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Transmission Lines (contd.)
• For a lossless transmission line the

second order differential equation for
phasors are:
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• Similarly the current phasor for a lossless line can be described:
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Gives the Definition of 

Characteristic 
Impedance
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Transmission Lines (contd.)
Completely 

Dependent on L and C

0

L L L
Z

CLC

 

 
  

Opposite Signs in these Terms 
Gives a Clue about Current Flow in 

Two Different Directions
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Characteristic Impedance for a 
Lossless Line is Real

• The time dependent form of the voltage and current along the
transmission line can be derived from phasors as:
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Transmission Lines (contd.)
• For the simple case of 𝑽𝟎

+ and 𝑽𝟎
− being real, the voltage and current

along the transmission line can be expressed as:

0 0

0 0

0 0

( , ) cos( ) cos( )

( , ) cos( ) cos( )

v z t V t z V t z

V V
i z t t z t z

Z Z
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   

 

 

   

   

• Let us examine the wave characteristics of
1 0( , ) cos( )v z t V t z  

Wave Functions

0 cos( )V t z   0 cos( )V t z  
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Transmission Lines (contd.)
• For fixed position z and variable t:

ωt

 1 ,v z t

𝑽𝟎
+

−𝑽𝟎
+

π 2π

ωt|t=T =2π

Time Period 
of Wave

2 1
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We can deduce:

• For fixed time t and variable
position z
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+
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Transmission Lines (contd.)

• What is the physical meaning of 𝜷 φ

In principle, the value of 𝜷 must have units of  (φ/z) Radians/meter

Therefore, if the values of 𝛽 is small, we will need to move a significant 
distance ∆𝑧 down the transmission line in order to observe a change in the 

relative phase of the oscillation 

Conversely, if the value of 𝛽 is large, a significant change in relative phase 
can be observed if traveling a short distance ∆𝑧 down the transmission line

0 cos( )V t z  Let us consider once again:

Apparently 𝛽 represents the relative phase of this wave function 
in space (ie, function of transmission line position)
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Transmission Lines (contd.)
• For example, in order to observe a change in relative phase of 2π, the

distance ∆𝑧 is:

λ: Wave Length

2





Can’t we call it spatial counterpart?
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Transmission Lines (contd.)

1 1 1 2 2 2( , ) ( , )v z t v z t

• It is apparent that the phase of both these are identical and hence:
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z = z2 • For variable
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Transmission Lines (contd.)

i.e, the wavelength is the distance traveled by the wave in a 
time interval equal to one period

• Simplified Expression for Wavelength:
2 2 p

p

v
v T

fLC

 


 
   

Let us examine this expression: 2 1

2 1

z z

t t










• 𝑡2 > 𝑡1 and  𝜔 𝛽 is a positive quantity → this implies that 𝑧2 − 𝑧1 must be

positive or 𝑧2 > 𝑧1
• It ensures that the point of constant phase moves towards right (i.e,

toward the load in the transmission line)

• In other words, the wave function 𝑉0
+ 𝑐𝑜𝑠(𝜔𝑡 − 𝛽𝑧) represents a

traveling wave moving at a velocity 𝑣𝑝 towards the load

• This wave is called outgoing wave when seen from the source and
incident wave when viewed from the load
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Transmission Lines (contd.)

• Similarly, the analysis of 𝑉0
− 𝑐𝑜𝑠(𝜔𝑡 + 𝛽𝑧) will show that this function

represents a traveling wave at a velocity 𝑣𝑝 to the left (i.e, towards the

source in a transmission line)
• This wave is called incoming wave when seen from the source and

reflected wave when viewed from the load

• 𝑉0
+ 𝑒−𝑗𝛽𝑧 is called incident wave (phasor form) and 𝑉0

− 𝑒𝑗𝛽𝑧 is called

reflected wave (phasor form)
• In general, the voltage and current on a transmission line is composed of

incident and reflected wave
• The quantity 𝛽𝑧 is known as electrical length of the line

• Therefore:
0 0( ) ( ) ( ) j z j zV z V z V z V e V e        

0 0

0 0 0

( ) ( )
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I z e e
Z Z Z

 
   

 
  



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Characteristic Impedance (Z0)

• Z0 is not an impedance in a conventional circuit sense
• definition is based on the incident and reflected voltage and current waves
• this definition has nothing in common with the total voltage and current

expressions used to define a conventional circuit impedance
• Its importance will be apparent during the course of this COURSE!!!

• The characteristic impedance is defined as :

Z0 = (incoming voltage wave) / (incoming current wave)

= (outgoing voltage wave) /  (outgoing current wave)

The incoming and outgoing voltage and current
waves are position dependent → the ratio of
voltage and current waves are independent of
position → actually is a constant → an
important characteristic of a transmission line
→ called as Characteristic Impedance

• For a generic transmission line:

0

R j L
Z

G j C









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• A plane wave propagating in a lossless dielectric medium has an electric
field given as 𝐸𝑥 = 𝐸0cos(𝜔𝑡 − 𝛽𝑧) with a frequency of 5.0 GHz and a
wavelength of 3.0 cm in the material. Determine the propagation constant,
the phase velocity, the relative permittivity of the medium, and the
intrinsic impedance of the wave.

Example – 1 

The propagation constant: 

2





2

0.03


  1209.4m  

The phase velocity:

2
p

f
v f

 


 
  

9 80.03 5 10 1.5 10 / secpv m    

Lower than the speed of light in free medium
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Example – 1 (contd.) 

Relative permittivity of the medium: 

p

r

c
v




2

r

p

c

v


 
   
 

2
8

8

3 10
4.0

1.5 10
r

 
  

 

Characteristic impedance of the wave: 

0
wave

r







377
188.5

4
wave   
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Hey, I know what this is! 

Line Impedance (Z)

NO!

The ratio of 
incoming voltage to 

incoming current 
wave. Right?
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Line Impedance (Z) – contd. 

• Actually, line impedance is the ratio of total complex voltage (incoming +
outgoing) wave to the total complex current voltage wave.

In most of 
the cases

• However, the line and characteristic impedance can be equal if either the
incoming or outgoing voltage wave equals ZERO!
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( )

( )

V z
Z z
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

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 
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• Say, if 𝑉− 𝑧 = 0 then:
 
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V z V z
Z z Z
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 

 
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Line Impedance (Z) – contd. 

It appears to me that 𝒁𝟎 is a 
transmission line parameter, 

depending only  on the 
transmission line values R, L, 

C and G.

Whereas, 𝒁(𝒛) depends on the 
magnitude and the phase of the two 

propagating waves 𝑽+ 𝒛 and 𝑽− 𝒛 → 
values that depend not only on the 

transmission line, but also on the two 
things attached to either end of the 

transmission line.

Right? Exactly!!!
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Example of Transmission Lines

Two common examples:

twin linecoaxial cable
r

 a

bz

A transmission line is normally used in the balanced mode, meaning equal 
and opposite currents (and charges) on the two conductors.

twin line coax to twin line 
matching section

coaxial cable

Here’s what they look like in real-life:
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Example of Transmission Lines (contd.)

Twin Line

a = radius of wires

d

r

 0 0

1 1
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r

d
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a

a d


 
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 

 1 2cosh ln 1 ln 2xx x x x    

 0

1

F/m

cosh
2
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d

a

 




 
 
 

 10 cosh H/m
2

d
L

a





  
  

 
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2
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d
Z

a


 

  
  
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Example of Transmission Lines (contd.)

2

m





(skin depth 
of metal)

d = conductivity of dielectric [S/m].

m = conductivity of metal [S/m].

Coaxial Cable

r
 a
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 

 

0
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2
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rC
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 
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
 
 
 

 
  

 

 

 

2
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1 1 1
/m

2 2

d

m

G
b

a

R
a b



   


 
 
 

 
   

 
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microstrip line

Another common example (for printed circuit boards):

w

h
r

Ground plane helps in 
preventing the field leakage and 
thus reduces the radiation loss

Example of Transmission Lines (contd.)
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• The severity of field leakage also depends on the relative dielectric
constants 𝜀𝑟 .

It is apparent that the radiation loss could be 
minimized by using substrates with high dielectric 

constants

Microstrip Line (contd.)

Magnetic 
Field Lines

Electric 
Field Lines

Alternative approaches to reduce radiation loss and interference are 
shielded microstrip line and multi-layer boards    
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microstrip line
Microstrip Line (contd.)
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Microstrip Transmission Lines Design

w

h

r

t

• Simple parallel plate model can not
accurately define this structure.

• Because, if the substrate thickness
increases or the conductor width
decreases then fringing field become
more prominent (and therefore need to
be incorporated in the model).

Case-I: thickness (t) of the line is negligible

• For narrow microstrips (  𝒘 𝒉 ≤ 𝟏):
0 ln 8

42

f

eff

Z h w
Z

w h

 
  

  

Where,
0 0/ 377fZ     wave impedance in free space

1/2 2
1 1

1 12 0.004 1
2 2

r r
eff

h w

w h

      
        

     

 
 Effective Dielectric 

Constant
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Microstrip Transmission Lines Design (contd.)

The two distinct expressions give approximate values of 
characteristic impedance and effective dielectric constant for 
narrow and wide strip microstrip lines → these can be used 

to plot Z0 and εeff as a function of  𝑤 ℎ.

• For wide microstrips
 𝑤 ℎ ≥ 1 :

0
2

1.393 ln 1.444
3

f

eff

Z
Z

w w

h h


  

    
  



• Where the effective dielectric
constant is expressed as:

1/2
1 1

1 12
2 2

r r
eff

h

w

 



   

   
 
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Microstrip Transmission Lines Design (contd.)

For a desired characteristic 
impedance using known 
substrate, the dimension 

w/h can be identified from 
this curve 
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Microstrip Transmission Lines Design (contd.)

Once the line dimensions 
are known, the effective 

dielectric constant can be 
identified
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Microstrip Transmission Lines Design (contd.)

• The effective dielectric constant (εeff) is
viewed as the dielectric constant of a
homogenous material that fills the entire
space around the line. Therefore:

0p

eff eff

v c

f f
  




 
Speed of Light

Free Space 
Wavelength

• The wavelength in the
microstrip line for  𝑾 𝒉 ≥ 𝟎. 𝟔 is:

 

1/2

0

0.1255
1 0.63( 1) /

r

r r W h

 


 

 
  

   

• The wavelength in the
microstrip line for  𝑾 𝒉 ≤ 𝟎. 𝟔 is:

 

1/2

0

0.0297
1 0.6( 1) /

r

r r W h

 


 

 
  

   



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Microstrip Transmission Lines Design (contd.)

• In some specifications, wavelength is known. In that case following curve
can be used to identify the w/h ratio.

It is a good 
approximation at lower 
microwave frequencies. 

However, at higher 
microwave frequencies  
this assumption is no 

more valid. 
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• If Z0 and εr is specified or known, following expression can be used to
determine w/h:

2

8

2

A

A

w e

h e



For w/h≤2: Where: 0 1 1 0.11

2 0.23
2 1

r r

f r r

Z
A

Z

 


 

  
   

  

Microstrip Transmission Lines Design (contd.)

12 0.61
1 ln(2 1) ln( 1) 0.39

2

r

r r

w
B B B

h



  

  
          

  

For w/h≥2:
Where:

02

f

r

Z
B

Z






Case-II: thickness (t) of the line is not negligible → in this scenario all the
formulas are valid with the assumption that the effective width of the line
increases as:

2
1 lneff

t x
w w

t

 
   

 

Where 𝒙 = 𝒉 𝒊𝒇 𝒘 >  𝒉 𝟐𝝅 or 𝒙 = 𝟐𝝅𝒘 𝒊𝒇  𝒉 𝟐𝝅 > 𝒘 > 𝟐𝒕
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Example – 2 
A microstrip material with εr = 10 and h = 1.016 mm is used to build a narrow
transmission line. Determine the width for the microstrip transmission line to
have a characteristic impedance of 50Ω. Also determine the wavelength and the
effective relative dielectric constant of the microstrip line.

Using the Formulas:

2

8

2

A

A

w e

h e



Let us consider the first formula:

0 1 1 0.11 50 10 1 10 1 0.11
2 0.23 2 0.23

2 1 377 2 10 1 10

r r

f r r

Z
A

Z

      
        

    

 
 

 

2.1515A 
2.1515

2(2.1515)

8
0.9563

2

w e

h e
 


Therefore:

Now: h = 1.016 mm = 0.1016 cm = 0.1016(1000/2.54) mils = 40 mils 

0.9563*40 38.2w mils mils  
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1/2

0
00.1255

10
0.387

1 0.63(10 1)(0.9563)10

 
   

  


 

1/2

0

0.12551 0.63( 1)( / )

r

rr
w h

 
  

  

 




0p

eff eff

v c

f f
  




 

2

0
eff

 
   

 






2
1

6.68
0.387

eff

 
   

 


Example – 2 (contd.) 
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Using the Design Curves

0 50Z  

10r 

1
w

h


h = 1.016 mm = 40 mils

=> w = 40 mils

Example – 2 (contd.) 
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Using the Design Curves

1
w

h


1.23
TEM






0 0
01.23 1.23 0.389

10r

  
 

 


2 2

0 1
6.61

0.389
eff

   
     

  






Example – 2 (contd.) 
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Example – 3  
a. Using the design curves, calculate W, λ, and 𝜀𝑒𝑓𝑓 for a characteristic

impedance of 50Ω using RT/Duroid with 𝜀𝑟 = 2.23 and ℎ = 0.7874 𝑚𝑚.
b. Use design equations to show that for RT/Duroid with εr = 2.23 and ℎ =

0.7874 𝑚𝑚, a 50Ω-characteristic impedance is obtained with  𝑊
ℎ =

3.073. Also show, 𝜀𝑒𝑓𝑓 = 1.91 and λ = 0.7236λ0.

𝑊

ℎ
≈ 3.1

W=3.1 × ℎ = 3.1 × 0.784 = 2.44𝑚𝑚
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Example – 3 (contd.) 

λ

λ𝑇𝐸𝑀
= 1.08

𝑊

ℎ
≈ 3.1For and 𝜀𝑟 = 2.23

λ = 1.08λ𝑇𝐸𝑀

λ𝑇𝐸𝑀 =
λ0
𝜀𝑟

We know:

∴ λ = 0.723λ0

λ =
λ0
𝜀𝑒𝑓𝑓

Also: 𝜀𝑒𝑓𝑓 = 1.91
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Example – 3 (contd.) 

12 0.61
1 ln(2 1) ln( 1) 0.39

2

r

r r

w
B B B

h



  

  
          

  

For w/h≥2:
Where:

02

f

r

Z
B

Z






2 2.23 1 0.61
1 ln(2 1) ln( 1) 0.39

2 2.23 2.23

w
B B B

h 

   
            

Therefore:

Where:
377

7.931
2 50 2.23

B


 
 

3.073
w

h
 

• For  𝑾 𝒉 ≥ 𝟎. 𝟔:

 

1/2

0

0.1255
1 0.63( 1) /

r

r r W h

 


 

 
  

   

 

1/2

0
00.1255

2.23
0.724

2.23 1 0.63(2.23 1) 3.073


 

 
   

   


