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• Admittance Smith Chart 
• High Frequency Network Analysis (intro) 
• Impedance, Admittance and Scattering Matrix 
• Matched, Lossless, and Reciprocal Networks 
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Admittance Transformation

• RF/Microwave network, similar to any electrical network, has impedance elements
in series and parallel

• Impedance Smith chart is well suited while working with series configurations
while admittance Smith chart is more useful for parallel configurations

• The impedance Smith chart can easily be used as an admittance calculator
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It means, to obtain normalized admittance → take the normalized impedance
and multiply associated reflection coefficient by -1 = e-jπ → it is equivalent to
a 180⁰ rotation of the reflection coefficient in complex Γ-plane
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Example – 1 
• Convert the following normalized input impedance 𝑧𝑖𝑛

′ into normalized
input admittance 𝑦𝑖𝑛

′ using the Smith chart:

' ( /4)1 1 2 j

inz j e   

First approach: The normalized admittance can be found by direct inversion as:

' ( /4)
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Alternative approach:

• Mark the normalized impedance on Smith chart 
• Identify phase angle and magnitude of the associated reflection coefficient 
• Rotate the reflection coefficient by 180⁰
• Identify the x-circle and r-circle intersection of the rotated reflection

coefficient
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Example – 1 (contd.) Normalized 
impedance (zin’) is the 
intersection of r-circle
of 1 and x-circle of 1

Rotate this by 180⁰ 
to obtain normalized 

admittance

Quick investigation 
shows that the 

normalized 
impedance (yin’ ) is 
the intersection of 
r-circle of 1/2  and 

x-circle of -1/2

To denormalize, multiply 
with the inverse of Z0. 

' '

0

0

1
in in inY y Y y

Z
 
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Example – 2

• Find the normalized admittance l/8 away from the load

' 1 2  inz j Given:

1. Mark the normalized impedance on Smith Chart
2. Clockwise rotate it by 180⁰
3. Identify the normalized admittance and the phase angle of the

associated reflection coefficient
4. Clockwise rotate the reflection coefficient (associated with the

normalized admittance) by 2βl (here l = λ/8)
5. The new location gives the required normalized admittance

Steps:
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Example – 2 (contd.) 

' 0.2 .4 0iny j 

' 1 2  inz j 
' 0.20 0.40 iny j 

2 4
l

l 
l

 
  

 

Clockwise rotation by

o/ 8 2 90l ll   

180⁰ clockwise 
rotation
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Admittance Smith chart

• Alternative approach to solve parallel network elements is through 180⁰
rotated Smith chart

• This rotated Smith chart is called admittance Smith chart or Y-Smith chart
• The corresponding normalized resistances become normalized

conductances & normalized reactances become normalized suceptances
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X b
x b Z B

Z Y
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• The Y-Smith chart preserves:
• The direction in which the angle of the reflection coefficient is

measured
• The direction of rotation (either toward or away from the generator)
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Admittance Smith chart (contd.)

Open Circuit

Short Circuit

Negative Values of 
Suceptances 

→Inductive Behavior

Positive Values of 
Suceptances
→Capacitive 

Behavior

Real Component of Admittances 
Decrease from Left to Right

Angle of reflection 
coefficient

In this chart, admittance is represented in exactly the 
same manner as the impedance in the Z-smith Chart  

→ without 180⁰ rotation
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Combined Z- and Y- Smith Charts 

Red: Z – Smith Chart

Blue: Y – Smith Chart
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Example – 3
• Identify (a) the normalized impedance z’ = 0.5 + j0.5, and (b) the normalized

admittance value y’ = 1 + j2 in the combined ZY-Smith Chart and find the
corresponding values of normalized admittance and impedance

' 0.5 0.5z j 

' 1 2y j 

' 1 1y j 

' 0.2 0.4z j 
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• Requirement of Matrix Formulation

directional coupler
(more than one port)

Current/Voltage   or  
Incident/Reflected 

Traveling Wave

Current/Voltage   or  
Incident/Reflected 

Traveling Wave

NO!!

What is the way? 
Impedance or Admittance Matrix. Right?

In principle, N by N impedance matrix completely characterizes a linear N-
port device. Effectively, the impedance matrix defines a multi-port device the 

way a ZL describes a single port device (e.g., a load) 

Linear networks can be completely characterized by parameters measured at 
the network ports without knowing the content of the networks.

High Frequency Networks

These are called 
networks Can we characterize this 

using an impedance or 
admittance!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Multiport Networks

• Networks can have any number of ports – however, analysis of a 2-port,
3-port or 4-port network is sufficient to explain the theory and the
associated concepts

2 Port
NetworkP

o
rt

 1

I1

 

+

-

V1

P
o

rt 2

I2

 

+

-

V2

• The ports can be characterized with many parameters (Z, Y, S, ABCD). Each
has a specific advantage.

• For 2-port Network, each parameter set is related to 4 variables:
o 2 independent variables for excitation
o 2 dependent variables for response
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The Impedance Matrix
• Let us consider the following 4-port network:

4-port 
Linear 

Microwave 
Network

1 1( )V z




3 3( )V z





4 4( )V z

 

2 2( )V z

 

1 1( )I z
3 3( )I z

2 2( )I z

4 4( )I z

Port-1

Port-4

Port-3

Port-2

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

0Z

0Z0Z

0Z

Either way, the 
network can be fully 

described by its 
impedance matrix

Each TL has 
specific location 

that defines input 
impedances to 

the network
The arbitrary locations are known as ports of the network 

This could be a 
simple linear device 
or a large/complex 
linear microwave 

system

Four identical TLs 
used to connect 

this network to the 
outside world
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The Impedance Matrix (contd.)
• In principle, the current and voltages at

the port-n of networks are given as:

• In order to define the elements of impedance matrix, there will be
need to measure/determine the associated voltages and currents at
the respective ports. Suppose, if we measure/determine current at
port-1 and then voltage at port-2 then we can define:

2
21

1

V
Z

I


Trans-impedance 

( )n n nPV z z ( )n n nPI z z

• However, the simplified
formulations are:

( )n n n nPV V z z  ( )n n n nPI I z z 

• If we want to say that there exists a non-zero
current at port-1 and zero current at all other
ports then we can write as:

1 0I 
2 3 4 0I I I  

• Similarly, the trans-impedance
parameters Z31 and Z41 are:

3
31

1

V
Z

I


4
41

1

V
Z

I


• We can also define other trans-impedance parameters such as Z34 as the ratio
between the complex values I4 (the current into port-4) and V3 (the voltage at
port-3), given that the currents at all other ports (1, 2, and 3) are zero.
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The Impedance Matrix (contd.)

How do we ensure that all but one port current is zero? 

• Therefore, the more generic
form of trans-impedance is:

m
mn

n

V
Z

I
 (given that Ik = 0 for all k≠n)

4-port Linear 
Microwave 

Network

0Z

0Z0Z

0Z

1V





1I

Port-1

4V 4 0I  Port-4

3V





3 0I 

Port-3

2V 

2 0I  Port-2• Open the ports
where the current
needs to be zero:

The ports should 
be opened! not

the TL connected 
to the ports

• then define the respective
trans-impedances as:

m
mn

n

V
Z

I
 (given that all ports k≠n are open)
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The Impedance Matrix (contd.)
• Once we have defined the trans-impedance terms by opening various ports, it is

time to formulate the impedance matrix
• Since the network is linear, the voltage at any port due to all the port currents is

simply the coherent sum of the voltage at that port due to each of the currents

1

N

m mn n

n

V Z I



• Therefore we can generalize the

voltage for N-port network as:
V = ZI

• Where I and V are
vectors given as:

 1 2 3 NV , V , V , ...., VV =
T

 1 2 3 NI , I , I , ...., II =
T

3 34 4 33 3 32 2 31 1V Z I Z I Z I Z I   • For example, the voltage at port-3 is:

• The term Z is matrix given by:

11 12 1

21

1 2

n

m m mn

Z Z Z

Z

Z Z Z

 
 
 
 
 
 

Z Impedance Matrix

• The values of elements in the impedance
matrix are frequency dependents and often it
is advisable to describe impedance matrix as:

11 12 1

21

1 2

( ) ( ) ( )

( )

( ) ( ) ( )

n

m m mn

Z Z Z

Z

Z Z Z

  




  

 
 
 
 
 
 

Z( )
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The Admittance Matrix

4-port Linear 
Microwave 

Network1 1( )V z




3 3( )V z





4 4( )V z

 

2 2( )V z

 

1 1( )I z
3 3( )I z

2 2( )I z

4 4( )I z

Port-1

Port-4

Port-3

Port-2

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

0Z

0Z0Z

0Z

This can be 
characterized using 

admittance matrix – if 
currents are taken as 
dependent variables 
instead of voltages  

The elements of admittance 
matrix are called trans-

admittance parameters Ymn

• Let us consider
the 4-port
network again:

• The trans-admittances
Ymn are defined as:

m
mn

n

I
Y

V


(given that Vk

= 0 for all k ≠ 

n)

1
mn

mn

Y
Z

Important:
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4-port Linear 
Microwave 

Network

0Z

0Z0Z

0Z

1V





1I

Port-1

4 0V 
4I Port-4

3 0V 

3I

Port-3

2 0V 
2I Port-2• the voltage at all but one port

must be equal to zero. This can
be ensured by short-circuiting
the voltage ports.

The Admittance Matrix (contd.)

The ports should be short-
circuited! not the TL 

connected to the ports

• Now, since the network is linear, the current at any one port due to all the port
voltages is simply the coherent sum of the currents at that port due to each of
the port voltages.

• For example, the current at port-3 is:
3 34 4 33 3 32 2 31 1I Y V Y V Y V Y V   

• Therefore we can generalize the
current for N-port network as:

1

N

m mn n

n

I Y V


 I = YV
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The Admittance Matrix (contd.)
• Where I and V are

vectors given as:
 1 2 3 NV , V , V , ...., VV =

T

 1 2 3 NI , I , I , ...., II =
T

• The term Y is matrix given by:

11 12 1

21

1 2

n

m m mn

Y Y Y

Y

Y Y Y

 
 
 
 
 
 

Y

Admittance Matrix

• The values of elements in the admittance
matrix are frequency dependents and
often it is advisable to describe
admittance matrix as:

11 12 1

21

1 2

( ) ( ) ( )

( )

( ) ( ) ( )

n

m m mn

Y Y Y

Y

Y Y Y

  




  

 
 
 
 
 
 

Y( )

Is there any relationship between 
admittance and impedance matrix of a 

given device?

You said that:              
1

mn

mn

Y
Z



Answer: Let us see if
we can figure it out!
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The Admittance Matrix (contd.)
• Recall that we can determine the inverse of a matrix. Denoting

the matrix inverse of the admittance matrix as Y−1, we find: I = YV

 1 1
Y I = Y YV

   1 1
Y I = Y Y V

  1
Y I = V



• We also know: V = ZI 1
Z = Y

 1
Y Z OR

Reciprocal and Lossless Networks

• We can classify multi-port devices or networks as either lossless or lossy;
reciprocal or non-reciprocal. Let’s look at each classification individually.

Lossless Network

• A lossless network/device is simply one that cannot absorb power. This does not
mean that the delivered power at every port is zero; rather, it means the total
power flowing into the device must equal the total power exiting the device.

• A lossless device exhibits an impedance matrix with an interesting
property. Perhaps not surprisingly, we find for a lossless device
that the elements of its impedance matrix will be purely reactive:

Re( ) 0mnZ 

For a lossless 
device



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Reciprocal and Lossless Networks

• If the device is lossy, then the elements of the impedance matrix must have at
least one element with a real (i.e., resistive) component.

• Furthermore, we can similarly say that if the elements of an admittance matrix are
all purely imaginary (i.e., Re{Ymn} =0), then the device is lossless.

Reciprocal Network

• Ideally, most passive, linear microwave components will turn out to be
reciprocal—regardless of whether the designer intended it to be or not!

• Reciprocity is a tremendously important characteristic, as it greatly simplifies an
impedance or admittance matrix!

• Specifically, we find that a reciprocal device will result in a symmetric impedance
and admittance matrix, meaning that:

mn nmZ Z For a reciprocal device
mn nmY Y

• For example, we find for a reciprocal device that Z23 =Z32, and Y12 =Y21.
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Reciprocal and Lossless Networks (contd.)

Z=
𝑗2 0.1 𝑗3
−𝑗 −1 1
4 −2 0.5

Z=

𝑗2 −𝑗 4
−𝑗 −1 −𝑗2
4 −𝑗2 𝑗0.5

Z=

𝑗2 𝑗0.1 𝑗3
−𝑗 −𝑗1 𝑗1
𝑗4 −𝑗2 𝑗0.5

Z=

𝑗2 −𝑗 𝑗4
−𝑗 −𝑗 −𝑗2
𝑗4 −𝑗2 𝑗0.5

neither 
lossless nor 
reciprocal

lossless, 
but not 

reciprocal

reciprocal, 
but not 
lossless

lossless 
and 

reciprocal



β, Z0
β, Z0




1V 2V2R

R

1I 2IExample – 4 
• determine 

the Y matrix 
of this two-
port device.
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Step-1: Place a short at port 2



β, Z0




1V 2 0V 2R

R

1I 2I

Example – 4 (contd.) 

Step-2: Determine currents I1 and I2

• Note that after the short was placed at port 2, both resistors are in
parallel, with a potential V1 across each

1 1 1
1

3

2 2

V V V
I

R R R
  

Therefore current I1 is

• The current I2 equals the portion of current I1 through R but with
opposite sign

1
2

V
I

R
 
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Example – 4 (contd.) 

Step-3: Determine the trans-admittances Y11 and Y21

1
11

1

3

2

I
Y

V R
  2

21

1

1I
Y

V R
  

Note that Y21 is real and negative

To find the other two trans-admittance parameters, we must move
the short and then repeat each of our previous steps!

This is still a valid physical result, although you will find that the diagonal
terms of an impedance or admittance matrix (e.g., Y22 , Z11, Y44) will always

have a real component that is positive
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Example – 4 (contd.) 
 


1 0V  2V2R

R

1I 2I

Step-1:

Place a short at port 1

Step-2: Determine currents I1 and I2

• Note that after a short was placed at port 1, resistor 2R has zero voltage
across it—and thus zero current through it!

Therefore: 2
2

V
I

R


2
1 2

V
I I

R
   

Step-3:

Determine the trans-admittances Y12 and Y22 

1
12

2

1I
Y

V R
   2

22

2

1I
Y

V R
 

Therefore the admittance matrix is: Y=
3/2𝑅 −1/𝑅
−1/𝑅 1/𝑅

Is it lossless 
or reciprocal?
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Example – 5 𝐼1 𝐼2

𝐼3

1

1

16 𝑉1
+

−
𝑉2
+

−

𝑉3+ −

• Consider this circuit:

• Where the 3-port device is
characterized by the
impedance matrix:

Z=
2 1 2
1 1 4
2 4 1

• determine all port voltages V1, V2, V3 and all currents I1, I2, I3.
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Scattering Matrix

• At “low” frequencies, a linear device or network can be fully characterized
using an impedance or admittance matrix, which relates the currents and
voltages at each device terminal to the currents and voltages at all other
terminals.

• But, at high frequencies, it is not feasible to measure total currents and
voltages!

• Instead, we can measure the magnitude and phase of each of the two
transmission line waves V+(z) and V−(z) → enables determination of

relationship between the incident and reflected waves at each
device terminal to the incident and reflected waves at all other
terminals

• These relationships are completely represented by the scattering matrix
that completely describes the behavior of a linear, multi-port device at a
given frequency ω, and a given line impedance Z0
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Scattering Matrix (contd.)

4-port 
Linear 

Microwave 
Network

1 1( )V z
3 3( )V z

2 2( )V z

4 4( )V z

Port-1

Port-4

Port-3

Port-2

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

0Z

0Z0Z

0Z

2 2( )V z

1 1( )V z 3 3( )V z

4 4( )V z

Viewing transmission line
activity this way, we can fully
characterize a multi-port
device by its scattering
parameters!

Note that we have now
characterized transmission line
activity in terms of incident and
“reflected” waves. The negative
going “reflected” waves can be
viewed as the waves exiting the
multi-port network or device.
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Scattering Matrix (contd.)
• Say there exists an incident wave on port 1 (i.e., V1

+ (z1) ≠ 0), while the incident
waves on all other ports are known to be zero (i.e., V2

+(z2) =V3
+(z3) =V4

+(z4) =0).

The ratio between V1
+(z1 = z1P) and V2

−(z2 = z2P) is known as the scattering parameter S21

Say we measure/determine the voltage of the
wave flowing into port 1, at the port 1 plane (i.e.,
determine V1

+(z1 = z1P)).

1 1( )V z

1 1Pz z





1 1 1( )PV z z 
0Z

Say we then measure/determine the voltage of
the wave flowing out of port 2, at the port 2
plane (i.e., determine V2

−(z2 =z2P)).

2 2( )V z

2 2Pz z

0Z




2 2 2( )PV z z 

Therefore:
 

2

2 1

1

2 2 2 2 2
21

1 1 1 1 1

( )

( )

P

P P

P

j z
j z zP

j z

P

V z z V e V
S e

V z z V e V






  
 

  


  


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Scattering Matrix (contd.)

Similarly: 3 3 3
31

1 1 1

( )

( )

P

P

V z z
S

V z z










4 4 4
41

1 1 1

( )

( )

P

P

V z z
S

V z z










• We of course could also define, say, scattering parameter S34 as the ratio
between the complex values V3

−(z3 = z3P) (the wave out of port 3) and V4
+(z4 = z4P)

(the wave into port 4), given that the input to all other ports (1,2, and 3) are zero

( )

( )

m m mP
mn

n n nP

V z z
S

V z z









( ) 0k kV z  for all  k ≠ n

• more generally, the ratio of the
wave incident on port n to the
wave emerging from port m is:

• Note that, frequently the port positions are
assigned a zero value (e.g., z1P=0, z2P=0). This
simplifies the scattering parameter calculation:

0

0

( 0)

( 0)

j

m m m m
mn j

n n n n

V z V e V
S

V z V e V





   

   


  



• We will generally assume that the port locations are
defined as znP=0, and thus use the above notation. But
remember where this expression came from!
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4-port 
Linear 

Microwave 
Network

1 1( )V z
3 3( )V z

2 2( )V z

4 4( ) 0V z 

0Z

0Z0Z

0Z 2 2( ) 0V z 

1 1( )V z

3 3( ) 0V z 

4 4( )V z

 0 3
0 

 0 2
0 

 0 4
0 

Scattering Matrix (contd.) 

• if ports are
terminated in a
matched load (i.e., ZL

=Z0), then (Γ0)n = 0:
( ) 0n nV z 

In other words, terminating a 
port ensures that there will be 
no signal incident on that port!

Q: How do we ensure that only 
one incident wave is non-zero ?
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Scattering Matrix (contd.) 

V−(z) = 0 
if   Γ0 = 0

Just between you and me, I 
think you’ve messed this up! In 
all previous slides you said that 
if Γ0 = 0 , the wave in the minus 
direction would be zero:

but just now you said that 
the wave in the positive 
direction would be zero:

V+(z) = 0 
if   Γ0 = 0

Obviously, there is no way that both statements can be correct!

Actually, both statements are correct! You must be careful to understand the 
physical definitions of the plus and minus directions—in other words, the 

propagation directions of waves Vn
+ (zn) and Vn

− (zn)!
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Scattering Matrix (contd.) 

• For example, we
originally analyzed
this case:

1 1( )V z

1 1( )V z
0

V−(z ) = 0 
if     Γ0 = 0

0Z

• Contrast this with the case
we are now considering:

n-port Linear 
Microwave 

Network

( )n nV z

( )n nV z

0Z
 0 n


In this original case, the wave incident on the load is V+(z) (plus direction), while 
the reflected wave is V−(z) (minus direction).

• For this current case, the situation is reversed. The wave incident on the load is
now denoted as Vn

−(zn) (coming out of port n), while the wave reflected off the
load is now denoted as Vn

+(zn) (going into port n ).
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Scattering Matrix (contd.) 

• back to our discussion of S-parameters. We found
that if znP = 0 for all ports n, the scattering
parameters could be directly written in terms of
wave amplitudes Vn

+ and Vm
−

m
mn

n

V
S

V




 ( ) 0k kV z 

for all  k ≠ n

• Which we can now equivalently state as:

m
mn

n

V
S

V




 (all ports, except port n, are terminated in matched loads)

• One more important note—notice that for the ports terminated in matched
loads (i.e., those ports with no incident wave), the voltage of the exiting wave is
also the total voltage!

( ) 0m m m mj z j z j z j z

m m m m m mV z V e V e V e V e
             

For all 
terminated 

ports!
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Scattering Matrix (contd.) 
• We can use the scattering matrix to determine the solution for a more general

circuit—one where the ports are not terminated in matched loads!
• Since the device is linear, we can apply superposition. The output at any port

due to all the incident waves is simply the coherent sum of the output at that
port due to each wave!

• More generally, the output at 
port m of an N-port device is:

1

N

m mn n

n

V S V 



 znP = 0 

3 34 4 33 3 32 2 31 1V S V S V S V S V       
• For example, the output wave at port 3 can

be determined by (assuming znP = 0 ):

• This expression of Scattering parameter
can be written in matrix form as:

- +V = SV

- +V = SV

Scattering Matrix

11 12 1

21

1 2

n

m m mn

S S S

S

S S S

 
 
 
 
 
 

S
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Scattering Matrix (contd.) 
• The scattering matrix is N by N matrix that completely characterizes a linear, N-

port device. Effectively, the scattering matrix describes a multi-port device the
way that Γ0 describes a single-port device (e.g., a load)!

• The values of the scattering matrix for a
particular device or network, like Γ0, are
frequency dependent! Thus, it may be
more instructive to explicitly write:

11 12 1

21

1 2

( ) ( ) ( )

( )

( ) ( ) ( )

n

m m mn

S S S

S

S S S

  




  

 
 
 
 
 
 

S( )

• Also realize that—also just like Γ0—the scattering matrix is dependent on both
the device/network and the Z0 value of the TL connected to it.

• Thus, a device connected to transmission lines with Z0 =50Ω will have a
completely different scattering matrix than that same device connected to
transmission lines with Z0 =100Ω

• A device can be lossless or reciprocal. In addition, we can also classify it as being
matched.

• Let’s examine each of these three characteristics, and how they relate to the
scattering matrix.


