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Lossless Transmission Line 

• For a lossless transmission line:

LC 

0 0( ) j z j zV z V e V e    

0 0

0 0

( ) j z j zV V
I z e e

Z Z

 
 

  

• Similarly the current phasor for a lossless line can be described:

0

L L L
Z

CLC

 

 
  

Q: 𝑍0 and 𝛽 are determined from L, C, and ω. How do we find 𝑉0
+ 𝑎𝑛𝑑 𝑉0

−?
A: Apply Boundary Conditions!

Every transmission line has 2
“boundaries”:
1) At one end of the transmission line.
2) At the other end of the trans line!

Typically, there is a source 
at one end of the line, and 

a load at the other.
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Terminated Lossless Transmission Line 
• Now let’s attach something to our transmission line. Consider a lossless

line, length 𝑙, terminated with a load 𝑍𝑙.
Reflection 

Coefficient at Load

Load 
Impedance

Characteristic 
Impedance

Input 
Impedance 
to the Line ZL

z = zlz =zl - l

Zin 0

Z0

z

Q: What is the current and voltage at each and every point on the
transmission line (i.e., what is 𝐼(𝑧) and 𝑉(𝑧) for all points 𝑧 where 𝑧𝑙 − 𝑙 <
𝑧 < 𝑧𝑙 .

A: To find out, we must apply boundary conditions!
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Terminated Lossless Transmission Line (contd.) 

• The load is assumed at z = zl

• The voltage wave couples into
the line at z =zl - l

Reflected WaveIncident Wave

ZL

𝐼(𝑧)
LI

Z0

( )V z 0

j zV e  

0

j zV e 

+

−

+

−

LI

z
z =zl - l z =zl

0 0( ) j z j zV z V e V e    

• At the load:
0 0( ) ( ) ( ) l lj z j z

l l lV z z V z z V z z V e V e
          

0 0

0 0 0 0

( ) ( )
( ) l lj z j zl l

l

V z z V z z V V
I z z e e

Z Z Z Z

 
   

 
    

• Furthermore, the load voltage and
current must be related by Ohm’s law: L L LV Z I
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Terminated Lossless Transmission Line (contd.) 

( )l LV z z V ( )l LI z z I 

• Most importantly, recognize that the
values 𝐼 𝑧 = 𝑧𝑙 , 𝑉(𝑧 = 𝑧𝑙) and 𝐼𝐿, 𝑉𝐿
are not independent, but in fact are
strictly related by Kirchoff’s Laws!

ZL

𝐼(𝑧 = 𝑧𝑙) LI

Z0 ( )lV z z

+

−

+

−

LI

zz =zl - l z =zl

So now we have the boundary conditions for this particular problem.

Careful! Different transmission line problems lead to different
boundary conditions—you must assess each problem individually
and independently!

• Combining these equations and
boundary conditions, we find that: ( ) ( )l L L L L lV z z V Z I Z I z z    

 
0

( ) ( ) ( ) ( )L
l l l l

Z
V z z V z z V z z V z z

Z

         
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Terminated Lossless Transmission Line (contd.) 

• Rearranging, we can conclude: 0

0

( )

( )

l L

l L

V z z Z Z

V z z Z Z





 


 

Voltage Reflection Coefficient Γ(𝒛 = 𝒛𝒍)
also holds true for current wave 

but with opposite sign

This value is of fundamental importance for the terminated transmission 
line problem, so we provide it with its own special symbol (Γ0)!

0

( )

( )

l

l

V z z

V z z






 



0

j zV e  

0

j zV e 
ZL

Z0

0

z =zl - l z =zl

0
0

0

L

L

Z Z

Z Z


 



More useful representation as 
it involves known 

circuit/system quantities
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Terminated Lossless Transmission Line (contd.) 

Q: I’m confused! Just what are we
trying to accomplish in this handout?

A: We are trying to find V(z)
and I(z) when a lossless
transmission line is
terminated by a load ZL!

• We can express the reflected voltage  wave as:

0
0

0

( )

( )

l

l

j z

l

j z

l

V z z V e

V z z V e





 

 


  



2

0 0 0
lj z

V V e
  

• Therefore:  2

0 0( ) lj z j zV z V e e
    

 20
0

0 0

( ) ( )
( ) lj zj z j zVV z V z

I z e e e
Z Z

 
 

 
    
 

 2

0 0( ) ( ) ( ) lj zj z j zV z V z V z V e e e
          

 
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Terminated Lossless Transmission Line (contd.) 
• Simplify by arbitrarily assigning the end point a zero value (i.e., 𝑧𝑙 = 0)

(0) (0)

0 0 0 0( 0) ( 0) ( 0) j jV z V z V z V e V e V V                

0 0

0

( 0)
V V

I z
Z

 
  0 0

0

0 0

( 0)
( 0)

( 0)
L

V VV z
Z z Z Z

I z V V

 

 

 
    

  

• The current and voltage along the line in this case are:

0 0( ) j z j zV z V e e       
0

0

0

( ) j z j zV
I z e e

Z

 


    

Q: But, how do we determine 𝑉0
+??
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Special Termination Conditions 

ZL

z = 0z =-l

Zin

0

Z0

• Let us once again consider a
generic TL terminated in
arbitrary impedance ZL

V(z)

I(z)

z = 0

ZL

z = -l

Zin

0

Z0

I(z)




( )V z

( )Z z

 

 

(2 )

0

(2 )

0

0

1( )
( )

( )
1

j z j z

j z
j z

V e eV z
Z z

V eI z
e

Z

 




  

 


 
 



• It’s interesting to note that ZL enforces a boundary
condition that explicitly determines neither V(z) nor
I(z)—but completely specifies line impedance Z(z)!

( )
( )

( )

V z
Z z

I z

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Special Termination Conditions (contd.) 

2 20
0

0

( )
( )

( )

j z j zL

L

V z Z Z
z e e

V z Z Z

 


 




    



• Likewise, the load boundary condition leaves 𝑉+(𝑧) and 𝑉−(𝑧)
undetermined, but completely determines reflection coefficient function
Γ(𝒛)!

0 0
0 0

0 0

cos( ) sin( )
( )

cos( ) sin( )

j z j z

L

j z j z

L

e e Z z jZ z
Z z Z Z

e e Z z jZ z

 

 

 

 

 

 

  
 

  

Let’s look at some specific values of load impedance 𝑍𝐿= 𝑅𝐿 + 𝑗𝑋𝐿
and see what functions 𝑍(𝑧) and Γ(𝒛) result!
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Special Termination Conditions (contd.) 

• 𝒁𝑳 = 𝒁𝟎

z = 0

ZL=Z0

z = -l

0

Z0

0
0

0

0L

L

Z Z

Z Z


  


The load reflection coefficient:

means no reflected 
wave V–(z) 

0( )Z z ZThe impedance at position z:

reflection coefficient 
is zero at all points 

along the line

The line impedance equals Z0

→ matched condition

Matched Line the load impedance equals the 
characteristic impedance of the TL
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Special Termination Conditions (contd.) 

• 𝒁𝑳 = 𝟎 Short-Circuited Line A device with no load is 
called short circuit

ZL =0

z = 0z =-l

0

Z0

l

0( ) tan( )Z z jZ z 

Short-circuit entails setting 
this impedance to zero

Alternatively

0

2
( ) tan

z
Z z jZ





 
   

 

0LR  0LX 

0
0

0

0
1

0

Z

Z


   



Note that this impedance is purely reactive. This means that the current and 
voltage on the transmission line will be everywhere 90° out of phase.
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Special Termination Conditions (contd.) 

0

0

2
( ) cos( )

V
I z z

Z





0 0( ) 2 sin( )j z j zV z V e e j V z          

• The current and voltage along the TL is:

• Short-Circuited Line

• Finally, the reflection coefficient function is:

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  


     Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave!

• Short-Circuited Line:
0( ) tan( )Z l jZ l 
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Special Termination Conditions (contd.) 

• Short-Circuited Line
0( ) tan( )Z l jZ l 

Zin

 lπ/2 3π/2

inductive

capacitive

5π/2

3 5
0

4 2 4 4

   
 d

0

It can be observed:
• At -l=0, the impedance is zero

(short-circuit condition)
• Increase in -l leads to inductive

behavior
• At -l=λ/4, the impedance equals

infinity (open-circuit condition)

• Further increase in -l leads to
capacitive behavior

• At -l=λ/2, the impedance becomes

zero (short-circuit condition)

• The entire periodic sequence

repeats for -l>λ/2 and so on…

HW#1: Demonstrate this behavior using ADS
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Example – 1 

For a short-circuited TL of l = 10 cm, compute the magnitude of the input
impedance when the frequency is swept from f = 1 GHz to 4 GHz. Assume the
line parameters L = 209.4 nH/m and C = 119.5 pF/m.

Solution:

0 / (209.4*0.1) / (119.5*0.5) 41.86Z L C   

81 1
1.99*10 /

(209.4*0.1)*(119.5*0.5) 41.86
pv m s

LC
  

 

0 0

2
( ) tan( ) tan

p

f
Z z l jZ l jZ l

v




 
      

 

Set l = 10 cm and then write a MATLAB program to obtain the Zin curve

Compare the MATLAB results to that obtained from ADS simulation

HW # 1
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Special Termination Conditions (contd.) 

• 𝒁𝑳 → ∞ Open-Circuited Line A device with infinite 
load is called open-circuit

LR   LX  

ZL → ∞

z = 0z = -l

Z(-l)

0

Z0

l

0( ) cot( )Z l jZ l  

Open-circuit entails 
setting this impedance 

to infinite

Alternatively
0

2
( ) cot

l
Z l jZ





 
    

 

0
0

0

1L

L

Z Z

Z Z


  



Again note that this impedance is purely reactive. current and voltage on 
the transmission line are  90° out of phase.
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0 0( ) 2 cos( )j z j zV z V e e V z         
0

0

2
( ) sin( )

V
I z j z

Z




 

• The current and voltage along the TL is:

• Open-Circuited Line

• Finally, the reflection coefficient function is:

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  
    Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave!

Special Termination Conditions (contd.) 

• At the load, 𝑧 = 0, therefore: 20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  
    (0) 0I 

As expected, the current is zero at the end of the transmission line (i.e. the 
current through the open). Likewise, the voltage at the end of the line (i.e., the 

voltage across the open) is at a maximum!
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Special Termination Conditions (contd.) 

0( ) cot( )Z l jZ l  

It can be observed:
• At -l=0, the impedance is infinite

(open-circuit condition)
• Increase in -l leads to capacitive 

behavior 
• At -l = λ/4, the impedance equals

zero (short-circuit condition)

• Further increase in -l leads to
inductive behavior

• At -l=λ/2, the impedance becomes

infinite (open-circuit condition)

• The entire periodic sequence

repeats for -l >λ/2 and so on…

Zin

π 2π 3π

inductive

capacitive

l

3 5
0

4 2 4 4

   


0

• Open-Circuited Line

HW#1: Demonstrate this behavior using ADS
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Transmission Line Input Impedance 
Q: Just what do you mean by input impedance?

Note 𝑍𝑖𝑛 equal to neither the load impedance 𝑍𝐿 nor the characteristic 
impedance 𝑍0!

𝑍𝑖𝑛 ≠ 𝑍𝐿 𝑍𝑖𝑛 ≠ 𝑍0

( )
( )

( )
in

V z l
Z Z z l

I z l

 
   

 

A: The input impedance is simply the line
impedance seen at the beginning (𝒛 = −𝒍)
of the transmission line, i.e.:

• We know the line impedance of a
lossless TL loaded with an
arbitrary load impedance is:

0
0

0

cos( ) sin( )
( )

cos( ) sin( )

L

L

Z z jZ z
Z z Z

Z z jZ z

 

 






The input impedance can be radically 
different from load impedance (ZL) and 

you should commit it to memory
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• For a transmission line of half wavelength long the input impedance equals
the load impedance irrespective of the characteristic impedance of the line

• It means it is possible to design a circuit segment where the transmission
line’s characteristic impedance plays no role (obviously the length of line
segment has to equal half wavelength at the operating frequency)

Transmission Line Input Impedance – Special Cases  

ZLβ, Z0

l = λ/2

in LZ Z

1. length of the line is l = m(λ/2)

0

0

0

2
tan .

2
( / 2)

2
tan .

2

L

in L

L

Z jZ

Z Z z Z Z

Z jZ

 




 



 
  

    
 

  
 
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Transmission Line Input Impedance – Special Cases (contd.)  
2. length of the line is l = λ/4 or λ/4 + m(λ/2) 

• This result implies that a transmission line segment can be used to
synthesize matching of any desired real input impedance (Zin) to the
specified real load impedance (ZL)

λ/4

ZL

LZ Given

inZ Desired

0 L inZ Z Z

This is known as 
quarter-wave 

impedance 
transformer

20

0
0

0

2
tan .

4
( / 4)

2
tan .

4

L

in

L
L

Z jZ
Z

Z Z l Z
Z

Z jZ

 




 



 
  

    
 

  
 
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ZL=0β, Z0

l = λ/4

inZ 

2. length of the line is l = λ/4 or λ/4 + m(λ/2) 

Transmission Line Input Impedance – Special Cases (contd.)  

Zin = ∞ ! This is an open circuit ! The quarter wave TL transforms a 
short-circuit into open-circuit and vice-versa 

2

0
in

L

Z
Z

Z


input impedance of a quarter-wave line is inversely 
proportional to the load impedance

→ Think about what this means! Say the
load impedance is a short circuit then:

2 2

0 0

0
in

L

Z Z
Z

Z
   
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• Consider a load resistance 𝑅𝐿 = 100Ω to be matched to a 50Ω line with a
quarter-wave transformer. Find the characteristic impedance of the
matching section and plot the magnitude of the reflection coefficient

versus normalized frequency,  𝑓 𝑓0
, where 𝑓0 is the frequency at which the

line is λ/4 long.

Example – 2 

• the necessary characteristic impedance is:

0 L inZ Z Z
0 50 100 70.71L inZ Z Z     

𝑍𝑖𝑛 is dependent on frequency

• The reflection coefficient magnitude is given as

0
0

0

in

in

Z Z

Z Z


 


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Example – 2 (contd.) 

0
0

0

tan
( / 4)

tan

L
in

L

Z jZ l
Z Z l Z

Z jZ l







  



0

0 0

2 2

4 4 2

p

p

vf f
l

v f f

  




    
             

For higher frequencies the matching section looks electrically 
longer, and for lower frequencies it looks shorter.

Plot the magnitude of the reflection coefficient 

versus  𝑓 𝑓0
using these two equations

HW # 1
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Transmission Line Input Impedance – Special Cases (contd.)  

• ZL = Z0

In other words, if the load impedance (ZL) is equal to the TL characteristic 
impedance (Z0), the input impedance (Zin) likewise will be equal to 

characteristic impedance (Z0) of the TL irrespective of its length

ZL=Z0β, Z0

l

0inZ Z

the load is numerically equal to the characteristic 
impedance of the transmission line (a real value).

0 0
0 0

0 0

tan( )

tan( )
in

Z jZ l
Z Z Z

Z jZ l






 



• ZL = jXL the load is purely reactive (i.e., the resistive component is zero)

0 0
0 0

0 0

tan( ) tan( )
( )

tan( ) tan( )

L L
in

L L

jX jZ l X Z l
Z Z z l Z jZ

Z X l Z X l

 

 

 
    

 

Purely 
Reactive
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Transmission Line Input Impedance – Special Cases (contd.)  

ZL=jXLβ, Z0
in LZ jX

Note that the opposite is not true: even if the load is purely resistive (ZL = R), the 
input impedance will be complex (both resistive and reactive components).

In other words, if the load impedance (ZL) is purely reactive then the input 
impedance likewise will be purely reactive irrespective of the line length (l)

• l << λ the transmission line is electrically small

• If length 𝑙 is small
with respect to signal
wavelength λ then:

2
2 0

l
l l


 

 
  

• Therefore: cos( ) 1l 

s ( ) 0in l 

• Thus the input 
impedance is:

0 0
0 0 0

0 0

cos( ) sin( ) (1) (0)

cos( ) sin( ) (1) (0)

L L
in

L L

Z l jZ l Z jZ
Z Z Z Z

Z l jZ l Z jZ

 

 

 
  

 
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Transmission Line Input Impedance – Special Cases (contd.)  

In other words, if the transmission line length is much smaller than a 
wavelength, the input impedance 𝑍𝑖𝑛 will always be equal to the load 

impedance 𝑍𝐿.

This is the assumption we used in all previous circuits courses (e.g., Linear 
Circuits, Digital Circuits, Integrated Electronics,  Analog Circuit Design etc.)! 
In those courses, we assumed that the signal frequency ω is relatively low, 

such that the signal wavelength λ is very large (λ ≫ 𝑙).

• Note also for this case (the electrically short transmission line), the
voltage and current at each end of the transmission line are
approximately the same!

( ) ( 0)V z l V z    ( ) ( 0)I z l I z   

If 𝑙 ≪ λ , our “wire” behaves exactly as it did in Linear Circuits course!
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Example – 3
Determine the input impedance of the following circuit:

Z
L
=

 1
 +

 j
2

??inZ 

2

3j
0 2.0Z 0 1.5Z 

0 1.0Z 

/ 8l / 4l / 2l 

Z
L
=

 1
 +

 j
2

??inZ 

2

3j

How about the following solution?

3*(2 1 2)
2.7 2.1

3 (2 1 2)
in

j j
Z j

j j

  
  
   

Where are the contributions of 
the TL??
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Example – 3 (contd.)

• Let us define Z1 as the input impedance of the last section as:

Z
L
=

 1
 +

 j
2

1Z
0 2.0Z 

/ 8l 

0
1 0

0

tan( )

tan( )

L

L

Z jZ d
Z Z

Z jZ d










Then the impedance Z1 is:

Where:
2

*
8 4

d
  




 

1

(1 2) 2 tan( / 4)
2

2 (1 2) tan( / 4)

j j
Z

j j





  
  

  

Therefore:

1

1 4
2

j
Z

j

 
  

 

1 8 2Z j  
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Example – 3 (contd.) 

Z
1
=

 8
 –

j2
 

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2
The problem simplifies to: Series

Simplification of 
the problem

Z
2
=

 1
0
 –

j2
 

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2 10 2Z j 
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Example – 3 (contd.) 

• Now let us define the input impedance of the middle TL as Z3:

2

3

(1.5)

10 2
Z

j



Therefore:

3 0.21 0.043Z j  
Z

2
=

 1
0
 –

j2
 

3Z
0 1.5Z 

/ 4l 

This is a quarter-wave TL → one of the 
special cases we considered earlier → 

where the input impedance is:
2

0
3

2

Z
Z

Z


• Then the problem simplifies to:

Z3= 0.21 + j0.043 

??inZ 
3j0 1.0Z 

/ 2l 

Parallel Combination

Z4= 0.22 + j0.028 
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Example – 3 (contd.) 
• Finally the simplified problem is:

??inZ 
0 1.0Z 

/ 2l 

Z4= 0.22 + j0.028 

TL is a half wavelength → special case we 
discussed earlier → input impedance 

equals the load impedance   

4 0.22 0.028inZ Z j   
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z = 0z = -l

β, Z0β, Z0
Z0/2 Z0/2

l =λ/4

( )
a

V z ( )
a

V z ( )
b

V z ( )
b

V z

For the following circuit determine: a

a

V

V





b

a

V

V





b

a

V

V





Given: 

( ) ( ) ( ) j z j z

a a a aV z V z V z V e V e          For z < -l

( ) ( ) ( ) j z j z

b b b bV z V z V z V e V e          For –l < z < 0

Example – 4
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Example – 4 (contd.)  
• We can write current equations as: 

0 0 0 0

( ) ( )
( ) j z j za a a aV z V z V V

I z e e
Z Z Z Z

 
   

     For z < -l

0 0 0 0

( ) ( )
( ) j z j zb b b bV z V z V V

I z e e
Z Z Z Z

 
   

     For –l < z < 0

• At z = -l:

β, Z0β, Z0

z = -l

Z0/2

( )
a

I z l  ( )
b

I z l 

R
I

( )
a

V z l 





( )
b

V z l 





KVL gives:

( ) ( )a bV z l V z l    

KCL gives:

( ) ( )a b RI z l I z l I     

Ohm’s Law gives:

0 0 0

( ) 2 ( ) 2 ( )

/ 2

a a b
R

V z l V z l V z l
I

Z Z Z

     
  
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Example – 4 (contd.)  

• At z = -l:

It is given:
4

l



2

4 2
l

  



 

 ( /2) ( /2)( ) j j

a a a a aV z l V e V e j V V            

Similarly:

 ( )b b bV z l j V V    

0

( ) b b
b

V V
I z l j

Z

  
    

 

0

( ) a a
a

V V
I z l j

Z

  
    

 

( ) ( )( ) ( ) ( ) j l j l j l j l

a a a a a a aV z l V z l V z l V e V e V e V e                         
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Example – 4 (contd.)  

• Now let us revisit the expressions achieved from KVL, KCL and Ohm’s Law

   a a b bj V V j V V      

( ) ( )a bV z l V z l    
KVL

1 a b b

a a a

V V V

V V V

  

  
   

 
0 0

22 ( ) a aa
R

j V VV z l
I

Z Z

  
 

Ohm’s Law

 
0 0

22 ( ) b bb
R

j V VV z l
I

Z Z

  
 

( ) ( )a b RI z l I z l I     
KCL

0 0

a a b b
R

V V V V
j j I

Z Z

       
     

   

0a a b b RV V V V jI Z      

1 3a b b

a a a

V V V

V V V

  

  
   



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Example – 4 (contd.)  

z = 0

β, Z0 Z0/2

• At z = 0: ( 0)bI z 

( 0)
b

V z 





L
I

L
V





KVL: ( 0)b LV z V 

KCL: ( 0)b LI z I 

Ohm’s Law: 
0 0

2

/ 2

L L
L

V V
I

Z Z
 

(0) (0)( 0) j j

b b b b bV z V e V e V V          

(0) (0)

0 0 0

( 0) j jb b b b
b

V V V V
I z e e

Z Z Z

 
   

  
   
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At z = 0:

0 0

2

/ 2

L L
L

V V
I

Z Z
 

0

( 0) b b
b

V V
I z

Z

 
  

( 0)b b bV z V V    

 
0 0

2 b bb b
V VV V

Z Z

   
simplify

1

3
b bV V  

You can also achieve this result by 
writing the expression for 

reflection coefficient 

Example – 4 (contd.)  
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Let us bring all the three simplified equations together 

1 a b b

a a a

V V V

V V V

  

  
  

(1)

1 3a b b

a a a

V V V

V V V

  

  
  

(2)

1

3
b bV V  

(3)

4
1

3

a b

a a

V V

V V

 

 
 Simplification of (1) and (3) results in: (4)

10
1

3

a b

a a

V V

V V

 

 
 Simplification of (2) and (3) results in: (5)

Simplify all of these to obtain the values of

a

a

V

V





b

a

V

V





b

a

V

V





Example – 4 (contd.)  
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Let us now summarize the fruits of our effort

3

7

a

a

V

V






1

7

b

a

V

V




 

3

7

b

a

V

V






Example – 4 (contd.)  


