

ECE321/521

Lecture – 2

Date: 05.01.2017

- Definition of Some TL Parameters
- Examples of Transmission Lines

Similarly the current phasor for a lossless line can be described:

 $I(z) = -\frac{1}{j\omega L} \frac{dV(z)}{dz} = -\frac{1}{j\omega L} \frac{d}{dz} \left[V_0^+ e^{-j\beta z} + V_0^- e^{j\beta z} \right]$ $\Rightarrow I(z) = \frac{\beta}{\omega I} \left[V_0^+ e^{-j\beta z} - V_0^- e^{j\beta z} \right]$ Gives the Definition of Characteristic Impedance

• The time dependent form of the voltage and current along the transmission line can be derived from phasors as:

$$v(z,t) = \operatorname{Re}\left[V(z)e^{j\omega t}\right] = \operatorname{Re}\left[V_0^+ e^{-j(\beta z - \omega t)} + V_0^- e^{j(\beta z + \omega t)}\right]$$
$$i(z,t) = \operatorname{Re}\left[I(z)e^{j\omega t}\right] = \operatorname{Re}\left[\frac{V_0^+}{Z_0}e^{-j(\beta z - \omega t)} - \frac{V_0^-}{Z_0}e^{j(\beta z + \omega t)}\right]$$

• For the simple case of V_0^+ and V_0^- being real, the voltage and current along the transmission line can be expressed as:

$$v(z,t) = V_0^+ \cos(\omega t - \beta z) + V_0^- \cos(\omega t + \beta z)$$
$$i(z,t) = \frac{V_0^+}{Z_0} \cos(\omega t - \beta z) - \frac{V_0^-}{Z_0} \cos(\omega t + \beta z)$$

$$V_0^+\cos(\omega t - \beta z)$$

$$V_0^-\cos(\omega t + \beta z)$$

Wave Functions

• Let us examine the wave characteristics of

$$v_1(z,t) = V_0^+ \cos(\omega t - \beta z)$$

• What is the physical meaning of <u>B</u>

Let us consider once again: $V_0^+ \cos(\omega t) - \beta z$

Apparently β represents the relative phase of this wave function in space (ie, function of transmission line position)

In principle, the value of β must have units of (ϕ/z) \Longrightarrow Radians/meter

Therefore, if the values of β is small, we will need to move a significant distance Δz down the transmission line in order to observe a change in the relative phase of the oscillation

Conversely, if the value of β is large, a significant change in relative phase can be observed if traveling a short distance Δz down the transmission line

• For example, in order to observe a change in relative phase of 2π , the distance Δz is:

ECE321/521

Transmission Lines (contd.)

It is apparent that the phase of both these are identical and hence:

 $v_{1}(z_{1},t_{1}) = v_{2}(z_{2},t_{2}) \longrightarrow \cos(\beta z_{1} - \omega t_{1}) = \cos(\beta z_{2} - \omega t_{2})$ Speed of
Propagation $v_{p} = \frac{\omega}{\beta} = \frac{\omega}{\omega\sqrt{LC}} = \frac{1}{\sqrt{LC}}$ Phase Velocity (v_{p})

ECE321/521

Transmission Lines (contd.)

• Simplified Expression for Wavelength:

$$\lambda = \frac{2\pi}{\beta} = \frac{2\pi}{\omega\sqrt{LC}} = \frac{v_p}{f} = v_p T$$

i.e, the wavelength is the distance traveled by the wave in a time interval equal to one period

Let us examine this expression:

$$\frac{z_2 - z_1}{t_2 - t_1} = \frac{\omega}{\beta}$$

- $t_2 > t_1$ and ω/β is a positive quantity \rightarrow this implies that $z_2 z_1$ must be positive or $z_2 > z_1$
- It ensures that the point of constant phase moves towards right (i.e, toward the load in the transmission line)
- In other words, the wave function $V_0^+ cos(\omega t \beta z)$ represents a traveling wave moving at a velocity v_p towards the load
- This wave is called outgoing wave when seen from the source and incident wave when viewed from the load

- Similarly, the analysis of $V_0^- cos(\omega t + \beta z)$ will show that this function represents a traveling wave at a velocity v_p to the left (i.e, towards the source in a transmission line)
- This wave is called incoming wave when seen from the source and reflected wave when viewed from the load
- $V_0^+ e^{-j\beta z}$ is called incident wave (phasor form) and $V_0^- e^{j\beta z}$ is called reflected wave (phasor form)
- In general, the voltage and current on a transmission line is composed of incident and reflected wave
- The quantity βz is known as electrical length of the line
- <u>Therefore:</u>

$$V(z) = V^{+}(z) + V^{-}(z) = V_{0}^{+}e^{-j\beta z} + V_{0}^{-}e^{j\beta z}$$

$$I(z) = \frac{V_0^+}{Z_0} e^{-j\beta z} - \frac{V_0^-}{Z_0} e^{j\beta z} = \frac{V^+(z) - V^-(z)}{Z_0}$$

Characteristic Impedance (Z₀)

- The characteristic impedance is defined as :
 - Z₀ = (incoming voltage wave) / (incoming current wave)
 - = (outgoing voltage wave) / (outgoing current wave)
- For a generic transmission line:

 $R + j\omega L$

- Z₀ is not an impedance in a conventional circuit sense
- definition is based on the incident and reflected voltage and current waves
- this definition has nothing in common with the total voltage and current expressions used to define a conventional circuit impedance
- Its importance will be apparent during the course of this COURSE!!!

Example – 1

• A plane wave propagating in a lossless dielectric medium has an electric field given as $E_x = E_0 \cos(\omega t - \beta z)$ with a frequency of 5.0 GHz and a wavelength of 3.0 cm in the material. Determine the propagation constant, the phase velocity, the relative permittivity of the medium, and the intrinsic impedance of the wave.

The propagation constant:

The phase velocity:

$$v_p = \frac{\omega}{\beta} = \frac{2\pi f}{\beta} = \lambda f \quad \square \quad v_p = 0.03 \times 5 \times 10^9 = 1.5 \times 10^8 \, m \,/\,\text{sec}$$

Lower than the speed of light in free medium

ECE321/521

Example – 1 (contd.)

<u>Relative permittivity of the medium:</u>

$$v_p = \frac{c}{\sqrt{\varepsilon_r}} \quad \Longrightarrow \quad \varepsilon_r = \left(\frac{c}{v_p}\right)^2 \quad \Longrightarrow \quad \left(\varepsilon_r = \left(\frac{3 \times 10^8}{1.5 \times 10^8}\right)^2 = 4.0\right)$$

Characteristic impedance of the wave:

ECE321/521

Line Impedance (Z)

Line Impedance (Z) – contd.

• Actually, line impedance is the ratio of total complex voltage (incoming + outgoing) wave to the total complex current voltage wave.

$$Z(z) = \frac{V(z)}{I(z)} \longrightarrow \left[\frac{V^+(z) + V^-(z)}{\left(V^+(z) - V^-(z) \right) / Z_0} \right] \longrightarrow \left[\frac{V^+(z) + V^-(z)}{\left(V^+(z) - V^-(z) \right) / Z_0} \right]$$

- However, the line and characteristic impedance can be equal if either the incoming or outgoing voltage wave equals ZERO!
- Say, if $V^{-}(z) = 0$ then:

$$Z(z) = \frac{V^{+}(z) + V^{-}(z)}{\left(\begin{pmatrix} V^{+}(z) - V^{-}(z) \end{pmatrix} / \\ / Z_{0} \end{pmatrix}} = Z_{0}$$

Line Impedance (Z) – contd.

It appears to me that Z₀ is a transmission line parameter, depending only on the transmission line values R, L, C and G.

Whereas, Z(z) depends on the magnitude and the phase of the two propagating waves $V^+(z)$ and $V^-(z) \rightarrow$ values that depend not only on the transmission line, but also on the two things attached to either end of the transmission line.

Exactly!!!

Right?

Example of Transmission Lines

Two common examples:

coaxial cable

A transmission line is normally used in the balanced mode, meaning equal and opposite currents (and charges) on the two conductors.

Example of Transmission Lines (contd.)

Coaxial Cable

$$C = \frac{2\pi\varepsilon_{0}\varepsilon_{r}}{\ln\left(\frac{b}{a}\right)} \quad [F/m] \qquad G = \frac{2\pi\sigma_{d}}{\ln\left(\frac{b}{a}\right)} \quad [S/m]$$
$$L = \frac{\mu_{0}}{2\pi}\ln\left(\frac{b}{a}\right) \quad [H/m] \qquad R = \frac{1}{\sigma_{m}\delta}\left(\frac{1}{2\pi a} + \frac{1}{2\pi b}\right) \quad [\Omega/m]$$
$$\delta = \sqrt{\frac{2}{\omega\mu\sigma_{m}}} \quad (skin \ depth \ of \ metal)}$$

ECE321/521

Example of Transmission Lines (contd.)

Another common example (for printed circuit boards):

ECE321/521

Microstrip Line (contd.)

• The severity of field leakage also depends on the relative dielectric constants (ε_r).

Microstrip Line (contd.) microstrip line **USB Hub Ports** Neo1973 **Debug Port** JTAG (Non-Neo1973) ÚART (Non-Neo1973)

Microstrip Transmission Lines Design

- Simple parallel plate model can not accurately define this structure.
- Because, if the substrate thickness increases or the conductor width decreases then fringing field become more prominent (and therefore need to be incorporated in the model).

<u>Case-I</u>: thickness (t) of the line is negligible

For narrow microstrips $\binom{w}{h} \leq 1$: 2

$$Z_0 = \frac{Z_f}{2\pi\sqrt{\varepsilon_{eff}}} \ln\left(8\frac{h}{w} + \frac{w}{4h}\right)$$

Where,
$$Z_f = \sqrt{\mu_0 / \varepsilon_0} = 377 \Omega$$
 wave impedance in free space

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[\left(1 + 12\frac{h}{w} \right)^{-1/2} + 0.004 \left(1 - \frac{w}{h} \right)^2 \right] \xleftarrow{\text{Effective Dielectric}}_{\text{Constant}}$$

Microstrip Transmission Lines Design (contd.)

• For wide microstrips $({}^{w}/_{h} \ge 1)$:

$$Z_0 = \frac{Z_f}{\sqrt{\varepsilon_{eff}} \left(1.393 + \frac{w}{h} + \frac{2}{3} \ln\left(\frac{w}{h} + 1.444\right) \right)}$$

• Where the effective dielectric constant is expressed as:

$$\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(1 + 12\frac{h}{w}\right)^{-1/2}$$

The two distinct expressions give approximate values of characteristic impedance and effective dielectric constant for narrow and wide strip microstrip lines \rightarrow these can be used to plot Z_0 and ε_{eff} as a function of ${}^w/_h$.

ECE321/521

Microstrip Transmission Lines Design (contd.)

Microstrip Transmission Lines Design (contd.)

Free Space

Wavelength

Microstrip Transmission Lines Design (contd.)

- The effective dielectric constant (ε_{eff}) is viewed as the dielectric constant of a $\lambda = \frac{v_p}{r} = A$ homogenous material that fills the entire space around the line. Therefore:
- The wavelength in the microstrip line for $\frac{W}{h} \ge 0.6$ is:
- The wavelength in the microstrip line for $\frac{W}{h} \leq 0.6$ is:

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r}} \left[\frac{\varepsilon_r}{1 + 0.63(\varepsilon_r - 1)(W/h)^{0.1255}} \right]^{1/2}$$
$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r}} \left[\frac{\varepsilon_r}{1 + 0.6(\varepsilon_r - 1)(W/h)^{0.0297}} \right]^{1/2}$$

Speed of Light

Microstrip Transmission Lines Design (contd.)

 In some specifications, wavelength is known. In that case following curve can be used to identify the w/h ratio.

Microstrip Transmission Lines Design (contd.)

• If Z_0 and ε_r is specified or known, following expression can be used to determine w/h:

For w/h≤2:
$$\frac{W}{h} = \frac{8e^A}{e^{2A} - 2}$$
 Where: $A = 2\pi \frac{Z_0}{Z_f} \sqrt{\frac{\varepsilon_r + 1}{2}} + \frac{\varepsilon_r - 1}{\varepsilon_r + 1} \left(0.23 + \frac{0.11}{\varepsilon_r} \right)$

For w/h≥2:
$$\frac{w}{h} = \frac{2}{\pi} \left(B - 1 - \ln(2B - 1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\varepsilon_r} \right] \right)$$
 Where:
 $B = \frac{Z_f \pi}{2Z_0 \sqrt{\varepsilon_r}}$

<u>Case-II</u>: thickness (t) of the line is not negligible \rightarrow in this scenario all the formulas are valid with the assumption that the effective width of the line increases as:

$$w_{eff} = w + \frac{t}{\pi} \left(1 + \ln \frac{2x}{t} \right)$$

Where x = h if $w > h/_{2\pi}$ or $x = 2\pi w$ if $h/_{2\pi} > w > 2t$

Example – 2

A microstrip material with $\varepsilon_r = 10$ and h = 1.016 mm is used to build a narrow transmission line. Determine the width for the microstrip transmission line to have a characteristic impedance of 50 Ω . Also determine the wavelength and the effective relative dielectric constant of the microstrip line.

Using the Formulas:

Let us consider the first formula:

$$\frac{w}{h} = \frac{8e^{A}}{e^{2A} - 2}$$

$$A = 2\pi \frac{Z_{0}}{Z_{f}} \sqrt{\frac{\varepsilon_{r} + 1}{2}} + \frac{\varepsilon_{r} - 1}{\varepsilon_{r} + 1} \left(0.23 + \frac{0.11}{\varepsilon_{r}} \right) = 2\pi \frac{50}{377} \sqrt{\frac{10 + 1}{2}} + \frac{10 - 1}{10 + 1} \left(0.23 + \frac{0.11}{10} \right)$$

$$\Rightarrow A = 2.1515$$
Therefore: $\frac{w}{h} = \frac{8e^{2.1515}}{e^{2(2.1515)} - 2} = 0.9563$

Now: h = 1.016 mm = 0.1016 cm = 0.1016(1000/2.54) mils = 40 mils

$$\therefore w = 0.9563 * 40 mils = 38.2 mils$$

Example – 2 (contd.)

$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r}} \left[\frac{\varepsilon_r}{1 + 0.63(\varepsilon_r - 1)(w/h)^{0.1255}} \right]^{1/2}$$

$$\therefore \lambda = \frac{\lambda_0}{\sqrt{10}} \left[\frac{10}{1 + 0.63(10 - 1)(0.9563)^{0.1255}} \right]^{1/2} = 0.387 \lambda_0$$

$$\lambda = \frac{v_p}{f} = \frac{c}{f\sqrt{\varepsilon_{eff}}} = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}} \implies \varepsilon_{eff} = \left(\frac{\lambda_0}{\lambda}\right)^2$$

$$\therefore \varepsilon_{eff} = \left(\frac{1}{0.387}\right)^2 = 6.68$$

Example – 2 (contd.)

Using the Design Curves

Example – 2 (contd.)

Using the Design Curves

Example – 3

- a. Using the design curves, calculate W, λ , and ε_{eff} for a characteristic impedance of 50 Ω using RT/Duroid with $\varepsilon_r = 2.23$ and h = 0.7874 mm.
- b. Use design equations to show that for RT/Duroid with $\varepsilon_r = 2.23$ and h = 0.7874 mm, a 50 Ω -characteristic impedance is obtained with $W/_h = 3.073$. Also show, $\varepsilon_{eff} = 1.91$ and $\lambda = 0.7236\lambda_0$.

ECE321/521

Example – 3 (contd.)

For
$$\frac{W}{h} \approx 3.1$$
 and $\varepsilon_r = 2.23$
 $\frac{\lambda}{\lambda_{TEM}} = 1.08 \longrightarrow \lambda = 1.08\lambda_{TEM}$
We know: $\lambda_{TEM} = \frac{\lambda_0}{\sqrt{\varepsilon_r}}$
 $\therefore \lambda = 0.723\lambda_0$

Also:
$$\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_{eff}}}$$
 $\varepsilon_{eff} = 1.91$

Example – 3 (contd.)

For w/h≥2:
$$\frac{w}{h} = \frac{2}{\pi} \left(B - 1 - \ln(2B - 1) + \frac{\varepsilon_r - 1}{2\varepsilon_r} \left[\ln(B - 1) + 0.39 - \frac{0.61}{\varepsilon_r} \right] \right)$$
 Where:
 $B = \frac{Z_f \pi}{2Z_0 \sqrt{\varepsilon_r}}$

Therefore:
$$\frac{w}{h} = \frac{2}{\pi} \left(B - 1 - \ln(2B - 1) + \frac{2.23 - 1}{2 \times 2.23} \left[\ln(B - 1) + 0.39 - \frac{0.61}{2.23} \right] \right)$$

Where:
$$B = \frac{377\pi}{2 \times 50 \times \sqrt{2.23}} = 7.931$$
 $\therefore \frac{w}{h} = 3.073$

• For
$$W/_h \ge 0.6$$
: $\lambda = \frac{\lambda_0}{\sqrt{\varepsilon_r}} \left[\frac{\varepsilon_r}{1 + 0.63(\varepsilon_r - 1)(W/h)^{0.1255}} \right]^{1/2}$
 $\therefore \lambda = \frac{\lambda_0}{\sqrt{2.23}} \left[\frac{2.23}{1 + 0.63(2.23 - 1)(3.073)^{0.1255}} \right]^{1/2} = 0.724\lambda_0$