zk) = 0 for 

all k ≠ n)
• For these cases we must use

generalized scattering parameters:

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network

01 50Z   02 50Z  

Port-1 Port-2 Here, Z01 = Z02

2
21

1

V
S

V




 when, V2

+ = 0

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network

01 50Z   02 75Z  

Port-1 Port-2

Here, Z01 ≠ Z02

2
21

1

V
S

V




 when, V2

+ = 0

Instead
2

21

1

50

75

V
S

V




 when, V2

+ = 0
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Generalized Scattering Parameters (contd.) 

• generalized s-parameters can be more
compactly written in terms of our new
wave amplitude notation:

0

0

nm m

nm

n

n

m

Z

a

V

V Z

b
S






when ak = 0 
for all k ≠ n)

generalized form of scattering parameter—always provides the correct 
answer, regardless of the values of Z0m or Z0n!

• But why can’t we define the scattering parameter as Smn =Vm
−/Vn

+, regardless of
Z0m or Z0n?? Who says we must define it with those awful Z0n values in there?

Recall that a lossless device will always have a unitary scattering matrix. As a result, 
the scattering parameters of a lossless device will always satisfy, for example:

2

1

1
N

mn

m

S




This is true only if 
generalized scattering 
parameters are used

The scattering parameters of a lossless device will 
form a unitary matrix only if defined as Smn = 

bm/an. If we use Smn = Vm
−/Vn

+, the matrix will be 
unitary only if the connecting transmission lines 

have the same characteristic impedance.
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• Do we really care if the matrix of a lossless device is unitary or not?

Generalized Scattering Parameters (contd.) 

Absolutely! we do!

This relationship is a very powerful one. It allows us to identify lossless devices, 
and it allows us to determine if specific lossless devices are even possible!

lossless device ⇔ unitary scattering matrix

Example – 2

• let’s consider a perfect connector—an electrically very small
two-port device that allows us to connect the ends of different
transmission lines together.

Determine the S-matrix of this ideal connector:
1. First case: it connects two transmission lines with same characteristic

impedance of 𝑍0.
2. Second case: it connects two transmission lines with characteristic impedances

of 𝑍01 and 𝑍02 respectively.
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Shifting of Planes 
• It is not often easy or feasible to match network ports for determination of S-

parameters→ in such a situation S-parameters are determined through
transmission lines of finite length.

• Let us consider a 2-port network to understand these situations.

1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
We can similarly define wave 

functions on the output 
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Shifting of Planes (contd.)
• The equations can be combined to form following matrix 

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at the 
network ports shifted by TL 

segments

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at the 
network ports shifted by TL 

segments
• We can also deduce that S-parameters are linked to the

generalized coefficients an and bn (which in turn can be
expressed through voltages) through following
expressions (if we assume Z01 = Z02)

11 12

21 22

1

2 2

1V

V

V

S V

S S

S









  
 


  
  

  




  


• Simplification of these three matrix expression results in:
1 1 1 1

2 22 2

11 12

21

1

22

1

2 2

( )( )

( )

0

00)

0

(

j l
in

ou

j l

in

ou

l

l

t

j

t

j

VS S

S S

e

e

e

e

V l l

V lV l
 

 







 



   
 

  

  
 


 

 
 

 

 
 

    

S-parameters of the shifted network  [S]SHIFT
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Shifting of Planes (contd.)

 
1 1 2 2

1 1

1

2 2 2 2

1 ( )

(

11 12

21 2

2

2

2)

SH

j l

j l l

j l

FT

l

I
j lS e

e

S

S eS

e  

 





 

 





 
 

S Physical Meaning

The first term (S11) reveals that we have to take into account twice the travel time for 
the incident voltage to reach port-1 and, upon reflection, return to the end of the TL 

segment. Similarly for S22 at   port-2. The cross terms (S12 and S21) require additive 
phase shifts associated with TL segments at port-1 and port-2

The Transmission Matrix

2V

1I

1V

2I

 



2-Port 
Network 

Input 
Port 

Output 
Port 

• If a network has two
ports, then we can
alternatively define the
voltages and currents at
each port as:

For such network, we relate the i/p port parameters  (I1 and V1) and o/p port 
parameters (I2 and V2) using transmission parameters also known as ABCD parameters 
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1 2 2V AV BI 

1 2 2I CV DI 

21

21

A B V

I

V

C DI

 
 




 
 


 
 

Transmission 
Matrix ‘T’ 

The Transmission Matrix (contd.)

• Similar to the impedance and admittance matrices, we determine the elements
of the transmission matrix using shorts and opens.

• Note when I2 = 0 then: V1 =AV2
1

2

V
A

V
 A is unitless (i.e., it is 

a coefficient)

• Note when V2 = 0 then: V1 =BI2
1

2

V
B

I


B has unit of 
impedance (i.e., Ohms)

• Note when I2 = 0 then: I1 =CV2
1

2

I
C

V


C has unit of 
admittance (i.e., mhos)

• Note when V2 = 0 then: I1 =DI2
1

2

I
D

I


D is unitless (i.e., it is 
a coefficient)
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The Transmission Matrix (contd.)

Crying out loud! We already have the 
impedance matrix, the scattering 

matrix, and the admittance matrix. Why 
do we need the transmission matrix? Is 

it somehow uniquely useful?

• Let us consider the
case where a 2-port
network is created
by connecting (i.e.,
cascading) two
networks: T

TA TB

1I

1V




21

21

V V

II

 
 



 


 
 

A
T

32

32

B

V V

I I

 



 
 


 


T
3

3

1

1

V

I

V

I

 


 
 
 

 
 

T
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The Transmission Matrix (contd.)
• Combining the first two equations we get:

3

1

21

32

B

VV

I

V

I I

  
   



 
 

    
A AT T T

• Combining this combined relationship to the third we get:

2

1 3

1

32

3 3

B

V VV

II I

V

I

    
     

 

 
  

   
A AT T T T

• Note this result is only true for the transmission matrix T. No equivalent result
exists for S ,Z ,Y !

• Similarly, for N cascaded networks, the total
transmission matrix T can be determined as
the product of all N networks!


N

1 2 3 N n
n=1

= TT T .............T = TT

BAT = T T

• Thus, the transmission matrix can greatly simplify the analysis of complex
networks constructed from two-port devices. We find that the T matrix is
particularly useful when creating design software for CAD applications.


