Indraprastha Institute of ECE321/521

Information Technology Delhi

D

Lecture — 20 Date: 30.03.2017

* Filter Realization using Lumped Components
e Richard’s Transformation

 Kuroda ldentities
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Filter Realizations Using Lumped Elements

Our first filter circuit will be “realized” with lumped elements.

Lumped elements—we mean inductors L and capacitors C !

Since each of these elements are (ideally) perfectly reactive, the
resulting filter will be lossless (ideally).

Let us first consider two configurations of a ladder circuit:
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Filter Realizations Using Lumped Elements (contd.)

Note that these two structures provide a low-pass filter response (evaluate
the circuits at w = 0 and w = o=!).

Indraprastha Institute of ECE321/521

Information Technology Delhi

Moreover, these structures have N different reactive elements (i.e., N
degrees of design freedom) and thus can be used to realize an N-order
power loss ratio.

* For example, consider the Butterworth power

2N
(0
loss ratio function: P (@) :1+£_]

@,

* Recall this is a low-pass function,as P, = 1l atw=0,and Pjp = 0 at w =
oo, Note also that at w, = w:

2N Th
rto-er-(2] 2|y [ Tew-3)

c

{ In other words, w_ defines the 3dB bandwidth of the low-pass filter.]
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Filter Realizations Using Lumped Elements (contd.)
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Likewise, we find that this Butterworth function is maximally flat at w = 0O:

2N )
[PLR(CO:O)ZJ_-F[EJ :] and: [M| 0:0] For all n
o, do"

* Now, we can determine the function P (w) for a lumped element ladder
circuit of N elements using our knowledge of complex circuit theory.

e Then, we can equate the resulting polynomial to the maximally flat
function above. In this manner, we can determine the appropriate values
of all inductors L and capacitors C!

* Finding these L an C requires little bit of complex algebra.

 Pozar provides tables of complete Butterworth and Chebychev low-pass

solutions.
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Filter Realizations Using Lumped Elements (contd.)

TABLE 8.3

Element Values fo1

we = 1, N=1to 10)

* Maximally Flat Low-Pass Filter Prototypes (gg =1,

N & g2 g3 84 g5 86 g7 8s 89 £10 811
1 2.0000 1.0000

2 14142 1.4142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 0.7654 1.8478 1.8478 0.7654 1.0000

5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000

6 05176 1.4142 19318 1.9318 1.4142 05176 1.0000

7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000

8 0.3902 1.1111 1.6629 1.9615 1.9615 1.6629 1.1111 0.3902 1.0000

9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473 1.0000

10 0.3129 09080 1.4142 1.7820 1.9754 19754 1.7820 1.4142 0.9080 0.3129 1.0000

Source: Reprinted from G. L. Matthae1, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.
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Filter Realizations Using Lumped Elements (contd.)

TABLE 84 Element Values for Equal-Ripple Low-Pass Filter Protorypes (ggp =1, @0, =
1, N=11010,0.5dB and 3.0 dB ripple)

0.5 dB Ripple

N = P g &1 g g6 g7 gs 8o g1 gu

1 06986 1.0000

2 14020 07071 19841

3 1.5063 1.0067 1.5963 1.0000

4 1.6703 1.1926 23661 03419 19341

5 1.7058 12206 25408 12296 1.7058 1.0000

6 1.7254 1.2479 26064 13137 24758 0.8696 1.0841

7 17372 12583 26381 13444 26381 12583 1.7372 1.0000

8 1.7451 12647 26564 13590 26964 13380 25003 08706 109341

0 1.7504 12690 2.6678 13673 2.7230 13673 2.6678 1.2600 1.7504 1.0000

10 1.7543 12721 26754 13725 27302 13806 27231 13485 25230 08842 10841
3.0 dB Ripple

N = £ g3 £ g g6 g7 gs g9 g1 gu

1 1.9953 1.0000

2 31013 05339 538005

3 33487 07117 33487 1.0000

4 34380 0.7483 43471 05920 58095

5 34817 07618 45381 07618 34817 1.0000

6 3.5045 07685 46061 07920 44641 06033 58005

7 35182 07723 46386 08030 46386 07723 35132 1.0000

8 3.5277 0.7745 4.6575 0.8089 4.6000 0.8018 44990 0.6073 5.8095

9 35340 07760 46602 08118 47272 08118 46602 07760 35340 1.0000

10 35384 07771 46768 08136 47425 08164 47260 08051 45142 06091 58005

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham  Mass_ 1980, with permission.
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Insertion Loss Method
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Example -1

A maximally flat low-pass filter is to be designed with a cut-off frequency of
8GHz and a minimum attenuation of 20dB at 11GHz. How many filter
elements are required?

0 //
. m a4
e have: / // / 7 / /
% 11 : 7y /f ’ //
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Design a maximally flat low-pass filter with a cut-off frequency of 2GHgz,
impedance of 50Q and at least 15dB insertion loss at 3GHz.

e First, find the required order of the maximally flat filter to satisfy the
insertion loss specification at 3GHz.

e We have:

0
2z 1=3_1-05
w,/2x

* Itis apparent that N =5 will be sufficient.

* From the table we get: g4 =0.618, g,= 1.618, g3= 2.000, g, =
1.618, g5 = 0.618.
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Example — 2 (contd.)

 The Analysis of N-element filters give: [Ln = gn(—sn

e The elements are therefore:
C,=00984pF L,=6.438nH C,=3.183pF L,=6.438nH C,=0.984pF

Rs=50Q L L}

—AAN—O—— Y Y Y YN

o

N _
[~ il il _ (L R, =500
\%_/,. 1 3 5 L

9]
9]
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Filter Realizations Using Lumped Elements (contd.)

Q: What?! What the heck do these values g, mean?
A: We can use the values g, to find the values of inductors and capacitors required
for a given cut-off frequency w_and source resistance R, (Z,).

Rj] [Cn_gn(ln where n
@, Ra.) ) =1,2,...,

N

to find ladder circuit inductor and

* Specifically, we use the values of g
=
capacitor values as:

* Likewise, the value g,,, describes the load impedance.
Specifically, we find that if the last reactive element (i.e., g,) of R.=0naRs
the ladder circuit is a shunt capacitor, then:

gN+1

* Note, however, for the Butterworth solutions (in Table 8.3) we find that g,,,=1
always, and therefore:

R =R, — [ Regardless of the last element ]

* Whereas, if the last reactive element (i.e., g,) of the ladder R,
circuit is a series inductor, then: -
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" Filter Realizations Using Lumped Elements (contd.)

* Moreover, we note (in Table 8.4) that this (i.e., g\,;=1) is likewise true for the
Chebyshev solutions — provided that N is odd.
* Thus, we typically desire a filter where:

R _R -7 We can use any order of Butterworth filter, or an odd
— order of Chebysheuv.

In other words, avoid even order Chebyshev filters!

Q: OK, so we now have the solutions for Chebyshev and Butterworth low-pass filters.
But what about high-pass, band-pass, or band-stop filters?

A: Surprisingly, the low-pass filter solutions likewise provide us with the solutions for
any and all high-pass, band-pass and band-stop filters! All we need to do is apply

filter transformations.

We can use the concept of filter transformations to determine the new filter
designs from a low-pass design. As a result, we can construct a 3rd-order
Butterworth high-pass filter or a 5th-order Chebyshev band-pass filter!
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Filter Transformations

It will be apparent that the mathematics for each filter design will be very similar. Eg,
the difference between a low-pass and high-pass filter is essentially an inverse—the
frequencies below w_ are mapped into frequencies above w. —and vice versa.

N N

1 e It is evident that:

A 8 T, (@=0)=T, (0=o)=1

[ (0=0)=T (0=0)=0

_ J,

A 4

Y
-

 Therefore, we can express:

* However: [T,p (0=aw,) =Thp(60=£a’c)]
To(0=0,)=T,(0=0,)=05 .

where a is some positive, real value
(i.e.’ 0 Sa < m)I

* Forexample, if a=0.5, then: [TIIO (0=0.5m,)=T, (0= 20)0)]
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Filter Transformations (contd.)

In other words, the transmission through a low-pass filter at one half the cut-off
frequency will be equal to the transmission through a (mathematically similar)
high-pass filter at twice the cut-off frequency.

* Now, recall the loss-ratio functions

2N
for Butterworth and Chebyshev EDL'E(Q,)_“(“)J] [p!g(w):1+szﬁ(”j]
(4 (4

low-pass filters: ¢

c

* Note in each case that the argument of the function has the form:

In other words, the frequency is normalized by the cut-off frequency.

* Consider now this mapping: [2 = —&J

, ()

 This mapping transforms the Ipf

2N
response into a corresponding high [pth(w)_lJr(a%j ]{PL“;’(a))—l—sz,j(a%j]
pass filter response! i.e.: @ ®
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Filter Transformations (contd.)
Q: Yikes! Where did this mapping come from? Are sure this works?
Consider again the case where w =aw_; the low pass responses are:

[P!E(w):l+(a)2ﬂ [PL'E(a)):1+ szNz(a)]

Now consider the high-pass responses where w =-w_/a:
[PL“FE (@) =1+ (a)z“} [PL“R" (@) =1-K*T; (a)]

* Thus, we can conclude from this mapping that:

PP (w=aw,)=PP(w=-0,/)

_ —1
* Andsince T'=Frp ﬂExactly the result that we expected))

1 Our mapping provides a method for
[Tlp (0= aa)c) - Thp (@= —;a)c)] transforming a low-pass filter into a
\ high-pass filter! Y,




D

Indrapra§tha Institute of | ECE321/521

Information Technology Delhi

Filter Transformations (contd.)

Q: OK Poindexter, you have succeeded in providing another one of your
“fascinating” mathematical insights, but does this “mapping” provide anything
useful for us engineers?

A: Absolutely! We can apply this mapping one component element (capacitor
or inductor) at a time to our low-pass schematic design, and the result will be
a direct transformation into a high-pass filter schematic.

 Recall the reactance of an R o
inductor element in a low- | JX| e ja)LIIO = Jog,| —= |=J9,R,| —
a)C a)C

pass filter design is:

1 R (w
« while that of a capacitor is: | JX, = Ip Z_J_S(_Cj
j(()Cn gn @

* Now apply the mapping: [ﬂ — _&]

@, 0,
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Filter Transformations (contd.)

e The inductor X:p _ jgnRs (_&j 3 gnRsa)c . 1

becomes: J

* and the capacitor: j)(:p:_j&(_&j:jw( R, j

[It is clear (do you see why?) that the transformation has converted a positive (i.e.,J

inductive) reactance into a negative (i.e., capacitive) reactance—and vice versa.

* As a result, to transform a low-pass filter schematic into a high-pass filter
schematic, we:

1. Replace each inductor with a Che _ 1 _ 1
capacitor of value: " g.Ro, oL’

2. Replace each capacitor with an [th: R, 1
n
g

inductor of value: 1 De Cf)czcrl]p
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Filter Transformations (contd.)

* Thus, a high-pass ladder circuit o
consists of series capacitors and

shunt inductors (compare this to g § §
the low-pass) ladder circuit!). o

Q: What about band-pass filters?
A: The difference between a low-pass and band-pass filter is simply a shift in
the “center” frequency of the filter, where the center frequency of a low-pass
filter is essentially w = 0.

* For this case, we find the mapping:

- ion i - a, — Q.
transforms a low pass function |.nto a band pass a2 ~
function, where A is the normalized bandwidth: @,

w, and w, define the two 3dB frequencies of the bandpass filter.
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Filter Transformations (contd.)

For example, the Butterworth * becomes a Butterworth band-pass
low-pass function: function:
2N 4 2N )
Ip . 2 1 @ Q)
Pr(w)=1+] — P®(w) =1+ = -2
W, A o o
N\ 0 _J
Applying this transform to the reactance of a low-pass inductive element:
4 )
: : 1l o o . [ g.R 1
bp __ 0 |_
X0 = 19,R, ~ = Jo| —— |+
Alw, o @,A ja)(A )
- gna)QRL/

Look what happened! The transformation turned the inductive reactance
into an inductive reactance in series with a capacitive reactance.

A similar analysis of the transformation of the low-pass capacitive reactance
shows that it is transformed into an inductive reactance in parallel with an

capacitive reactance.
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Filter Transformations (contd.)
As a result, to transform a low-pass filter schematic into a band-pass filter

schematic, we:

1. Replace each series inductor with

a capacitor and inductor in series,
with values:

2. Replace each shunt -capacitor

with an inductor and capacitor in
parallel, with values:

4 . p
L?]p — gn—S
L @,A
-

o _ 1 AR,
\ “ 90 “

~N
cw_ 1 A
gn wORs)
~N
bp _ g 1
" w,AR,
J

Thus, the ladder circuit for ¢
band-pass circuit is simply a
ladder network of LC
resonators, both series and

=

parallel:
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Q: So, we now know how to make any and all filters with lumped elements—
but this is a RF/microwave engineering course!

 You said that lumped elements were difficult to make and implement
at high frequencies. You said that distributed elements were used to

make microwave components. So how do we make a filter with
\ distributed elements!?!

),
A: There are many ways to make RF/microwave filters with distributed
elements. Perhaps the most straightforward is to “realize” each individual

lumped element with transmission line sections, and then insert these
approximations in our lumped element solutions.

[The first of these realizations is: Richard’s Transformations ]

To easily implement Richard’s Transforms in a microstrip or stripline
circuit, we must apply one of Kuroda’s Identities.
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Richard’s Transformations

 Recall the input impedances of short-circuited and open-circuited
transmission line stubs.

Z: =jZ, tan} Z,, B

Note that the input impedances are purely reactive—just like
lumped elements!

 However, the reactance of lumped inductors and capacitors have a much
different mathematical form to that of transmission line stubs:

Z = JoL
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Richard’s Transformations (contd.)

* In other words, the impedance of transmission line rZ_s + 7 )
stubs and lumped elements (capacitors and inductors) L =
are different functions with respect to frequency. 70 ¢ch

In

Therefore, we can say in general that, for example:

[However, for a given lumped element (L or C) and a given stub (with a given ZO\

and length |) the functions will be equal at precisely one frequency!

J
* For example, there is one /[ - =)
—let’ : _ : : : 0
fregugncy . let’s cfall it w, | that Ja)CL: JZo tan ,Bcl _ JZo tan| Ze |
satisfies this equation for a given L, V
Z,, and |: \ = '
0’ :
é _ ~ =)
. - : : 0
* Similarly: _J _ _Jzo CO'[,Bcl _ _JZo cot| =& |
ka)CC Vo )

« To make things easier, let’s set the length of our [/1 _ Vo _ 277]

transmission line stub to A_/8, where:
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Richard’s Transformations (contd.)
Q: Why | =A/87?

A: Well, for one reason, Bl =n/4 and therefore tan (n /4) = 1.0!
e This greatly simplifies our earlier results:

{ja)cL = |Z, tan (%) = jZ(J L;—é =—]Z, cot(%) =— jZJ

Therefore, if we wish to build a short-circuited stub with the same

impedance as an inductor L at frequency w_, we set the characteristic
impedance of the stub transmission line to be Z, = w,L:
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Richard’s Transformations (contd.)
* Similarly, if we wish to build open-circuited stub with the same impedance as a
capacitor C at w_, we set the characteristic impedance of the stub transmission

I|ne tobe Z, = /w c:

/a)c
< -j/oC [& Zy, P
il R

We call these two results as Richard’s Transformation. ]

However, remember that Richard’s Transformations do not result in perfect
replacements for lumped elements—the stubs do not behave like C and L!

* |Instead, the transformation is perfect—the impedances are equal—at only

one frequency (w,).
 We can use Richard’s transformations to replace the inductors and capacitors
of a lumped element filter design. In fact, for low-pass filter design, the

frequency w_is the filter’s cut-off frequency.
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Attenuation (dB)

Richard’s Transformations (contd.)

 Using these stubs to replace inductors and capacitors will result in a filter
response similar to that of the lumped element design—a low pass filter with
cut-off frequency w..

 However, the behavior of the filter in the stop-band will be very different from
the lumped element design. For example, at the (high) frequencies where the
stub length becomes a multiple of A/2, the filter response will be that of w = 0—
near perfect transmission!

Q: So why does the filter response match the
WL _— lumped element response so well in the pass-
umped

clements band?

A: To see why, we first note that the Taylor
Series approximation for tang and cote
N when @ is small (i.e., ¢ K 1) is:

elements 1

tang ~ ¢ | and | cotep =~ —
== ) for p K1

50 | [ d 1o [ - |
0 5 10 15 20 . . .
Frequency (GHz) | @ is expressed in radlans.]

[y
==l
|

5]
=]
|

40|~




R

Indraprastha Institute of ECE321/521

Information Technology Delhi

Richard’s Transformations (contd.)

* The impedance of Richard’s transformation shorted stub at some arbitrary
frequency w is therefore:

2: ()= iz, tan(ﬂ%j: i(,L)tan| 2%

w, 4

* Therefore, when w < w,(i.e., frequencies in the pass-band of a low-pass filter!),
we can approximate this impedance as:

Since the value /4 is relatively close to one, we find that the Richard’s )
Transformation shorted stub has an input impedance very close to the lumped
element inductor for all frequencies less than w_ (i.e., all frequencies of the low-
\ pass filter pass-band)! y
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Richard’s Transformations (contd.)

 Similarly, we find that the Richard’s transformation open-circuit stub,
when w < w,, has an input impedance of approximately:

20 (0)=—Lcot| L2 |~ = (wc 4j: 1 (4j
@,C w4) oC\wr) JoC\rx

C

Compgfe this to a
ped capacitor
impedance

we find that results are approximately the same for all pass-band
frequencies (i.e., when w < w,).
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Kuroda’s Identities

* We will find that Kuroda’s Identities can be very useful in making the
implementation of Richard’s transformations more practicable.

 Kuroda’s Identities essentially provide a list of equivalent two port
networks. By equivalent, we mean that they have precisely the same
scattering/impedance/admittance/transmission matrices.

* In other words, we can replace one two-port network with its equivalent
in a circuit, and the behavior and characteristics (e.g., its scattering matrix)
of the circuit will not change!

Indraprastha Institute of
Information Technology Delhi ECE321/521

Q: Why would we want to do this?
A: Because one of the equivalent may be more practical to implement!

For example, we can use Kuroda’s Identities to:

1. Physically separate transmission line stubs.

2. Transform series stubs into shunt stubs.

3. Change impractical characteristic impedances into more realizable
ones.
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Kuroda’s Identities (contd.)

* Four Kuroda’s identities are provided in a very ambiguous and confusing table (Table 8.7) in
your book. We will find the first two identities to be the most useful.

 Consider the following two-port network, constructed with a length of transmission line,
and an open-circuit shunt stub:

 The first Kuroda identity
states that this two-port * Thus, ~ we  can

network is precisely the replace the first
same two-port network structure in some
as the following: circuit with this, and
the behavior of that
N t circuit  will  not
change in the least!
2 ZOZ 7
e ]
Note that the length of the 01 n? * Note this equivalent
stub and the transmission line ; ! circuit uses a short-
] . . .
are identical, but the g 70, | circuited series
characteristic impedance of | — stub.
. i n !
each are different. g —
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Kuroda’s Identities (contd.)

Indraprastha Institute of ECE321/521

e The second of Kuroda’s Is precisely identical to this
|ldentities states that this two-port network:
two port network:

S S
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Kuroda’s Identities (contd.)

With regard to Richard’s Transformation, these identities are useful when
we replace the series inductors with shorted stubs.

To see why this is useful when
implementing a lowpass filter
with distributed elements,
consider this third order filter
example, realized using Richard’s
Transformations:

Note that we have a few
problems in terms of
implementing this design!

o

Lq

Q00

%
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‘Kuroda’s Identities (contd.)
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* First of all the stubs are ideally infinitely close to each other— how do we
build that? We could physically separate them, but this would introduce
some transmission line length between them that would mess up our filter
response!

 Secondly, series stubs are difficult
to construct in microstrip/
stripline—we like shunt stubs much
better!

 To solve these problems, we
first add a short length of
transmission line (Z, and I=
A./8) to the beginning and end
of the filter:
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‘Kuroda’s Identities (contd.)

Note adding these lengths only results in a phase shift in the filter
response—the transmission and reflection functions will remain

unchanged.
Then we can use the second of Kuroda’s Identities to replace the series

stubs with shunts:

A A
— L e = :
¢ S 5 Where:
n?=1+ %o
nlszLl 1 a)CL]_
QN n n 2 _ 1 n ZO
r\ﬁ“\’) S ? wcls
. / & /‘
N - _
N \ A Now this is a realizable
§C ) gc y gc filter! Note the three stubs
/ / / are separated, and they are
' all shunt stubs.
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* Another distributed element realization of a lumped element low-pass filter
designs is the stepped-impedance low-pass filter.

 These filters are also known as “hi-Z, low-Z” filters, and we’re about to find
out why!

” Al distributed elements (e.g., transmission lines, coupled lines, )
resonators, stubs) exhibit some frequency dependency. If we are
clever, we can construct these structures in a way that their frequency
\ dependency (i.e., S,;(w)) conforms to a desirable function of w. y
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Stepped-Impedance Low-Pass Filters (contd.)

* Say we know the impedance matrix 711 Zoq
o - 7 = ]
of a symmetric two-port device: Z01  Zis
« Regardless of the construction © Zl VV'Z ZM/TO
of this two port device, we can 122 11— 421
model it as a simple “T-circuit”, Z21
consisting of three impedances:
o o

* In other words, if the two series
impedances have an impedance value equal
to Zy1 — Z,41, and the shunt impedance has
a value equal to Z,,, the impedance matrix
of this “T-circuit” is:

711 Zoq [Thus, any symmetric two-port networkJ
= 71 Z11] can be modeled by this “T-circuit”!

Z
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\ Stepped-Impedance Low-Pass Filters (contd.)

& >
~ e

* For example, consider a length | of
transmission line (a symmetric two-port

O— O
A
network!):
O— ()

=Z,,=—]Z,cot gl ]
impedance parameters of -
this two port network are: %12 =2, =—])Z, COSGC,BI]

e Recall (or determine for
| VA
yourself!) that the 11

* With a little trigonometry: {Zn 2 = J4otan (%Iﬂ

* For small Bl:

: Z
: I =7, =— ~ 0
[le -Z,~ )7, (%j] [212 Ly JZ,cosec Sl g ]
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Stepped-Impedance Low-Pass Filters (contd.)

Thus, an electrically short o—A\VW \N—o
(Bl «< 1) transmission line can jzo(ﬁj Z, jZO(ﬂj
be approximately modeled 2 m 2
with a “T-circuit” as:

o o

Now, consider also the case where the characteristic impedance of the
transmission line is relatively large. We’ll denote this large characteristic

impedance as Zoh :

7 h
Note the shunt impedance value Jo_ﬁz Since the numerator (Zoh) is
relatively large, and the denominator (jf1l) is small, the impedance of
shunt device is very large.

So large, in fact, that we can approximate it as an open circuit!

Z, .
j_,8I~OO Forfl K1 and Z," » Z,
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Stepped-Impedance Low-Pass Filters (contd.)

e So now we have a further ng(ﬂj jZ“(ﬁj
simplification of our model: 2 "2
o o

 The remaining impedances are now in series, so the circuit can be further
simplified to:

© VW i /" The equivalent circuit for )
iZ;p f\ transmission line with short

electrical length (1 «< 1) and

large characteristic impedance

o o \_ (Zo" > Zy) )

* Now, consider the case where the characteristic impedance of the

transmission line has a relatively low value, denoted as Zol , Where Zol K
Zo.
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Stepped-Impedance Low-Pass Filters (contd.)

e Insuch a Case;[zll jZ ('Blj ] For ,Bl « 1 and Zol K Zy

* So now we have another simplification of our model:
o—e—o o—e—oO

Which of course

Z. & melifies to
1pl

o o
I
The equivalent circuit for transmission) Ny —jz—fi
line with short electrical length ({1 «< P
1) and small characteristic impedance| o o
(Zy < Zo).

- J

Q: But, what does all this have to do with constructing a low-pass filter?
A: Plenty! Recall that a lossless low-pass filter constructed with lumped elements
consists of a “circuit ladder” of series inductors and shunt capacitors!
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Stepped-Impedance Low-Pass Filters (contd.)

Q: So?

A: Look at the two equivalent circuits for an electrically short transmission
line. The one with large characteristic impedance Zoh has the form of a series

inductor, and the one with small characteristic impedance Zol has the form
of a shunt capacitor!

o W O (o M O

X =jz2pl X = JoL
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* Thus, the “series inductance” of [L ZS,BI]

our transmission line length is: o

Q: Yikes! Our inductance appears to be a function of frequency w. | assume
we simply set this value to cut-off frequency w,, just like we did for Richard’s
transformation?

() Vp

A: Nope! We can simplify the result a bit more. Recall L Z.pl Z)
that B = “/y,, so that: - -

* |n other words, the series impedance resulting Z:ja)sza)[Z—glj

from our short transmission line is: v,

Q: Wow! This realization seems to give us a result that precisely matches an
inductor at all frequencies—right?

A: Not quite! Recall this result was obtained from applying a few
approximations—the result is not exact!
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Stepped-Impedance Low-Pass Filters (contd.)

«/Ioreover, one of the approximations was that the electrical length o\f
the transmission line be small. This obviously cannot be true at all
frequencies. As the signal frequency increases, so does the electrical
\_ length—our approximate solution will no longer be valid. )

Thus, this realization is accurate only for “low frequencies” — recall that
was likewise true for Richard’s transformations!

Q: Low-frequencies? How low is low?

A: Well, for our filter to provide a response that accurately follows the
lumped element design, our approximation should be valid for frequencies up
to (and including!) the filter cut-off frequency w,.

e A general “rule-of-thumb” is that a small electrical
length is defined as being less than /4 radians. Thus, to [ﬂJ :“’_|h-<ZJ
maintain this small electrical length at frequency w,, our Z, A4
realization must satisfy the relationship:
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Stepped-Impedance Low-Pass Filters (contd.)

* Note that this criterion is difficult to satisfy if the filter cut-off frequency
and/or the inductance value L that we are trying to realize is large.

* Our only recourse for these challenging conditions is to increase the value
of characteristic impedance Zoh :

Q: Is there some particular difficulty with increasing Zoh ?

A: Could be! There is always a practical limit to how large (or small) we can
make the characteristic impedance of a transmission line.

Indraprastha Institute of ECE321/521

(" For example, a large characteristic impedance implemented in microstip/stripline )
requires a very narrow conductor width W. But manufacturing tolerances, power
handling capability and/or line loss (line resistance R increases as W decreases) place

\ a lower bound on how narrow we can make these conductors! y
* However, assuming that we can satisfy the above constraint,
we can approximately “realize” a lumped inductor of L= ol
inductance value L by selecting the correct characteristic v,

impedance Zoh and line length | of our short transmission
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Stepped-Impedance Low-Pass Filters (contd.)

Q: For Richard’s Transformation, we first set the stub length to a fixed value
(i.e., | = A/8), and then determined the specific characteristic impedance
necessary to realize a specific inductor value L. | assume we follow the same
procedure here?
A: Nope! When constructing stepped-impedance low-pass filters, we typically
do the opposite!
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short electrical length inequality is satisfied for the
largest inductance value L in our lumped element filter:
(

1. First, we select the value of Zoh, making sure that the [ Ao L
Z)>—=< J

T

This characteristic impedance value is typically used to realize all
inductor values L in our low-pass filter, regardless of the actual value of

% inductance L. y

2. Then, we determine the specific lengths [, of the v,
transmission line required to realize specific filter l, = Z_g L,
inductors values L, :
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Stepped-Impedance Low-Pass Filters (contd.)
Q: What about the shunt capacitors?
A: Almost forgot!

e Recall the low-impedance transmission line provided a shunt

impedance that matched a shunt capacitor:
o o o

O

Sl @C ‘

(o O o

\

; A
. Zy ] are identical if: A _ o
[Jﬁ_a)_] | 4 2~

* Thus, the “shunt capacitance” of our transmission line length is:

c-P ) [ :Vplzé}

wZ,
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Stepped-Impedance Low-Pass Filters (contd.)
 And thus the shunt reactance of our [Z:—_J(Vp_z(l)]] P

Indraprastha Institute of ECE321/521

transmission line realization is: @ I

(Although this again appears to provide exactly the same behavior as a h
capacitor (as a function of frequency), it is likewise accurate only for low

frequencies, where 1l < %.

\_ J

il

* Thus from our realization equality: 7= oC
0

 We can conclude that for our approximations to be pm
. . . I
valid at all frequencies up to the filter cut-off [ﬁJ =0, <z]
frequency, the following inequality must be valid: \

7/

Note that for difficult design cases where w_and/or C is very large, the
line characteristic impedance Zol must be made very small.
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Stepped-Impedance Low-Pass Filters (contd.)
Q: | suppose there is likewise a problem with
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makingZol very small?
A: Yes! In microstrip and stripline, making
Zol small means making conductor width W

very large. In other words, it will take up lots of
space on our substrate. For most applications
the surface area of the substrate is both limited
and precious, and thus there is generally a
practical limit on how wide we can make width

W (i.e., how low we can make Zol ).

* However, assuming that we can satisfy the above constraint, we
can approximately “realize” a lumped capacitor of inductance [ | ]

value C by selecting the correct characteristic impedance
Zol and line length | of our short transmission line:
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Stepped-Impedance Low-Pass Filters (contd.)
* The design rules for shunt capacitor realization are:

1. First, we select the value of Zol , making sure that the short electrical
length inequality is satisfied for the largest capacitance value C in our

lumped element filter:
Z(I) <L
4aC

This characteristic impedance value is typically used to realize all
capacitor values C in our low-pass filter, regardless of the actual value
of capacitance C.

2. Then, we determine the specific lengths [, of the transmission line
required to realize specific filter capacitor values C,:

[In = (va('J)Cn]
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Stepped-Impedance Low-Pass Filters (contd.)

 An example of a low-pass, stepped-impedance filter design is provided on
page 414-416 of your book
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