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Smith Chart 
• Smith chart – what?
• The Smith chart is a very convenient graphical tool for analyzing and

studying TLs behavior.
• It is mapping of impedance in standard complex plane into a suitable

complex reflection coefficient plane.
• It provides graphical display of reflection coefficients.
• The impedances can be directly determined from the graphical display (ie,

from Smith chart)
• Furthermore, Smith charts facilitate the analysis and design of

complicated circuit configurations.
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Re (Z)

Im (Z)

• How do we plot an open circuit (i.e, 𝑍 = ∞), short circuit (i.e, 𝑍 = 0), and
matching condition (i.e, 𝑍 = 𝑍0 = 50Ω ) on the complex Z-plane

The Complex Γ- Plane
• Let us first display the impedance Z on

complex Z-plane
30 40Z j  

60 30Z j  

Invalid 
Region

Invalid 
Region

Re (Z)

Im (Z)

each dimension is defined by a single real line: the 
horizontal line (axis) indicates the real component of 
Z, and the vertical line (axis) indicates the imaginary 

component of Z → Intersection of these lines 
indicate the complex impedance 

Z = Z0

Z = 0

𝒁 = ∞
somewhere over there!!

It is apparent that 
complex 𝒁 − 𝒑𝒍𝒂𝒏𝒆 is 

not very useful 
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The Complex Γ-Plane (contd.)
• The limitations of complex Z-plane can be overcome by complex Γ-plane
• We know Z ↔ Γ (i.e, if you know one, you know the other).
• We can define a complex Γ-plane similar to a complex Z-plane.

• Let us revisit the
reflection coefficient in
complex form:

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


      



Where,

1 0
0

0

tan i

r

   
  

 

In the special terminated conditions of pure short-circuit and pure open-circuit 
conditions the corresponding Γ0 are -1 and +1 located on the real axis in the 

complex Γ-plane.

the reflection coefficient has a valid region 
that encompasses all the four quadrants in 

the complex Γ-plane within the -1 to +1 
bounded region

Γ0r

Γ0i

0

0

0 0 

Representation Γ0

in polar form

In complex Z-plane the valid region was unbounded 
on the right half of the plane → as a result many 

important impedances could not be plotted
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The Complex Γ-Plane (contd.)

Γ0r

Γ0i

• Validity Region
Invalid Region

|Γ0| > 1

Valid 
Region

|Γ0| < 1

|Γ0| = 1

1

-1

-1

1

• We can plot all the valid
impedances (i.e R > 0) within this
bounded region.

Γ0r

Γ0i

(short)

0 1.0je     (matched)
0 0 

(open)
0

0 1.0je  

|Γ0| = 1
Z = jX → purely reactive

• A TL with a characteristic impedance of Z0 = 50Ω
is terminated into following load impedances:

(a) ZL = 0 (Short Circuit)
(b) ZL → ∞ (Open Circuit)
(c) ZL = 50Ω
(d) ZL = (16.67 – j16.67)Ω
(e) ZL = (50 + j50)Ω

Example – 1 

Display the respective reflection
coefficients in complex Γ-plane
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(a) Short Circuit (b)Open Circuit

(c) Matched
(e)

(d)

Example – 1 (contd.) 
• Solution: We know the

relationship between Z and Γ:

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


      



(a) Γ0 = -1 (Short Circuit)
(b) Γ0 = 1 (Open Circuit)
(c) Γ0 = 0 (Matched)
(d) Γ0 = 0.54<221ο

(e) Γ0 = 0.83<34ο
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Transformations on the Complex Γ-Plane 
• At z =0, Γ0 describes the mismatch

between ZL and 𝑍0.
• The move away from the load (or

towards the input/source) in the
negative z-direction (clockwise rotation)
requires multiplication of Γ0 by a factor
exp(+𝑗2𝛽𝑧) in order to explicitly define
the mismatch at location ‘z’ known as
Γ(z).

• This transformation of Γ0 to Γ(z) is the
key ingredient in Smith chart as a
graphical design/display tool.

• Lets consider the terminated lossless TL.

β, Z0

β, Z0

ZL

l

in

0

0

( ) inz l    

0 2 l ( ) 1z 

Γ0r

Γ0i

0( 0)z   

0

Graphical interpretation of 
2

0( ) j zz e   
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Transformations on the Complex Γ-Plane (contd.)
• It is clear that addition of a length of TL to

a load Γ0 modifies the phase θ0 but not
the magnitude Γ0, we trace a circular arc
as we parametrically plot Γ (z)! This arc
has a radius Γ0 and an arc angle 2βl

radians.

in β, Z0β, Z0
Γ0= -1 

l = λ/8

z = -l z = 0

• We can therefore easily solve many
interesting TL problems graphically—
using the complex Γ-plane! For example,
say we wish to determine Γin for a
transmission line length l = λ/8 and
terminated with a short circuit.

• The reflection coefficient of a short
circuit is Γ0 = −1 =1*e(jπ), and
therefore we begin at the leftmost
point on the complex Γ-plane. We then
move along a circular arc −2βl =
−2(π/4) = −π/2 radians (i.e., rotate
clockwise 90⁰).

Γ0r

Γ0i

( )z

/21* j

in e  

0 1* je  

When we stop, we find we are 
at the point for Γin; in this case 

Γin = 1*e(jπ/2)
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Transformations on the Complex Γ-Plane (contd.)

• Now let us consider the same problem, only with a new transmission line
length l = λ/4.

• Now we rotate clockwise 2βl = π radians.

( )z

• In this case the input
reflection coefficient is
Γin = 1*e(j0) = 1

• The reflection coefficient
of an open circuit

The short circuit load has been 
transformed into an open circuit 

with a quarter-wave TL

Γ0r

Γ0i

0 1* je  

01* j

in e 
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Transformations on the Complex Γ-Plane (contd.)
• We also know that a quarter-wave

TL transforms an open-circuit into
short-circuit → graphically it can be
shown as:

Γ0r

Γ0i

1* j

in e  

0

0 1* je 

( )z

( )z
0

0 1* je 

( ) 1z 
Γ0r

Γ0i

1* j

in e  

• Now let us consider the same
problem again, only with a new
transmission line length l = λ/2.

• Now we rotate clockwise 2βl = 2π
radians (360⁰)

• We came clear around to
where we started!

• Thus we conclude that Γin = Γ0

It comes from the fact that half-
wavelength TL is a special case, 
where we know that Zin = ZL → 
eventually it leads to Γin = Γ0
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Transformations on the Complex Γ-Plane (contd.)
• Now let us consider the opposite problem. Say we know that the input

reflection coefficient at the beginning of a TL with length l = λ/8 is: Γ𝒊𝒏 =
𝟎. 𝟓𝒆 𝒋𝟔𝟎° .

• What is the reflection coefficient at the load?
• In this case we rotate counter-clockwise along a circular arc (radius =0.5) by an

amount 2βl = π/2 radians (90⁰).
• In essence, we are removing the phase associated with the TL.

The reflection coefficient at 
the load is:

150

0 0.5* je 

0.5

150

0 0.5* je 

0 2in l   

( ) 1z 

Γ0r

Γ0i

600.5* j

in e 

in
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Mapping Z to Γ
• the line impedance and

reflection coefficient are
equivalent – either one can be
expressed in terms of the other.

0

0

( )
( )

( )

Z z Z
z

Z z Z


 

 0

1 ( )
( )

1 ( )

z
Z z Z

z

 
  

 

• The expressions depend on Z0 of the
TL. To generalize, we first define a
normalized impedance value z’ as:

0 0 0

( ) ( ) ( )
( ) ( ) ( )

Z z R z X z
z z j r z jx z

Z Z Z
     

These equations describe a mapping between z’ and Γ. That means that each 
and every normalized impedance value likewise corresponds to one specific 

point on the complex Γ-plane

therefore
 

 
00

0 0

( ) / 1( ) ( ) 1
( )

( ) ( ) / 1 ( ) 1

Z z ZZ z Z z z
z

Z z Z Z z Z z z

  
   

  

1 ( )
( )

1 ( )

z
z z

z


 


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Mapping Z to Γ (contd.)
• Lets indicate values of some common

normalized impedances (shown below)
on the complex Γ-plane and vice-versa.

Case Z z’ Γ

1 ∞ ∞ 1

2 0 0 -1

3 Z0 1 0

4 jZ0 j j

5 -jZ0 -j -j

Γr

ΓiInvalid Region
|Γ| > 1

|Γ| = 1

Γ = j
(z’ = j)

Γ = -1
(z’ = 0)

Γ = -j
(z’ = -j)

Γ = 0
(z’ = 1)

Γ = 1 
(z’ =∞)

• The five normalized impedances map five
specific points on the complex Γ-plane.

Invalid 
Region

r

x

(Γ = 0)
z’ = 1

(Γ = -1)
z’ = 0

(Γ = -j)
z’ = -j

(Γ = j)
z’ = j

• These map onto five points on the
normalized Z-plane

Apparently the normalized 
impedances can be mapped on 

complex Γ-plane and vice versa and 

gives us a clue that whole impedance 
contours (i.e, set of points) can be 

mapped to complex  Γ-plane 
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Mapping Z to Γ (contd.)
Case-I: Z = R → impedance is purely real

0z r j  
1

1

r

r


 



1

1
r

r

r


 


0i 

Γr

Γi

Invalid Region
|Γ0| > 1

(Γi = 0)
x = 0

(Γi = 0)
x = 0

r

In
valid

 R
e

gio
n

r

x
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Γr

Γi

In
valid

 R
e

gio
n

r

x

Mapping Z to Γ (contd.)

Case-II: Z = jX → impedance is purely imaginary

0z jx  
Purely reactive impedance results in a 

reflection coefficient with unity magnitude
1 

|Γ|= 1
r = 0

Invalid Region
|Γ0| > 1

x j 

x j 

These cases (I and II) demonstrate that 
effectively any complex impedance can be 

mapped to complex Γ-plane → Smith Chart

|Γ|= 1
r = 0
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In summary
• A vertical line r = 0 on complex Z-plane maps to a circle |Γ| = 1 on the

complex Γ-plane
• A horizontal line x = 0 on complex Z-plane maps to the line Γi = 0 on

the complex Γ-plane

Very fascinating in an academic sense, but are not relevant considering 
that actual values of impedance generally have both a real and imaginary 

component 

Mappings of more general impedance contours (e.g, 
r = 0.5 and x = - 1.5 corresponding to normalized 

impedance 0. 5 – j1.5) can also be mapped 
Smith Chart

Mapping Z to Γ (contd.)
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The Smith Chart (contd.) 
• Let us revisit the generalized reflection

coefficient formulation:
0 2

0( )
j j z

r iz e e j
      

• Therefore, the normalized
impedance can be formulated as:

0

1( ) 1 ( )
( )

1 ( ) 1

r i

r i

jZ z z
z z r jx

Z z j

  
     

   

• The separation of real
and imaginary part
results in:

   1 1r i rr x    

 1 r i ix r   

Real

Imaginary

     1 1r i r ij r jx j        

• Simplification and then elimination of reactance (x) from these two give:

 

2

2

2

1

1 1
r i

r

r r

 
     

  
 

   
2 2 2

, :

r i

l

p q

p q l     

Similar equation to circle of radius  , 

centered at 
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The Smith Chart (contd.) 

 , ,0
1

r
p q

r

 
  

 
center: radius:

1

1
l

r



and

Observations:

• For r =0: p2 + q2 = 1; (p, q) = (0, 0) and l = 1
• For r =1/2: (p - 1/3)2 + q2 = (2/3)2; (p, q) = (1/3, 0) and l = 2/3
• For r =1: (p - 1/2)2 + q2 = (1/2)2; (p, q) = (1/2, 0) and l = 1/2
• For r =3: (p – 3/4)2 + q2 = (1/4)2; (p, q) = (3/4, 0) and l = 1/4

Circles of 
distinct 

centre and 
radii

0r 

r

i 1r 
3r 

1/ 2r 
r 

1

1p l 

Note:

Because of 
(q – 0)2

term, all the 
constant 

resistance (r) 
circles have 
centers on 

this line

This approach enables 
mapping of any 

realizable vertical line 
(representing r) in the 

complex Γ-plane
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• For the mapping of horizontal lines
of the normalized impedance plane
to Γ-plane, let us simplify and
eliminate resistance (r) from these:

   1 1r i rr x    

 1 r i ix r   

Real

Imaginary

The Smith Chart (contd.) 

 
2 2

2 1 1
1r i

x x

   
        

   

   , 1,1/p q xcenter:

radius:
1

l
x



q l 

Note:

Observations:

• For x =1: (p – 1)2 + (q – 1)2 = (1)2; (p, q) = (1, 1) and l = 1
• For x =-1: (p – 1)2 + (q + 1)2 = (1)2; (p, q) = (1, -1) and l = 1
• For x =1/2: (p – 1)2 + (q – 2)2 = (2)2; (p, q) = (1, 2) and l = 2
• For x =-1/2: (p – 1)2 + (q + 2)2 = (2)2; (p, q) = (1, -2) and l = 2

Circles of 
distinct 

centre and 
radii
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0r 

The Smith Chart (contd.) 

r

i
1x 

1x  

0x 

0.5x 

0.5x  

3x  

3x 

x 

q l 
Note:

All constant reactance 
(x) circles have their 

origins along this line 
p=1 because of the 

term (p – 1)2

This approach enables mapping of any realizable horizontal line 
(representing x) in the complex Γ-plane
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The Smith Chart (contd.)  
• Combination of these constant resistance and reactance circles define the

mappings from normalized impedance (z’) plane to Γ-plane and is called as
Smith chart.

( ) 1
( )

( ) 1

z z
z

z z

 
 

 

1 ( )
( )

1 ( )

z
z z

z


 



r

i

0r 

0x 

jx

r

z r jx  

1r 

Positive 
(Inductive) 
Reactance

Negative 
(Capacitive) 
Reactance



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Smith Chart – Important Points

0

= 0

( 1)

r

 

Short Circuit Perfect Match

0( 0) 

Open Circuit

 

 

1
( )

1

z
z z

z

  
     

  2

0

j zz e  

 
( ) 1

( ) 1

z z
z

z z

 
 

 

1
circle

jX
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The Smith Chart (contd.)

0 

      ( )

z movement in negative  direction clockwise motion on 

t

circle of co

oward genera

nstan

tor

t

gZ
LZ

Transmission LineGenerator Load

gV

z

z = 0z = -l

To generator

i

r

0

 z

0Γ

angle change = 2z

2

0

2

0

1
( )

1

j z

j z

e
z z

e










 


  2

0

j zz e  



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Smith Chart (contd.)

• Go half-way around the Smith chart:

/ 4l  

2
2 2

4
l

 
 



  
     

  

r

i

0Γ

1
( )

( )
z A

z B
 



  0

0

1
0

1
z z

  
    

 
  0

0

1

1
z z l

 
     

  

B

A 
2

0

2

0

1

1

j z

j z

e
z z

e









  
   

 

Reciprocal Property

 
 

1
0z z

z z l
  

  
( ) ( )z A y B 
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The Smith Chart – Outer Scale

Note that around 
the outside of the 
Smith Chart there 

is a scale 
indicating the 

phase angle, from 
180⁰ to -180⁰. 
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The Smith Chart  – Outer Scale (contd.)

• Recall however, for a terminated transmission line, the reflection
coefficient function is:

  0(2 )2

0 0

j zj zz e e
      

• Thus, the phase of the reflection coefficient function depends on
transmission line position z as:

0( ) 2z z     0

2
2 z






 
  

 
04

z
 



 
  

 

• As a result, a change in line position z (i.e., Δz ) results in a change in
reflection coefficient phase θΓ (i.e., ∆θΓ):

4
z

 




 
   

 

• E.g., a change of position equal to one-quarter wavelength Δz =λ/4
results in a phase change of π radians—we rotate half-way around the
complex Γ-plane (otherwise known as the Smith Chart).
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• The Smith Chart then has a second scale (besides θΓ) that surrounds it 
—one that relates TL position in wavelengths (∆z/λ) to the θΓ:

• Since the phase scale on the Smith
Chart extends from -180⁰ < θΓ < 180⁰
(i.e., -π < θΓ <π ), this electrical
length scale extends from:

0 < z/λ <0.5

• Note, for this mapping the reflection 
coefficient phase at location z = 0 is 
θΓ = −π. Therefore, θ0 =−π , and we 
find that:

0

0 0 0 0

j je e
         

S.C. 
Point

The Smith Chart  – Outer Scale (contd.)
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• Example: say you’re at some location z =
z1 along a TL. The value of the reflection
coefficient at that point happens to be:

65

1( ) 0.685 jz z e   

• Finding the phase angle of θΓ = -65⁰ on
the outer scale of the Smith Chart, we
note that the corresponding electrical
length value is: 0.160

Note: this tells us nothing about the 
location z  = z1. This does not mean that z1

=0.160λ , for example!

The Smith Chart  – Outer Scale (contd.)
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• Now, say we move a short distance Δz (i.e., a
distance less than λ/2) along the transmission
line, to a new location denoted as z = z2 and find
that the reflection coefficient has a value of:

74

2( ) 0.685 jz z e   

• Now finding the phase angle of θΓ = 74⁰ on the
outer scale of the Smith Chart, we note that the
corresponding electrical length value is:

0.353

Note: this tells us nothing about the location z = z2. 
This does not mean that z1 =0.353λ , for example!

The Smith Chart  – Outer Scale (contd.)

Q: So what do the values 0.160λ and 0.353λ tell us?

A: They allow us to determine the distance
between points z2 and z1 on the transmission line.

2 1 0.353 0.160 0.193z z z        
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The transmission line location z2 is a distance of 0.193λ from location z1!

Q: But, say the reflection coefficient at some point z3 has a phase value of θΓ = -112⁰, 
which maps to a value of 0.094λ on the outer scale of Smith chart. It gives ∆𝑧 =
𝑧3 − 𝑧1 = 0.094λ − 0.160λ = −0.066λ.  What does the –ve value mean? 

The Smith Chart  – Outer Scale (contd.)

• In the first example, ∆z > 0 , meaning z2 > z1 → the location z2 is closer to the
load than is location z1

• the positive value ∆z maps to a phase change of 74⁰ - (-65⁰) = 139⁰
• In other words, as we move toward the load from location z1 to location z2,

we rotate counter-clockwise around the Smith chart
• In the second example, ∆z < 0 , meaning z3 < z1 → the location z3 is closer to the

beginning of the TL (i.e., farther from the load) than is location z1

• the negative value ∆z maps to a phase change of -112⁰ - (-65⁰) = -47⁰
• In other words, as we move away from the load (i.e, towards the

generator) from location z1 to location z3, we rotate clockwise around the
Smith chart
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0.193z   

65

1( ) 0.685 jz z e   

74

2( ) 0.685 jz z e   

112

3( ) 0.685 jz z e   

0.066z   

To
w

ar
d

s 
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ad

Towards Generator

The Smith Chart – Outer Scale (contd.)
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Q: Wait! I just used a Smith Chart to analyze a TL
problem in the manner you have just explained. At
one point on my transmission line the phase of the
reflection coefficient is θΓ = +170⁰, which is
denoted as 0.486λ on the “wavelengths toward
load” scale.
• I then moved a short distance along the line

toward the load, and found that the reflection
coefficient phase was θΓ = −144ο, which is
denoted as 0.050λ on the “wavelengths toward
load” scale.

• According to your “instruction”, the distance
between these two points is:

0.050 0.486 0.436z      

A large negative value! This says that I moved nearly a half wavelength away
from the load, but I know that I moved just a short distance toward the load! 

What happened?

The Smith Chart  – Outer Scale (contd.)
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The electrical 
length scales on 
the Smith chart 
begin and end 
where 180    1( )z z 

2( )z z 

0.436z   

In your example,
when rotating
counter-
clockwise (i.e.,
moving toward
the load) you
passed by this
transition. This
makes the
calculation of Δz
a bit more
problematic.

The Smith Chart  – Outer Scale (contd.)
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• As you rotate counter-clockwise around the Smith Chart, the “wavelengths
toward load” scale increases in value, until it reaches a maximum value of 0.5λ
(at θΓ = ± π)

• At that point, the scale “resets” to its minimum value of zero
• Thus, in such a situation, we must divide the problem into two steps:
• Step 1: Determine the electrical length from the initial point to the “end” of the

scale at 0.5λ
• Step 2: Determine the electrical distance from the “beginning” of the scale (i.e.,

0) and the second location on the transmission line
• Add the results of steps 1 and 2, and you have your answer!

For example, let’s look at the case that originally gave us the erroneous result. The
distance from the initial location to the end of the scale is:

0.500 0.486 0.014    

And the distance from the beginning of the scale to the second point is:

0.050 0.000 0.050    

Thus the distance between the two points is: 0.014 0.050 0.064     

The Smith Chart  – Outer Scale (contd.)
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1( )z z 

2( )z z 

0.014

0.050

The Smith Chart  – Outer Scale (contd.)
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• The ∆z towards generator could also be mentioned as a +ve term if we 
consider the upper metric in the “Outer Scale”  

Clockwise Rotation 
• gives +ve distance when moving 

towards generator
• gives –ve distance when moving 

towards load

Counter-clockwise Rotation 
• gives -ve distance when moving 

towards generator
• gives +ve distance when moving 

towards load

The Smith Chart  – Outer Scale (contd.)


