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Reflection Coefficient Transformation

We know that the load at the end of some length of a transmission line (with

characteristic impedance Z) can be specified in terms of its impedance Z; or its
reflection coefficient I},.

Note both values are complex, and either 7 _7 1
. . _ L 0 _ +F0
one completely specifies the load—if you |I(=——"2-" L = Zo[ j

know one, you know the other! L+ 2, 1-T,

Recall that we determined how a length of transmission line transformed the load
impedance into an input impedance of a (generally) different value:

|

® ® ®
\ 7 _7 Z, + JZ,tan(pl)

"7+ jZ, tan(Al)
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Reflection Coefficient Transformation (contd.)

Q: Say we know the load in terms of its reflection coefficient. How can we express
the input impedance in terms its reflection coefficient (call this I;;,;)?

b, 2o

A: Well, we could execute these three steps:

2. Transform 7 1 iZ tan(Al
1. Convert [ z, -7, 1+1, 7, down the [Z, =Z LT 14, (B
toZ;: 1-T,

line to Z;y,: " Zy+ )2, tan(pl)

3.Convert Z;,toly,: | = Zin — £y
" Z.+Z,

Q: Yikes! This is a ton of complex arithmetic—isn’t there an easier way?
A: Actually, there is!
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Reflection Coefficient Transformation (contd.)
e Recall, the input impedance of a TL of length [, terminated with a load I, is:

Directly insert __ il —ipl
this int6: Zm=Z(Z:—|)=V(Z I):Z0 © |+r°e_. |
1(z=-1) ! _T o1

[ Note this directly relates Iy to Z;;, (steps 1 and 2 combined!). ]

(\ L. —Z, .
_ —j2pl
[ = 74 Z] - directly relates Iy to I,,. - I'. =T,

Q: Hey! This result looks familiar.

A: Absolutely! Recall that we found the reflection coefficient function I'(z):

[ =l 2] I [Fz=-1)=Te "

N the magnitude of [, is the same -
Ly =T ™ ‘ as the magnitulge of Iy :>[ Tul= ‘F ¢ sz‘_ |

The reflection coefficient at the input is simply
related to [y by a phase shift of 2[1.
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Reflection Coefficient Transformation (contd.)

The phase shift associated with transforming Il; down a transmission line can be
attributed to the phase shift associated with the wave propagating a length [ down
the line, reflecting from load Z;, and then propagating a length [ back up the line.
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e We have discovered that two + +
waves propagate along a VvV (2)=V*(2)+V (2) Vi Z)

transmission line, one in each — —

direction (V" (z) and V~(2)). . ; - I 7 :Tl: 0

The result is that electromagnetic energy flows along the
transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that
power go?

A: We can answer by determining the power absorbed by the load!
2

—+

Puos =%Re(VLIE)=%Re(V(O)I(O)*)z \2/020 (1—F02ﬂ |
: V, T
P — ‘V0+ 2 B ‘V0+F0‘2 ( E:)ref = ‘ OZZ: = ‘Fo‘z PmJ

27, 2Z,

Incident Power, P;

inc

Reflected Power, P,
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Power Considerations on a TL (contd.)

. ° S
* It is thus apparent that the \?FP%S
power flowing towards the P P ')
load (P, ) is either absorbed = < rel Z
by the load (P,,,) or reflected
back from the load (P, T : T
zE -l ! 2= 0
Now let us consider some special cases:
B P oS _
1. [,|=1 \? P, =0
Pref — ‘1"0‘2 Pinc — Pinc I:)inc > <Pref o Pinc ’) |1"0|:]_
— Pabs. =0 T T

z % - ! Z=0

[There is no power absorbed by the load - all the incident power is reflected]
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Power Considerations on a TL (contd.)

2. [T,|=0 o ﬁ?@b L
Pes ‘FJ :::j:> <€$::: I)UH=O

— Pabs _ P|nc
" all the incident ) Z :E -| ' Z :|= 0

power is absorbed
. bytheload

None of the incident
Y, power is reflected

P, <P

@
abs inc

®
3. 0<|Iy|<1
2 I:)inc P|ref < F)inc 0<|F0|<1
0<P —\FO\

ref

= 0<P,, = ( \ro\ )<P.

T2 L] | 2+ 0
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Power Considerations on a TL (contd.) Power Absorbed is
2
4. ‘FO‘ >1 Pref — ‘FO‘ I:)inc > I:)inc — I:)abs — Pl

What type.of load Alternatively, we can say that the load
it could be? creates extra power - i.e, acts as a
power source and not a sink!

[ Definitely not a passive load - A passive device can’t produce power]

[Therefore: ‘Fo‘ <1 For all passive loads ]

Q: Can Iy every be greater than one?
A: Sure, if the “load” is an active device. In other words, the load must
have some external power source connected to it.

Q: What about the case where |I,| < 0, shouldn’t we examine that
situation as well?
A: That would be just plain silly; do you see why?
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Return Loss

I

The ratio of the reflected power
from a load, to the incident
power on that load, is known as Zo
return loss. Typically, return loss @
is expressed in dB: z =l

P

ref

|
¢
|
|
|
|
.

Return Loss (R.L.):  RL[dB]=-10 Iog[ I::ef ] =-10log (\FO\Z)
The return loss tells us the percentage of the incident power reflected at the
point of mismatch
For example, if the return loss is 10dB, then 10% of the power is reflected while
the 90% is absorbed/transmitted — i.e, we lose 10% of the incident power
For the return loss of 30dB, the reflected power is 0.1% of the incident power -
we lose only 0.1% of the incident power
A larger numeric value of return loss actually indicates smaller lost power = An

ideal return loss would be e & matched condition
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Return Loss (contd.)

* A return loss of 0dB indicates that reflection coefficient is ONE - reactive
termination

 Return Loss (RL) is very helpful as it provides real-valued measures of mismatch
(unlike the complex-valued Z; and ')

[A match is good if the return loss is high. A high return loss is desirable]
and results in a lower insertion loss.

Insertion Loss

e This is another parameter to address the mismatch problem and is defined as:

| P iser — P
EL[dB] =-10 |Og [Pt;msrnlttedj =-10 Iog ( InC|deIr; reflected j ~10 |Og (1_ ‘l_,in ‘2 )]

incident incident

For open- and short- ’ For perfectly matched
circuit conditions conditions
IL > o0 IL=0

[ insertion loss signifies the loss of signal power resulting from the J

insertion of a device in a transmission line.
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Standing Wave and Standing Wave Ratio ’
e Another traditional real-valued @ — ®

measure of load match is Voltage Vie it —

Standing Wave Ratio (VSWR). _ipz Z
Consider again the voltage along a ZO N VO €
terminated transmission line, as a @ g
function of position z. ‘ ‘
z = - z=20

[V(Z) :VO+|:e—jﬂZ+FOe+j,BZ:| J ‘ V(_I):VO+|:ej,3| +Foe_jﬂl]

* Forashortcircuited line: Ty =-1  ==) V(-I) :VO
2jsin(pl)

— [v(—l,t) —Re(V (-1)e"*) =Re(2 jv;(Z)sin(ﬂl)ejwt)]
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Standing Wave and Standing Wave Ratio (contd.)

D

~v(=lLt) =2V, sin(pBl) cos(awt + (7 / 2))}/

Always zero for -|I=0 i.e., the]

Definitely not a point of short-circuit
traveling wave!!

\ Where has the traveling

wave V(z) gone?

* Asthe time and space are decoupled - No wave propagation takes place

* The incident wave is 180° out of phase with the reflected wave - gives rise
to zero crossings of the wave at 0, \/2, A, 3A/2, and so on = standing wave
pattern!!!
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Standing Wave and Standing Wave Ratio (contd )

Corresponding :

0l i = 1/2n+ 2mr of = 38T + 1N
Electrical Length (pl): )

067 @t = /87 + 21n
0, &, 2@, 37 04l

Wit =27n
& Standing Wave Pattern
1 for Various Instances
r=1/4m + 2mn m
Spatial Location:
0’ ;"/2’ ;‘" 31/2 0.5m %r 1.5n 2}: 2.5m 35: 3.5m
Bl

* for arbitrarily . . . _
_\/+ + 0l 1Bl _\7+A+ 10l —j24l
terminated line: V(-1 =Vy (6" + T e )=V e (14T e ?")

=V (—I) = A(—|)(1+F(—|)j<:| Valid anywhere

on the line

Similarly: (- |)_A( I)(l (- |)) _ Valid anywhere

on the line
o
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Standing Wave and Standing Wave Ratio (contd.)

* Under the matched condition, I'y= 0 and therefore I'(-1) = 0 - as expected, only
positive traveling wave exists.

* For other arbitrary impedance loads: Standing Wave Ratio (SWR) or Voltage
Standing Wave Ratio (VSWR) is the measure of mismatch.

« SWR is defined as the ratio of maximum voltage (or current) amplitude and the
minimum voltage (or current) amplitude along a line - therefore, for an
arbitrarily terminated line:

E/SWR = ISWR =SWR = Y/E:II;:: = :E:II;:T: J We have: V(1) =V,'e"" (1+ r,e'? )
* Two possibilities for extreme values: | T e/ =1 [ re '/ = _1]
Max. voltage: |V(-1)|.... =N, |(1+|[,|) Min. voltage: |V(-I)| .. =N, |(1-|T,|)
)
- VSWR = 1i 11:2 Apparently:0<T", <1 |:> S 1<VSWR <0

J
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Standing Wave and Standing Wave Ratio (contd.)

* Note if |Iy| =0 (i.e., Z, = Z,), then } }
VSWR = 1. We find for this case: ‘V (Z)‘max N ‘V(Z)‘min -
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In other words, the voltage magnitude is a constant with respect to position z.

) (M@l =0]

(-’{In other words, the voltage magnitude varies greatly with respect to position z.

'A

« Conversely, if [I'y| = 1 (i.e., Z;, = Z,),

then VSWR = oo, We find for this case: [ ‘V (Z)‘max =2Vy

* Similarly, We have:

| _V_+ +jpl -jpl |SWR=1+‘FO‘ | > S 1< ISWR < o0
()= (e +Tpe ) 11|

0

Thus: VSWR=ISWR=SWR ‘ In our course we will mention both as VSWR

As with return loss, VSWR is dependent on the magnitude of |I'y] (i.e, [I'y|) only !

In practice, SWR can only be defined for lossless line as the SWR equation is not
valid for attenuating voltage and current
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Standing Wave and Standing Wave Ratio (contd.)
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Standing Wave Pattern at ,=0.1 Standing Wave Pattern at ;=1

* Itis apparent that the maximum and minimum repeats periodically and its values
can be used to identify the degree of mismatch by calculating the SWR

HW#1
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Example -1
* The following two-step procedure has been carried out with a 50() coaxial slotted
line to determine an unknown load impedance:

1. short circuit is placed at the load plane,
resulting in a standing wave on the line with
infinite SWR and sharply defined voltage .
minima, as shown in Figure. 0

i Short
1 2 3 4

circuit

On the arbitrarily positioned scale on the

: . z = 0.2cm, 2.2cm, 4.2cm
slotted line, voltage minima are recorded at:

. . . A 1_.’
2. The short circuit is removed and replaced

with the unknown load. The standing wave W |

ratio is measured as SWR = 1.5, and

voltage minima, which are not as sharply o 1 2 3 4 g
defined as those in step 1, are recorded at:
z = 0.72cm, 2.72cm, 4.72cm

Find the load impedance.
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Example -1 (contd.)

* Knowing that voltage minima repeat every A/2, we have from the data of step 1
thatA=4.0cm.

* In addition, because the reflection coefficient and input impedance also repeat
every A/2, we can consider the load terminals to be effectively located at any of
the voltage minima locations listed in step 1.

* Thus, if we say the load is at 4.2cm, then the data from step 2 show that the
next voltage minimum away from the load occurs at 2.72cm.

Indraprastha Institute of ECE321/521
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e ltgives: | Ly, =4.2—2.72 =1.48cm = 0.37A

SWR—1 15-1
' NOW:[‘FO‘:SWRH] »ﬂro‘zl.suzo'z]

« Therefore: | I, =0.2¢’"** =0.0126 + j0.1996

* The unknown impedance is then:

[ZL -7, [i?’] ‘[ZL =50[1+£° ] — 473+ j19.7QJ
0

— 1o
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~Sourced and Loaded Transmission Line
 Thus far, we have discussed a TL with terminated load impedance - Let us

now consider a TL with terminated load impedance and a source at the
input (with line-to-source mismatch)

| T |
Ii—>| o e Atz=0
V ZG |+ - | F_ZL_ZO
G ﬁIVI ZO I ZL O_Z _|_Z
I I L 0
o— 0
r I ]
In | — I
7 =- Z z=0

* The current and voltage along the TL is:

[V(Z) :V0+|:e—j,6’z+l—woe+jﬂz:|} [I(z) \;+ |:e ipz Foe+jlgz:|]

V0+ depends on the signal source! To determine its exact value, we must
now apply boundary conditions at z = —I.
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Sourced and Loaded Transmission Line (contd.)
* At the beginning of the transmission line:

[V(Z:_I):VO+|:e+j'BI-I-Foe_jﬂl]J [I(Z:_I):\;O—i_[e-l—jﬂl_roejﬂl}]

0

* Likewise, we know that the source must satisfy: [VG =V, +Z;|, ]
li— —1(z = -1

@ o * From KVL we find:
Zs + +
Ve Vi V(@E=-) Z, Z, [Vi =V(z= —D}
—o— ® e From KCL we find:

Zz=- z=20 [Iizl(z:—l)J

 Combining these equations, we find:

- iy Vir . i One equation = one
+[ A+iBl I 7 +jpl B |
c Vo 2y i GO e Oem )11
Vo =V e e Z, unknown (V" )!!
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“Sourced and Loaded Transmission Line (contd.)

. /
[ ° . +. * :V e_JﬂI .
Solving, we find the value of V,™: @0 7,147, )+ 2 (1T, )]

[rm =I'(z=-1)=Te " }\

* Note this result looks different than NEaRY Z,
the equation in your book (Pozar): °Z,+Z, (1_F0FGe—jﬁl)

0

[ ZG B Zo . . .
I';= | like the first expression
L + 2, better.
4 Although the two equations are equivalent, first expression is \
explicitly written in terms of [;,, = I'(z = —1) (a very useful, precise,

and unambiguous value), while the book’s expression is written in
terms of this so-called “source reflection coefficient” I'; (a misleading,
confusing, ambiguous, and mostly useless value).

Specifically, we might be tempted to equate I'; with the
value I, =T'(z = —=1), butitisnotI; # I'(z = —1)!
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Example — 2

) — 1 .

V(2)
.
zx 0

* Itis known that the current along the transmission line is:
[(z) = 0.4e /B2 —Be*iFZ  Amp  forz>0
where B is some unknown complex value.

e Consider this circuit: C“
1.0A 254

Z, =500

A

Determine the value of B.
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Sourced and Loaded Transmission Line (contd.)

Lg
Q: If the purpose of a P ®
transmission line is to n — I(2)
transfer power from a source

Z V(z

to a load, then exactly how “—¢/ in (2) Z, 1
much power is delivered to G ° M o
Z, for this circuit?? z = -| z=0

A: We of course could determine V, and V7, 1 ]
and then determine the power absorbed by | P =§Re{V (z=0)1 (z :O)}

the load (P.,..) as:

abs

e For lossless TL, we know that the
power delivered to the load must be
equal to the power “delivered” to the
input (P, ) of the transmission line:

[Pabs P :%Re{V(z =-)I"(z =—|)}]

We can determine this power without having to solve for V0+and Vy (i.e., V(z) and
I(z)). We can simply use our knowledge of circuit theory!
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Sourced and Loaded Transmission Line (contd.)

* We can transform Z to the Zg —> [(z = =)
beginning of the transmission o

line, so that we can replace vV +
the transmission line with its G V(z=-1) Zin=2(z=-1)
input impedance Z: :

* by voltage 7 « from Ohm’s V.
division we can V (z =-I) =V, - '”Z Law we [I (z=-1)= ]
determine: 6+ %in conclude: c +4

* Then the power P, delivered to Z,, (and thus the power P, . delivered to Z,) is:

1 1 Z. VA
P.=P ==Re{V(z=-)I"(z=-1)! ==Re:V in I
bs 5 e{ (z=-1)1"(z )} 5 e{eZGJer (zG+zm)}
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Sourced and Loaded Transmission Line (contd.)
* Note that we could also [ .

2
: V
determine P, from our |p _ 1p, {V (2=0)"(z = O)} _ Vo (1_‘Fo‘2)
earlier expression: 2 27

0

” Z, we waquld of course have to first
+ _ -] )
ﬁo =Vge Z, (1+F. )+ZG (1—F. )J Jdetermme Vo (1):

* Let’s look at specific cases of Z. and Z,, and see how they affect V," and P, .

° i i + .
Z; =1, F.or t|:lI.S case, we find that V v :EVGe"ﬂ'
simplifies greatly: 2

incident wave in this case is independent of the load attached at the other end!

Thus, for the one case Z; = Z,,, we in fact can consider V¥ (z) as being the source
wave, and then the reflected wave V™ (z) as being the result of this stimulus.
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Sourced and Loaded Transmission Line (contd.)
« The complex value V, " is the value of the incident wave evaluated at the end of
the transmission line (V, "= V*(z = 0)). We can also determine the value of the

incident wave at the beginning of the transmission line (i.e. V*(z = —1)).
o 1 | Y/

Vi(z==N=Vie F=_| 2y @78l |o*ifl _ "G

( ) 0 2 G _2

* Likewise, the delivered power for this
case can be simply stated as:

|2 2
el ) el o)

Z; =7 * In this case, we find that T, = 0, and . i Z
[ L—=0 ] 0 [VO =V e 0 J
G

thus I3, = 0. As aresult: Z,+Z
ALl Al
* Likewise, we find that: |[p 1 (1—‘1“ ‘2) _ 10
w2z, 2z,

Here the delivered power P, is simply that of the incident wave (P* ), as the
matched condition causes the reflected power to be zero (P~ = 0)!
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Sourced and Loaded Transmission Line (contd.)

2 2
* Inserting the value of V,*, we find: P — Vo _ Vel Z,
abs ZZO 2 ‘ZO +ZG‘2

this result can also be found by recognizing that Z;,, = Z, when Z; = Z,.

[ 7 — 7. ] For this case, we find Z, takes on whatever value required to
in — "G make Z;,, = Z;". This is a very important case!

o Z. -7, _ Zo -2, We can show that (trust mel!): VARVPST L.+Z, ]
"T 7 1z, Z.+Z, 4Re{Z |

* |ook at the absorbed power:

It can be shown—for a given V. and Z— value

2
L= 1 ‘VG‘ Re{Z. } of Z,, that will absorb the largest possible
2|Z +Zin‘2 | amount of power is the value Z;,, = Z;".
* For this — wer available for
purpose: Ze transfexto TL is given by:

V . ' { 2 2

. Vm A I:)in = E Re Vin VIE = 1 ‘VG‘ * ZG
- 2 Z,) 2Re(Z,)|Zs+Z,
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Sourced and Loaded Transmission Line (contd.)
« If Z. = R; + jX; is fixed then for complex Z, following [8Pin oP ]
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_ n __
conditions must be valid for maximum P, transferred to TL R OX. 0

In In

 Elaboration of these conditions result in:

Rg—an+(x§+2x6xm+xii)=o[§ Ro=Rs X, =X
Simplification
Xin (Xo +X;,) =0 gives |:> Zin=2¢

A . 1,2 1
P.== - Re”Z » SoPye ==V —=P,
b Z‘ZG-|—ZG2 { G} b 2‘ G‘ 4Re{ZG} |

\C This case is known as the conjugate match, and is essentially the goal of every L
Lproblem—to deliver the largest possible power to Z,, and thus to Z, as welll - This

In?

power is known as the available power (P,,) of the source.

There are two very important things to understand about this result
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Sourced and Loaded Transmission Line (contd.)

Very Important Thing #1
* Consider again:
—& o

e if Z; =Zy the reflected
wave will be zero, thus:

ZG + I(Z) ‘V ‘2 7
G 0
/. V(Z) ZL Pabs = 2 < I:)avl
Ve o . Zo > 120+24|
@ @
Z=-| z=0

e But note if Z; =Z,, the input impedance Z;,=2Z2Z, —but then Z;, #
Z;" (generally)! In other words, Z; = Z, does not (generally) result in a
conjugate match, and thus setting Z; = Z, does not result in maximum power
absorption!

Q: Huh!? This makes no sense! A load value of Z; = Z; will minimize the reflected

wave (P~ = 0)—all of the incident power will be absorbed.

 Any other value of Z; will result in some of the incident wave being
reflected—how in the world could this increase absorbed power?
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Sourced and Loaded Transmission Line (contd.)
e After all, just look at the expression for absorbed power:

2

V' 2 Clearly, this value is maximized when
Pabs = 27 (l_‘FO‘ ) [, =0(i.e.,whenZ; =Z,)

0

A: You are forgetting one very important fact! Although it is true that the load
impedance Z; affects the reflected wave power P, the value of Z; —as we have

shown— likewise helps determine the value of the incident wave (i.e., the value of
P*) as well.

* Thus, the value of Z; that minimizes P~ will not generally maximize P*!

 Likewise the value of Z; that maximizes P* will not generally minimize P~.

* Instead, the value of Z that maximizes the absorbed power P, _is, by definition,
the value that maximizes the difference P* — P,

* We find that this impedance Z; is the value that results in the ideal case of
Zin=12¢".
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Sourced and Loaded Transmission Line (contd.)

Q: Yes, but what about the case where Z; = Z,? For that case, we determined that
the incident wave is independent of Z;. Thus, it would seem that at least for that
case, the delivered power would be maximized when the reflected power was

minimized (i.e., Z; = Z,).

A: True! But think about what the input impedance would be in that case— Z;,
Zo. Oh by the way, that provides a conjugate match (Z;, = Z, = Z;").

7

* Thus, in some ways, the case Zg = Zy = Z| (i.e., both source |V '==

and load impedances are numerically equal to Z;) is ideal. A

1

VGe_jﬂI

\

conjugate match occurs, the incident wave is independent of Z,,

nicely:

.
-

there is no reflected wave, and all the math simplifies quite P,.=P
\_
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Sourced and Loaded Transmission Line (contd.)
Very Important Thing #2

* Note the conjugate match criteria says: Given source impedance Z;, maximum
power transfer occurs when the input impedance is set at value Z;, = Z;".

* It does NOT say: Given input impedance Z;,, maximum power transfer occurs

*

when the source impedance is set at value Z; = Z;,, .
This last statement is in fact false!

* A factual statement is this: Given input impedance Z;,,, maximum power transfer
occurs when the source impedance is set at value Z; = 0 — jX;,(i.e., Rg = 0).

Q: Huh??

A: Remember, the value of source impedance Zg
affects the available power P,, of the source. To
maximize P,,, the real (resistive) component of the
source impedance should be as small as possible [P, ==, —
(regardless of Z;,!), a fact that is evident when
observing the expression for available power:
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“Sourced and Loaded Transmission Line (contd.)

* Thus, maximizing the power delivered to a load (P,), from a source, has two

components:
1. Maximize the power available (P ) from a source (e.g., minimize R;).
2. Extract all of this available power by setting the input impedance Z;,, to a

value Z;, = Z;" (thus P, = P 4p1).

Example -3
* Consider this circuit, where the transmission line is lossless and has length [ =
A/
/4 Pine = 0.49W > Prer = 0.09W
—@ - @
Ze; = 200
e Zy =500 7, = 1250
[ =
° /4 °

Determine the magnitude of source voltage V (i.e., determine |V|).

Hint: This is not a boundary condition problem. Do not attempt to find V(z) and/or

1(2)!
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Lossy Transmission Lines

* Recall that we ha\(e been approximating low- =0 — wJLC
loss transmission lines as lossless (R =G = 0):

e But, long low-loss lines require a [a:;[ZRJrGZO]] = oV LC

better approximation:

* Now, if we have really long transmission lines (— B
(e.g., long distance communications), we can [a— Re{y}] ['B_ Im{y}]

apply no approximations at all:

For these very long transmission lines, § = Im{y} is a function of signal
frequency w. This results in an extremely serious problem—signal dispersion.

* Recall that the phase velocity v, (i.e., propagation | _ &

velocity) of a wave in a transmission line is: i
[,B =Im{y}= Im{\/(R + joL)(G + ja)C)}J\ }

[For a lossy line, v, is a function of frequency w (i.e., v, (w))—this is bad!]
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Lossy Transmission Lines (contd.)

Any signal that carries significant information must has some non-zero bandwidth.
In other words, the signal energy (as well as the information it carries) is spread
across many frequencies.

If the different frequencies that comprise a signal travel at different velocities, that
signal will arrive at the end of a transmission line distorted. We call this
phenomenon signal dispersion.

Recall for lossless lines, however, the phase velocity is independent of
frequency—no dispersion will occur!

however, a perfectly lossless line is
vV = 1 impossible, but we find phase velocity is
P JLC approximately constant if the line is low-loss.

For lossless line:

Q: You say “most often” not a problem—that
phrase seems to imply that dispersion
sometimes is a problem!
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Lossy Transmission Lines (contd.)

A: for low-loss transmission lines, dispersion can be a problem if the lines are very
long—just a small difference in phase velocity can result in significant differences in
propagation delay if the line is very long!

 examples of long transmission lines include phone lines and cable TV. However,
the original long transmission line problem occurred with the telegraph.

* Early telegraph “engineers” discovered that if they made their telegraph lines too
long, the dots and dashes characterizing Morse code turned into a muddled,
indecipherable mess. Although they did not realize it, they had fallen victim to the
heinous effects of dispersion!

* to send messages over long distances, they were forced to implement a series of
intermediate “repeater” stations, wherein a human operator received and then
retransmitted a message on to the next station. This really slowed things down!

Q: Is there any way to prevent
_ dispersion from occurring?
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Lossy Transmission Lines (contd.)
A: You bet! Oliver Heaviside figured out how in the 19t Century!

Heaviside found that a transmission line would be distortionless (i.e., (R G
no dispersion) if the line parameters exhibited this ratio: I C

Let’s see why this works. Note the complex propagation constant ¥ can be

expressed as:
7= \[R+ joL)(G+ jaC) - JLC(RIL+ jo)(G/C+ jo) |

For% =%: [y:\/LC(R/LJrja))(R/L+ja)):(R/L+ja))\/LC :R\/f+ja)\/LC]

Thus: [azRe{y}zR\E] |p=1m{y}=wVLC]

Q) 1
The propagation velocity of the wave is thus: | V, = E = —E

The propagation velocity is independent of frequency! This lossy
transmission line is not dispersive!
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Lossy Transmission Lines (contd.)

Q: Right. All the transmission lines | use have the property that
R/ > G/..I've never found a transmission line with this ideal

property R/, =G/,

-

A: It is true that typically B/, > ¢/.. But, we can reduce the ratio &/, (until it

is equal to ¢/.) by adding series inductors periodically along the
transmission line.

This was Heaviside’s solution—and it worked! Long distance
transmission lines were made possible.

Q: Why don’t we increase G instead?

A:



