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• High Frequency Filter, Filter Phase Function
• The Linear Phase Filter
• The Insertion Loss Method, Filter Realization using 

Lumped Components 
• Richard’s Transformation
• Kuroda Identities    
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Filters
• Microwave filter → A two-port microwave network that allows source

power to be transferred to a load as an explicit function of frequency.
• RF/microwave filter is (typically) a passive, reciprocal, 2-port linear device.

Filter
Pinc Pout

If port 2 of this device is 
terminated in a matched load, 

then we can relate the 
incident and output power as:

2

21out incP S PWe define this power transmission 
through a filter in terms of the power 

transmission coefficient T:

2

21
out

inc

P
T S

P


As microwave filters 
are typically passive

0 1T  out incP P

Q: What happens to the “missing” power Pinc −Pout?
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Filters (contd.) 

• Thus, by conservation of energy: inc r abs outP P P P  

• Now ideally, a microwave filter is lossless, Pabs = 0 and: inc r outP P P 

Pabs

Filter

Pinc Pout

Pr

A: Two possibilities: the power
is either absorbed (Pabs) by the
filter (converted to heat), or is
reflected (Pr) at the input port.

• Alternatively we can write:

inc r out

inc inc

P P P

P P


 1 r out

inc inc

P P

P P
  1 T  

lossless filter

In the last
expression:

out

inc

P
T

P
 Transmission Coefficient

2

11
r

inc

P
S

P
  Power Reflection Coefficient
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Filters (contd.) 
• Therefore, another way of saying a 2-port lossless

device can be:
2 2

11 211 S S 

• Now, here’s the important part! → For a microwave filter, the coefficients
Γ and Τ are functions of frequency! i.e.,:

   T  The behavior of a microwave filter is 
described by these functions!

• Therefore, we find that for most signal frequencies ωs, these functions will
have a value equal to one of two different approximate values.

• Either:
  0s      1sT   

In this case, the signal frequency ωs is said to lie in the 
pass-band of the filter. Almost all of the incident signal 

power will pass through the filter.
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Filters (contd.) 
or   1s      0sT   

In this case, the signal frequency ωs is said to lie in the stop-band of the filter. 
Almost all of the incident signal power will be reflected at the input—almost 

no power will appear at the filter output. 

• Consider then these four types of functions of Γ(ω) and Τ(ω):

1. Low Pass Filter 

𝝎 𝝎

𝝎𝒄 𝝎𝒄

1 1
Τ(ω) Γ(ω)

Note for this filter: Τ(ω)=
1 c 

0 c 
Γ(ω)=

0 c 

1
c 

This filter is a low-pass type, as it “passes” signals with frequencies less than 
ωc, while “rejecting” signals at frequencies greater than ωc.
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A: Frequency 𝜔𝑐 is a filter parameter known as the cutoff frequency; a value
that approximately defines the frequency region where the filter pass-band
transitions into the filter stop band.

Filters (contd.) 

• Accordingly, this frequency is defined as the frequency
where the power transmission coefficient is equal to 1/2:

  0.5cT   

• Note for a lossless filter, the cutoff frequency is likewise
the value where the power reflection coefficient is 1/2:

  0.5c   

Q: This frequency 𝜔𝑐 seems to be very 
important! What is it?



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Filters (contd.) 

Note for this filter:

Τ(ω)=

0 c 

1 c 

Γ(ω)=

1 c 

0 c 

This filter is a high-pass type, as it “passes” signals with frequencies greater 
than ωc , while “rejecting” signals at frequencies less than ωc.

2. High - Pass  Filter 

𝝎

𝝎𝒄

1
Τ(ω) Γ(ω)

1

𝝎

𝝎𝒄



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Filters (contd.) 

0
2


 


 

Note for this filter:

Τ(ω)=

1 0
2


 


 

0

Γ(ω)=

0

1

0
2


 


 

0
2


 


 

• This filter is a band-pass type, as it “passes” signals within a frequency
bandwidth Δω, while “rejecting” signals at all frequencies outside this
bandwidth.

• In addition to filter bandwidth Δω, a fundamental parameter of bandpass
filters is ω0, which defines the center frequency of the filter bandwidth.

3. Band - Pass  Filter 

𝝎

𝝎𝟎

1
Τ(ω) Γ(ω)

1

𝝎
𝝎𝟎

∆𝝎∆𝝎
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Filters (contd.) 

Note for this filter:

Τ(ω)=

0
0

2


 


 

1

Γ(ω)=

1

00
2


 


 

0
2


 


 

0
2


 


 

This filter is a band-stop type as it “rejects” signals within a 
frequency bandwidth Δω, while “passing” signals at all 

frequencies outside this bandwidth.

4. Band - Stop  Filter 

𝝎
𝝎𝒄

1
Τ(ω) Γ(ω)

1

𝝎
𝝎𝒄

∆𝝎∆𝝎
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The Filter Phase Function

Q: I see, we only care about the magnitude of complex function S21(ω) when using
microwave filters !?

• Recall that the power transmission coefficient Τ(ω) can be
determined from the scattering parameter S21(ω):

   
2

21T S 

where the phase is denoted as ∠S21(ω) :  
 

1 21

21

21

Im ( )
( ) tan

Re ( )

S
S

S







 

   
 

We therefore care very much about this phase function!

    21 ( )

21 21

j SS S e          21 21 21Re ImS S j S   

A: Hardly! Since S21(ω) is complex, it can be expressed in terms of its magnitude and
phase:

Q: Just what does this phase tell us?
A: It describes the relative phase between the wave incident on the input to the filter,
and the wave exiting the output of the filter (given the output port is matched).
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The Filter Phase Function (contd.)
• In other words, if the incident wave is:

1 1 01( ) j zV z V e   

i.e., there has been a “phase shift” of ∠S21(ω) between the input and output waves.

• Then the exiting 
(output) wave will be:

2

2 1 02( ) j zV z V e  
 212

21 01 21 01

j z Sj zS V e S V e
    

Q: What causes this phase shift?
A: Propagation delay. It takes some non-zero amount of time for signal energy to
propagate from the input of the filter to the output.

Q: Can we tell from ∠S21(ω) how long this delay is?

• To see how, consider an example two-port network
(filter) with the impulse response:

( ) ( )h t t  

A: Yes!

• We just identified that this device would merely delay an input signal (say by some
amount τ ):

( ) ( ') ( ') 'out inv t h t t v t dt





  ( ' ) ( ') 'int t v t dt 




   ( )inv t  
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The Filter Phase Function (contd.)

𝑣(𝑡)

𝑣𝑖𝑛(𝑡) 𝑣𝑜𝑢𝑡 𝑡 = 𝑣𝑖𝑛(𝑡 − 𝜏)

𝒕

• Now if we take Fourier transform of the impulse response, then frequency
response of this two-port network is:

( ) ( ) j tH h t e dt






  ( ) j tt e dt 






  j te 

• In other words: ( ) 1H   ( )H    

The interesting result here is the phase ∠H(ω). The result means that a 
delay of τ seconds results in an output “phase shift” of −ωτ radians!
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The Filter Phase Function (contd.)

Note that although the delay of device is a constant τ, the phase shift is a 
function of ω → in fact, it is directly proportional to frequency ω.

• Note if the input signal for this device was of the form: ( ) cosinv t t
• Then the output would be:

( ) cos ( )outv t t   ( ) cos( )outv t t  

Thus, we could either view the signal vin(t) = cosωt as being delayed by an 
amount τ seconds, or phase shifted by an amount −ωτ radians.

Q: Then by measuring the output signal
phase shift ∠H(ω), we could determine the
delay τ through the device with the equation:

right?
( )H 





 

A: Not exactly. The problem is that we cannot unambiguously determine the
phase shift ∠H (ω) = −ωτ by looking at the output signal!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Filter Phase Function (contd.)

• The reason is that cos(ωt + ∠H(ω)) = cos(ωt + ∠H(ω) + 2π) = cos(ωt +
∠H(ω) − 4π ), etc. More specifically:

where n is any integer —positive or negative. We can’t tell which of these
output signal we are looking at!

cos( ( )) cos( ( ) 2 )t H t H n       

• Thus, any phase shift measurement has an inherent ambiguity. Typically,
we interpret a phase measurement (in radians) such that:

( )H      0 ( ) 2H   or

But almost certainly the actual value of ∠H(ω) = −ωτ is nowhere near 
these interpretations!
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The Filter Phase Function (contd.)

would not get us the correct
result in this case—after all,
there will be several frequencies
ω with exactly the same
measured phase ∠H (ω )!

Clearly using the equation:

( )H 





 

∠H(ω) 

𝜋

−𝜋

−ωτ

Measured Phase Shift 
∠𝑯 𝝎 ≠ −𝝎𝝉

Q: So determining the delay τ is impossible?
A: NO! It is entirely possible—we simply must find the correct method.

𝝎

Looking at the plot, this method should become apparent. Note that although 
the measured phase (blue curve) is definitely not equal to the phase function 

−ωτ (red curve), the slope of the two are identical at every point!
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Q: What good is knowing the slope of these functions?

The Filter Phase Function (contd.)

The slope directly tells us the propagation delay!

( )




 
 



A: Just look! Recall that we can determine the slope
by taking the first derivative:

• Thus, we can determine the propagation delay of this
device by:

( )H 





 



where ∠H(ω) can be the measured phase. Of course, the method requires 
us to measure ∠H(ω) as a function of frequency (i.e., to make 

measurements at many signal frequencies).

Q: Now I see! If we wish to determine the propagation delay τ through some
filter, we simply need to take the derivative of ∠S21(ω) with respect to
frequency. Right?
A: Well, sort of!
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• Recall for the example case that h(t) = δ(t −τ) and ∠H(ω) = −ωτ, where τ is a
constant. For a microwave filter, neither of these conditions are true.

• Specifically, the phase function ∠S21(ω) will typically be some arbitrary function
of frequency (∠S21(ω) ≠ −ωτ ).

The Filter Phase Function (contd.)

Q: How could this be true? I thought the phase shift was due to filter delay τ!
A: Phase shift is due to device delay, it’s just that the propagation delay of most
devices (such as filters) is not a constant, but instead depends on the frequency of
the signal propagating through it!

In other words, the propagation delay of a filter is typically some arbitrary function 
of frequency (i.e., τ(ω)). That’s why the phase ∠S21(ω) is likewise an arbitrary 

function of frequency.

Q: Yikes! Is there any way to determine the relationship between these two arbitrary
functions?

This result  τ(ω) is also known as phase delay, and is 
very important function to consider when 

designing/specifying/selecting a microwave filter

21( )
( )

S 
 




 



A: Yes there is! Just as before, the two can be related by:
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Filter Dispersion

Any signal that carries significant information must have some non-zero
bandwidth. In other words, the signal energy (as well as the information it
carries) is spread across many frequencies.

If the different frequencies that comprise a signal propagate at different
velocities through a microwave filter (i.e., each signal frequency has a
different delay τ ), the output signal will be distorted. We call this
phenomenon signal dispersion.

Q: I see! The phase delay τ(ω) of a filter must be a constant with respect to
frequency—otherwise signal dispersion (and thus signal distortion) will result. Right?
A: Not necessarily! Although a constant phase delay will insure that the output signal
is not distorted, it is not strictly a requirement for that happy event to occur.

This is a good thing, building a good filter with a constant phase delay is very difficult!

The Filter Phase Function (contd.)
Q: Why; what might happen if we don`t consider?
A: If you get a filter with wrong τ(ω), your output signal could be horribly distorted –
distorted by the evil effects of signal dispersion.
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𝑉(𝜔) 2

2𝜋𝐵𝑠

𝜔𝑠
𝜔

• For example, consider a modulated
signal with the following frequency
spectrum, exhibiting a bandwidth
of Bs Hertz.

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2
𝜏(𝜔)

• Now, let’s likewise plot the
phase delay function τ(ω) of
some filter:

Filter Dispersion (contd.)

In this case the filter phase 
delay is nowhere near a 
constant with respect to 

frequency.

However, this fact alone does not necessarily mean that our signal would suffer 
from dispersion if it is passed through this filter. Indeed, the signal in this case 

would be distorted, but only because the phase delay τ(ω) changes significantly 
across the bandwidth Bs of the signal.
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• Conversely, consider this phase delay:

Filter Dispersion (contd.)

As with the previous case, the 
phase delay of the filter is not 

a constant. Yet, if this signal 
were to pass through this filter, 

it would not be distorted!

The reason for this is that the phase delay across the signal bandwidth is 
approximately constant—each frequency component of the signal will 

be delayed by the same amount.

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)
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• Compare this to the previous case, where the phase delay changes by a
precipitous value ∆τ across signal bandwidth Bs:

Filter Dispersion (contd.)

Now this is a case 
where dispersion will 

result!

Q: So does ∆𝝉 need to be precisely zero for no signal distortion to occur, or
is there some minimum amount ∆𝝉 that is acceptable?

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)

∆𝜏

1s  A: Mathematically, we find that dispersion will be insignificant if:

• A more specific (but subjective) “rule of thumb” is:
5

s


  
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Filter Dispersion (contd.)

• Or, using 𝜔𝑠 = 2𝜋𝑓𝑠: 0.1sf  

Generally speaking, we find for wideband filters—where filter bandwidth 
B is much greater than the signal bandwidth (i.e.,B >>Bs )—the above 

criteria is easily satisfied. In other words, signal dispersion is not typically 
a problem for wide band filters (e.g., pre-select filters).

This is not to say that τ(ω) is a constant for wide band filters. Instead, 
the phase delay can change significantly across the wide filter 

bandwidth.
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• What we typically find however, is
that the function τ(ω) does not
change very rapidly across the wide
filter bandwidth. As a result, the
phase delay will be approximately
constant across the relatively narrow
signal bandwidth Bs.

Filter Dispersion (contd.)

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2

𝜏(𝜔)

• Conversely, a narrowband filter –
where filter bandwidth B is
approximately equal to the signal
bandwidth (i.e., 𝐵𝑠 = 𝐵) – can (if we
are not careful!) exhibit a phase delay
which changes significantly over filter
bandwidth B. This means that the
delay also changes significantly over
the signal bandwidth 𝐵𝑠.

Thus, a narrowband filter (e.g., IF Filter) must exhibit a near constant phase 
delay τ(ω) in order to avoid distortion due to signal dispersion. 

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)
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The Linear Phase Filter
Q: So, narrowband filters should exhibit a constant phase delay τ(ω). What
should the phase function ∠S21(ω) be for this dispersionless case?

• Recall that the definition of phase delay is: 21( )
( )

S 
 




 



• Thus combining these two equations, we
find ourselves with a differential equation:

21( )
c

S 





 



The solution to this differential equation provides us with the necessary 
phase function ∠S21(ω) for a constant phase delay τc.

Fortunately, this differential equation can be easily solved!

where τc is some constant.( ) c  
A: We can express this
problem mathematically as:
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The Linear Phase Filter (contd.)

• The solution is: where φc is an arbitrary constant.
21( ) c cS      

Filters with such phase response are called linear phase filters, and 
have the desirable trait that cause no dispersion distortion.

• Plotting this phase function (with φc =0 ):
∠H(ω) 

𝜋

−𝜋

−𝝉𝒄
0

𝜔

As you rightly 
expected, this phase 

function is linear, 
such that it has 

constant slope (−𝜏𝑐)
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The Insertion Loss Method

• Recall that a lossless filter can be described in terms of either its
power transmission coefficient Τ(ω) or its power reflection
coefficient Γ(ω), as the two values are completely dependent:

• Ideally, these functions would be quite simple:

1. Τ(ω) = 1 and Γ(ω) = 0 for all frequencies within the passband.

2. Τ (ω) = 0 and Γ (ω) = 1 for all frequencies within the stopband.

( ) 1 ( )T   

• For example, the
ideal low-pass filter
would be:

𝝎
𝝎𝒄

Τ(ω) Γ(ω)

𝝎
𝝎𝒄

• Add to this a linear phase response, and you have the perfect microwave filter!

• There’s just one small problem with this perfect filter → It’s impossible to build!
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• if we consider only possible (i.e., realizable) filters, we must limit ourselves
to filter functions that can be expressed as finite polynomials of the form:

The Insertion Loss Method (contd.)

2

1 2

2 2

1 2

...
( )

...

o

N

o N

a a a
T

b b b b

 


  

  


   

The order N of the 
(denominator) polynomial is 

likewise the order of the filter.

• Instead of the power transmission coefficient, we often use an equivalent
function (assuming lossless) called the power loss ratio PLR:

1

2

1

1 ( )
LR

P
P

P 




 

 

Note, PLR = ∞ when Γ(ω) = 1, and 
PLR =1 when Γ(ω) = 0.

• We likewise note that, for a lossless filter:
1

( )
LRP

T 


• Thus PLR(dB) is: 10 10( ) 10log 10log ( )LR LRP dB P T    → 𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏 𝑳𝒐𝒔𝒔

The power loss ratio in dB is simply the insertion loss of a lossless filter, and thus 
filter design using the power loss ratio is also called the Insertion Loss Method.
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The Insertion Loss Method (contd.)

• We find that realizable filters will have a power loss ratio of the form:

2

2

( )
( ) 1

( )
LR

M
P

N





  where M(ω2) and N(ω2) are polynomials 

with terms ω2,ω4,ω6,etc.

By specifying these polynomials, we specify the frequency behavior of a 
realizable filter. Our job is to first choose a desirable polynomial!

• There are many different types of polynomials that result in good filter
responses, and each type has its own set of characteristics.

• The type of polynomial likewise describes the type of microwave filter.
Let’s consider three of the most popular types.
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1. Elliptical: These filters have three primary characteristics:

a) Exhibit very steep “roll-off”, i.e.,
the transition from pass-band to
stop-band is very rapid.
b) Exhibit ripple in the pass-band,
i.e., the value of Τ will vary slightly
within the pass-band.
c) Exhibit ripple in the stop-band,
meaning that the value of Τ will vary
slightly within the stop-band.

The Insertion Loss Method (contd.)

𝝎

Τ(ω)
1

We can make the roll-off steeper by accepting more ripple.
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2. Chebychev: These filters are also known as equal-ripple filters, and have
two primary characteristics

The Insertion Loss Method (contd.)

a) Steep roll-off (but not as
steep as Elliptical).

b) Pass-band ripple (but not
stop-band ripple).

We likewise find that the roll-off can be made 
steeper by accepting more ripple.

• The Chebychev low-pass filters have a power loss ratio equal to:

2 2( ) 1LR N

c

P k T





 
   

 

where k specifies the passband ripple, 
TN(x) is a Chebychev polynomial of 

order N, and ωc is the low-pass cutoff
frequency.

𝝎

Τ(ω)

1



Indraprastha Institute of 

Information Technology Delhi ECE321/521

3. Butterworth
Also known as maximally flat filters, they have two primary characteristics
a) Gradual roll-off

b) No ripple—not anywhere.

The Insertion Loss Method (contd.)

• The Butterworth low-pass filters
have a power loss ratio equal to:

2

( ) 1

N

LR

c

P





 
   

 

where ωc is the low-pass cutoff
frequency, and N specifies the order of 

the filter.

𝝎

Τ(ω)

1
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Q: So we always choose elliptical filters; since they have the steepest roll-off,
they are closest to ideal—right?
A: Ooops! I forgot to talk about the phase response ∠S21(ω) of these filters.
Let’s examine ∠S21(ω) for each filter type before we pass judgment.

The Insertion Loss Method (contd.)

Butterworth ∠S21(ω)      →   Close to linear phase 
Chebyshev ∠S21(ω)         → Not very linear 
Elliptical ∠S21(ω) →    A big non-linear mess!

• Thus, it is apparent that as the filter roll-off improves, the phase response
gets worse (watch out for dispersion!).

→ There is no such thing as the “best” filter type!

Q: So, a filter with perfectly linear phase is impossible to construct?
A: No, it is possible to construct a filter with near perfect linear phase—but it
will exhibit a horribly poor roll-off!
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• Now, for any type of filter, we can improve roll-off (i.e., increase stop-band
attenuation) by increasing the filter order N. However, be aware that
increasing the filter order likewise has these deleterious effects:

1. It makes phase response ∠S21(ω) worse (i.e., more nonlinear).
2. It increases filter cost, weight, and size.
3. It increases filter insertion loss (this is bad).
4. It makes filter performance more sensitive to temperature,

aging, etc.

The Insertion Loss Method (contd.)

From a practical viewpoint, the order of a filter should
typically be kept to N < 10.
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The Insertion Loss Method (contd.)

Q: So how do we take these polynomials and make real filters

Filter Realizations Using Lumped Elements

• Our first filter circuit will be “realized” with lumped elements.
• Lumped elements—we mean inductors L and capacitors C !
• Since each of these elements are (ideally) perfectly reactive, the resulting

filter will be lossless (ideally).

1. Form a general circuit structure with several degrees of design
freedom.

2. Determine the general form of the power loss ratio for these circuits.
3. Use the degrees of design freedom to equate terms in the general

form to the terms of the desired power loss ratio polynomial.

A: Similar to matching networks and couplers, we:  
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Filter Realizations Using Lumped Elements (contd.)
• Let us first consider two configurations of a ladder circuit:

Note that these two structures provide a low-pass filter response (evaluate 
the circuits at ω = 0 and ω = ∞!).

Moreover, these structures have N different reactive elements (i.e., N 
degrees of design freedom) and thus can be used to realize an N-order 

power loss ratio.
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Filter Realizations Using Lumped Elements (contd.)

• Recall this is a low-pass function, as 𝑃𝐿𝑅 = 1 at ω = 0, and 𝑃𝐿𝑅 = ∞ at 𝜔 =
∞. Note also that at 𝜔𝑐 = 𝜔:

2

( ) 1 2

N

c
LR c

c

P


 


 
    

 

• For example, consider the Butterworth power
loss ratio function:

2

( ) 1

N

LR

c

P





 
   

 

1( ) ( )
2c cT       

Thus

In other words, ωc defines the 3dB bandwidth of the low-pass filter.
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• Likewise, we find that this Butterworth function is maximally flat at ω = 0:

• Now, we can determine the function PLR(ω) for a lumped element ladder
circuit of N elements using our knowledge of complex circuit theory.

• Then, we can equate the resulting polynomial to the maximally flat
function above. In this manner, we can determine the appropriate values
of all inductors L and capacitors C!

• Finding these L an C requires little bit of complex algebra.
• Pozar provides tables of complete Butterworth and Chebychev low-pass

solutions.

Filter Realizations Using Lumped Elements (contd.)

2

0
( 0) 1 1

N

LR

c

P 


 
    

 

and:
0

( )
| 0

n

LR

n

d P

d





  For all n



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Filter Realizations Using Lumped Elements (contd.)
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Filter Realizations Using Lumped Elements (contd.)
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Insertion Loss Method 

Attenuation versus Normalized Frequency 
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Example – 1 

A maximally flat low-pass filter is to be designed with a cut-off frequency of
8GHz and a minimum attenuation of 20dB at 11GHz. How many filter
elements are required?

We have: 

112 1 1 0.375
2 8c




 
   

N=8
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Example – 2 

Design a maximally flat low-pass filter with a cut-off frequency of 2GHz,
impedance of 50Ω and at least 15dB insertion loss at 3GHz.

• First, find the required order of the maximally flat filter to satisfy the
insertion loss specification at 3GHz.

• We have:

32 1 1 0.5
2 2c




 
   

• It is apparent that  N =5 will be sufficient. 

• From the table we get: 𝑔1 = 0.618, 𝑔2= 1.618, 𝑔3= 2.000, 𝑔4=
1.618, 𝑔5 = 0.618.
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Example – 2 (contd.) 

• The Analysis of N-element filters give:

• The elements are therefore:

2 6.438L nH1 0.984C pF 3 3.183C pF 4 6.438L nH 5 0.984C pF

s
n n

c

R
L g



 
  

 

1
n n

s c

C g
R

 
  

 


