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Frequency Response of a λ/4 Matching Network

• You could have left this simple and precise analysis alone— BUT NOOO!!

• You had to foist upon us a long, rambling
discussion of “the propagation series” and
“direct paths” and “the theory of small
reflections”, culminating with the
approximate (i.e., less accurate!) SFG:
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Using our reduction rules, we 
can quickly conclude that:
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Q: Through approximations, You provided us with confusing and perhaps useless
information. The quarter-wave matching network has an exact SFG of:
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A: In a word: frequency response*. * OK, two words.

Freq. Response of a λ/4 Matching Network (contd.)

• From the approximate SFG we were able to conclude the approximate (i.e., less
accurate!) result:
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Q: What exactly would we be analysing and/or evaluating?
A: The frequency response of the matching network, for one thing.

Remember, all matching networks must be lossless, and so must be made of 
reactive elements (e.g., lossless transmission lines). The impedance of every 

reactive element is a function of frequency, and so too then is Γ𝑖𝑛.

The exact result was simple—and exact! Why did you 
make us determine this approximate result?

the mathematical form of the result is much simpler to analyze and/or 
evaluate (e.g., no fractional terms!).

Say we wish to determine function Γ𝑖𝑛(𝜔).
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Q: Isn’t Γ𝑖𝑛 𝜔 = 0 for a quarter wave
matching network?
A: Oh my gosh no! A properly designed
matching network will typically result in
a perfect match (i.e., Γ𝑖𝑛 𝜔 = 0) at
one frequency (i.e., the design
frequency). However, if the signal
frequency is different from this design
frequency, then no match will occur
(i.e., Γ𝑖𝑛(𝜔) ≠ 0).

Freq. Response of a λ/4 Matching Network (contd.)

Recall we discussed this 
behavior before:

Q: But why is the result: or its approx form:

dependent on frequency? I don’t see frequency variable 𝝎 anywhere in these results!
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A: Look closer!
Freq. Response of a λ/4 Matching Network (contd.)

• This velocity is a constant (i.e., 𝑣𝑝 =  1 𝐿𝐶
), and so the spatial frequency β is

directly proportional to the temporal frequency ω.

• Remember that the value of spatial frequency β (in radians/meter) is
dependent on the frequency 𝝎 of our eigen function (aka “the signal”):

1
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where you will recall that 𝒗𝒑 is the propagation velocity of a wave moving along a TL.

Where 𝑇 =  𝑙 𝑣𝑝 is the time required for the wave to 

propagate a distance l down a transmission line.
p

l
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• Thus, we can rewrite:

• As a result, we can write the input reflection coefficient as a
function of spatial frequency β:

2( ) j l

in Le     

• Or equivalently as a function of temporal frequency ω: 2( ) j T

in Le     

• Frequently, the reflection coefficient is simply written in terms of the
electrical length θ of the transmission line, which is simply the
difference in relative phase between the wave at the beginning and
end of the length l of the TL.

l T   
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Freq. Response of a λ/4 Matching Network (contd.)

• Now, we know that Γ = Γ𝐿 for a properly designed quarter-
wave matching network, so the reflection coefficient
function can be written as:

 2( ) 1 j

in L e     

• So that: 2( ) j

in Le     

Note we can simply insert the value 𝜃 = 𝛽𝑙 into this expression to get Γ𝑖𝑛(𝛽), or 
insert 𝜃 = 𝜔𝑇 into the expression to get Γ𝑖𝑛(𝜔).

• Note that: 0 ( )1 j j j je e e e         • And that: 2 ( )j j j je e e e         

• And so:  2( ) 1 j

in L e       j j j j
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• Now, magnitude of our result is: ( ) 2 cos 2 cosj

in L Le       

• Note: Γ𝑖𝑛(𝜃) is zero-valued only when 𝑐𝑜𝑠𝜃 = 0.
This of course occurs when 𝜃 =  𝜋

2 . /2
( ) 2 cos 0
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Q: What the heck does this mean?



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Freq. Response of a λ/4 Matching Network (contd.)

As we (should have) suspected, the match occurs at the frequency whose wavelength 
is equal to four times the matching (𝑍1) transmission line length, i.e. λ = 4𝑙.

/ 2

2 / 4
l

  

  
  A: Remember, 𝜃 = 𝛽𝑙. Thus if 𝜃 =  𝜋

2:

In other words, a perfect match occurs at the frequency where 𝑙 =  λ 4 .

• Note the physical length l of the transmission line does not change
with frequency, but the signal wavelength does:
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Q: So, at precisely what frequency does a quarter-wave transformer with length l

provide a perfect match?
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A: Recall that 𝜃 = 𝜔𝑇, where
𝑇 =  𝑙 𝑣𝑝. Thus, for 𝜃 =  𝜋

2:

• This frequency is called the design frequency of the matching network—it’s the
frequency where a perfect match occurs. We denote this as frequency 𝜔0, which
has wavelength λ0, i.e.:
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• Given this, yet another way of expressing 𝜃 =
𝛽𝑙 is:

• First, we must define what we mean by bandwidth. Say the maximum acceptable
level of the reflection coefficient is value Γ𝑚. This is an arbitrary value, set by you
the microwave engineer (typical values of Γ𝑚 range from 0.05 to 0.2).

Freq. Response of a λ/4 Matching Network (contd.)
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• Thus, we conclude:
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This expression helps in the determination (approximately) of the bandwidth 
of the quarter-wave transformer!

0

(f f ) 2 cos
2

m
in m m L

f

f

 

       
 

• Let us denote the frequencies where this
maximum value of Γ𝑚 occurs as 𝑓𝑚.

• There are two solutions to this equation, the first is: 10
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• And the second: 10
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     Important note! Make sure 
𝑐𝑜𝑠−1𝑥 is expressed in radians!
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• You will find that 𝑓𝑚1 < 𝑓0 < 𝑓𝑚2. So
the values 𝑓𝑚1 and 𝑓𝑚2 define the
lower and upper limits on matching
network bandwidth.

𝑓𝑚1 𝑓𝑚2

Freq. Response of a λ/4 Matching Network (contd.)

All this analysis was brought to you by 
the “simple” mathematical form of 

Γ𝑖𝑛(𝑓) that resulted from the theory of 
small reflections!

The Multi-section Transformer

• Consider a sequence of N
TL sections; each having
length l, but dissimilar
characteristic impedances:

Γ0 Γ1 Γ2 Γ𝑁−1 Γ𝑁

𝑙 𝑙 𝑙

𝑍𝐿
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• Where the marginal
reflection coefficients are:
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• If load resistance RL is less than Z0, then we
should design the transformer such that: 𝑍0 > 𝑍1 > 𝑍2 > 𝑍3 > ⋯ > 𝑍𝑁 > 𝑅𝐿

• Conversely, if RL is greater than Z0, then we
will design the transformer such that:

𝑍0 < 𝑍1 < 𝑍2 < 𝑍3 < ⋯ < 𝑍𝑁 < 𝑅𝐿

The Multi-section Transformer (contd.)

In other words, we gradually transition from Z0 to RL!

Note that since RL is real, and since we assume lossless transmission lines, all 
Γ𝑛 will be real (this is important!).

• Likewise, since we gradually transition from one section to another, each value:

will be small.
1n nZ Z 

• As a result, each marginal reflection coefficient Γ𝑛 will be real and have a small
magnitude → This is also important, as it means that we can apply the “theory of
small reflections” to analyse this multi-section transformer!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Multi-section Transformer (contd.)

• The theory of small reflections allows us to approximate the SFG.

The approximate SFG when 
applying the theory of small 

reflections!

𝑒−𝑗𝛽𝑙 𝑒−𝑗𝛽𝑙 𝑒−𝑗𝛽𝑙
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• We can alternatively express the input reflection coefficient as a function of
frequency (𝛽𝑙 = 𝜔𝑇):
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where: 𝑇 =
𝑙

𝑣𝑝
← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 1 𝑠𝑒𝑐𝑡𝑖𝑜𝑛



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Multi-section Transformer (contd.)

• We find, therefore, that by selecting the proper values of basis weights 𝑐𝑛(i.e., the
proper values of reflection coefficients Γ𝑛), we can synthesize any function Γ𝑖𝑛(𝜔)
of frequency ω, provided that:

1. Γin(ω) is periodic in ω =  1 2T .
2. we have sufficient number of sections N.

• We see that the function Γ𝑖𝑛(𝜔) is
expressed as a weighted set of N
basis functions! i.e.,

Γ𝑖𝑛(𝜔) =  

𝑛=0

𝑁

𝑐𝑛Ψ(𝜔)

Ψ(𝜔) = 𝑒−𝑗(2𝑛𝑇)𝜔

𝑐𝑛 = Γ𝑛

Q: What function should we synthesize?
A: Ideally, we would want to make Γin ω = 0 (i.e., the reflection coefficient is zero 
for all frequencies).

Bad News: this ideal function Γin ω = 0 would require an 
infinite number of sections (i.e., 𝑁 = ∞)!

Therefore, we seek to find an “optimal” function for Γin ω , given 
a finite number of N elements.
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The Multi-section Transformer (contd.)

• To simplify this process, we can make the transformer symmetrical, such that:

Γ0 = Γ𝑁, Γ1 = Γ𝑁−1, Γ2 = Γ𝑁−2, . ……

Once we determine these optimal functions, we can find the values of coefficients 
Γn (or equivalently, 𝑍𝑛) that will result in a matching transformer that exhibits this 

optimal frequency response.

Note: this does NOT mean that:

𝑍0 = 𝑍𝑁, 𝑍1 = 𝑍𝑁−1, 𝑍2 = 𝑍𝑁−2, . ……

• We then find that:

𝜞 𝝎 = 𝒆−𝒋𝑵𝝎𝑻 𝜞𝟎 𝒆𝒋𝑵𝝎𝑻 + 𝒆−𝒋𝑵𝝎𝑻 + 𝜞𝟏 𝒆𝒋(𝑵−𝟐)𝝎𝑻 + 𝒆−𝒋(𝑵−𝟐)𝝎𝑻 + 𝜞𝟐 𝒆𝒋(𝑵−𝟒)𝝎𝑻 + 𝒆−𝒋(𝑵−𝟒)𝝎𝑻 + ⋯

• we can write for N even:

Γ 𝜔 = 2𝑒−𝑗𝑁𝜔𝑇 Γ0𝑐𝑜𝑠𝑁𝜔𝑇 + Γ1cos(𝑁 − 2)𝜔𝑇 + ⋯+ Γ𝑛cos(𝑁 − 2𝑛)𝜔𝑇 + ⋯+
1

2
Γ  𝑁

2

• and since: 𝑒𝑗𝑥 + 𝑒−𝑗𝑥 = 2cos(𝑥)
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The Multi-section Transformer (contd.)

• whereas for N odd:

Γ 𝜔 = 2𝑒−𝑗𝑁𝜔𝑇 Γ0𝑐𝑜𝑠𝑁𝜔𝑇 + Γ1cos(𝑁 − 2)𝜔𝑇 + ⋯ + Γ𝑛cos(𝑁 − 2𝑛)𝜔𝑇 + ⋯ + Γ
 𝑁−1
2
𝑐𝑜𝑠𝜔𝑇

The remaining question then is this: given an optimal and realizable function Γin ω ,
how do we determine the necessary number of sections N, and how do we 

determine the values of all reflection coefficients Γn??

Multi-section transformer is often used to maximize the bandwidth of transformer. 

Alternatively, we can say that one way to maximize bandwidth is to construct a 
multi-section matching network with a function Γ(𝑓) that is either maximally flat or 

can be considered flat albeit with pass-band ripple.

Binomial Function satisfies the condition of maximum flatness 

Chebyshev Polynomial can be considered flat with pass-band ripple
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The Binomial Multi-Section Transformer
• We saw, a multi-section matching network is described as:
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in Ne e e              
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where: 𝑇 =
𝑙

𝑣𝑝
← 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 1 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

Note that for a multi-section transformer, we have N degrees of design freedom, 
corresponding to the N characteristic impedance values 𝑍𝑛.

Q: What should the values of Γ𝑛 (i.e., 𝑍𝑛) be?
A: We need to define N independent design equations, which we can then use to 
solve for the N values of characteristic impedance 𝑍𝑛.

• First, we start with a single design frequency 𝜔0, where we wish to achieve a
perfect match:

 0 0in     That’s just one design equation: we need N -1 more!

• These addition equations can be selected using many criteria—one such is to
make the function Γ𝑖𝑛(𝜔) maximally flat at the point 𝜔 = 𝜔0.

• To accomplish this, we first consider the Binomial Function:    21
N

jA e    
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The Binomial Multi-Section Transformer (contd.)

• This function has the desirable properties that:    1 1 1 0
2

N NjA e A
  

       
 

   21
N

jA e    
In other words, this Binomial Function is maximally flat at 
the point 𝜃 =  𝜋

2, where it has a value of Γ 𝜃 =  𝜋
2 = 0.

Q: So? What does this have to do with our multi-section matching network?

   21
N

jA e    

 2 4 6 2

0 1 2 3 ...N N j N j N j N j N

NA C C e C e C e C e           

A: Let’s expand (multiply out the N identical product terms) the Function:

where:
 

!

! !

N

n

N
C

N n n

• obviously the two functions have identical forms, provided that: N

n nAC  T 

It is very desirable from the standpoint of the a matching 
network. Recall that Γ 𝜃 = 0 at 𝜃 =  𝜋

2 —a perfect match!   21
N

jA e    

Additionally, function is maximally flat at 𝜃 =  𝜋
2, therefore Γ 𝜃 ≈ 0

over a wide range around 𝜃 =  𝜋
2 — a wide bandwidth!

• and another property:  
𝑑𝑛Γ (𝜃)

𝑑𝜃𝑛
𝜃=  𝜋

2

= 0 𝑓𝑜𝑟 𝑛 = 1,2,3, … , 𝑁 − 1
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The Binomial Multi-Section Transformer (contd.)

Q: But how does 𝜃 =  𝜋
2 relate to frequency ω?

• Note that the length l has an interesting relationship
with this frequency:

0 0

0 0

1

2 2 2 2 4

pv
l

   

  
   

This frequency (ω0) is therefore our design frequency—the 
frequency where we have a perfect match.0

1

2 2

pv

T l

 
  

A: Remember that 𝜔𝑇 = 𝜃, so 𝜃 =  𝜋
2 corresponds to the frequency:

• Binomial Multi-section matching network will have a perfect match at the
frequency where the section lengths l are a quarter wavelength!

Thus, we have our first design rule:

Set section lengths l so that they are a quarter-wavelength  λ𝟎
𝟒 at the design frequency ω0.

Q: I see! And then we select all the values 𝑍𝑛 such that Γ𝑛 = 𝐴𝐶𝑛
𝑁. But wait! What

is the value of A ??
A: We can determine this value by evaluating a boundary condition!

• Specifically, we can easily 
determine the value of 
Γ(ω) at ω = 0. 𝑙 𝑙 𝑙

𝑅𝐿
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The Binomial Multi-Section Transformer (contd.)

• However, we likewise know that:      2(0)0 1 1 1 2
N Nj NA e A A     
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• So, the input refl. Coefficient Γ(ω = 0) must be:

• Equating the two expressions:

0

0

2N L

L

R Z
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R Z






• therefore:

0

0

2 N L

L

R Z
A

R Z

 




(A can be negative!)

• We now have a formulation to calculate
the required marginal reflection
coefficients Γ𝑛:

0

0

! !
2

( )! ! ( )! !

N N L
n n

L

R ZAN N
AC

N n n R Z N n n

 
   

  

we also know that these marginal reflection coefficients 
are physically related to the characteristic impedances 

of each section as:

1

1

n n
n

n n

Z Z

Z Z






 



The Binomial Multi-Section Transformer (contd.)

• As ω approaches zero, the electrical length 𝛽𝑙 of each section will likewise
approach zero. Thus, the input impedance Zin will simply be equal to RL as ω → 0.



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Binomial Multi-Section Transformer (contd.)
• Equating the two and solving, we find that that the

section characteristic impedances must satisfy: 1

1 1

1 1

N

n n
n n n N

n n

AC
Z Z Z

AC


 
 

 

Note this is an iterative procedure—we determine Z1 from Z0, Z2 from Z1, and so forth.

Q: This result appears to be our second design equation.
A: Alas, there is a big problem with this result.

• Note that there are N+1 coefficients Γn (i.e., n∈{0,1,…,N}) in the Binomial
series, yet there are only N design degrees of freedom (i.e., there are only N

transmission line sections!).
• Thus, our design is a bit over constrained, a result that manifests itself the

finally marginal reflection coefficient ΓN.

• Note from this iterative solution, the last transmission line
impedance ZN is selected to satisfy the mathematical
requirement of the penultimate reflection coefficient ΓN-1.

1
1 1

1

NN N
N N

N N

Z Z
AC

Z Z


 




  



• Therefore the last impedance must be: 1
1

1

1

1

N

N
N N N

N

AC
Z Z

AC
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The Binomial Multi-Section Transformer (contd.)

• But there is one more mathematical requirement! The last
marginal reflection coefficient must likewise satisfy:

0

0

2N N L
N N

L

R Z
AC

R Z

 
  



where we use the fact that 𝐶𝑁
𝑁 = 1.

But, we selected ZN to satisfy the requirement for ΓN-1,—we have no physical design 
parameter to satisfy this last mathematical requirement for ΓN!

• As a result, we find to our great consternation that the last
requirement is not satisfied:

NL N
N N

L N

R Z
AC

R Z


  



Q: Yikes! Does this mean that the resulting matching network will not have the
desired Binomial frequency response?
A: That’s exactly what it means!

Q: You big #%@#$%&!!!! Why did you waste all my time discussing an over-
constrained design problem that can’t be built?
A: Relax; there is a solution to our dilemma—albeit an approximate one.
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The Binomial Multi-Section Transformer (contd.)

This approximation is 
especially accurate when y−x 
is small (i.e., when  𝑦

𝑥 ≈ 1).

• You undoubtedly have previously
used the approximation:

1
ln

2

y x y

y x x

  
  

  

• Thus, we use the approximation:

1 1

1

1
ln

2

n n n
n

n n n

Z Z Z

Z Z Z

 



 
    

  

Now, we know that the 
values of 𝑍𝑛+1 and 𝑍𝑛 in 
a multi-section matching 

network are typically very 
close, such that 

𝑍𝑛+1 − 𝑍𝑛 is small.

• can also apply this approximation (although
not as accurately) to the value of A:

( 1)0

0 0

2 2 lnN NL L

L

R Z R
A

R Z Z
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The Binomial Multi-Section Transformer (contd.)

• we also know that these marginal refl coefficients are physically
related to the characteristic impedances of each section as:

11
ln

2

n
n

n

Z

Z


 

   
 

• Equating the two and solving, we find that that the section
characteristic impedances must satisfy:  1 exp 2n n nZ Z  

This is our second design rule. Note it is an iterative rule—we 
determine Z1 from Z0, Z2 from Z1, and so forth.

Q: Huh? How is this any better? How does applying approximate math lead to a better
design result??

NL N
N N

L N

R Z
AC

R Z


  



A: Applying these approximations help resolve our over constrained
problem. Recall that the over-constraint resulted in:

• let’s start over, this time we’ll use
these approximations. First,
determine A:

( 1)

0

2 lnN LR
A

Z

   
  

 

(A can be negative!)

• Now use this result to calculate the mathematically
required marginal reflection coefficients Γn:

!

( )! !

N

n n

AN
AC

N n n
  



• But, as it turns out, the
approximations leads to the
happy situation where:

1
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NL
N N

N

R
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Z

 
   

 

provided that the value A is 
the approximation as well.
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The Binomial Multi-Section Transformer (contd.)
• Effectively, these approximations couple the results, such that each value of

characteristic impedance Zn approximately satisfies both Γn and Γn+1.
Summarizing:

a. If you use the “exact” design equations to determine the characteristic
impedances Zn, the last value Γn will exhibit a significant numeric error, and your
design will not appear to be maximally flat.

b. If you instead use the “approximate” design equations to determine the
characteristic impedances Zn, all values Γn will exhibit a slight error, but the
resulting design will appear to be maximally flat, Binomial reflection coefficient
function Γ(ω)!

Note that as we 
increase the number 

of sections, the 
matching bandwidth 

increases.

Q: Can we determine the
value of this bandwidth?
A: Sure! But we first
must define what we
mean by bandwidth.
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The Binomial Multi-Section Transformer (contd.)

• As we move from the design (perfect
match) frequency 𝑓0 the value Γ(𝑓) will
increase. At some frequency (say, 𝑓𝑚) the
magnitude of the reflection coefficient will
increase to some unacceptably high value
(say, Γ𝑚 ). At that point, we no longer
consider the device to be matched.

Γ(𝑓)

Γ𝑚

𝑓0𝑓𝑚1 𝑓𝑚2

𝑓

∆𝑓

• Note there are two values of frequency 𝑓𝑚 —one value less than design frequency
𝑓0, and one value greater than design frequency 𝑓0. These two values define the
bandwidth ∆𝑓 of the matching network:    2 1 0 1 2 02 2m m m mf f f f f f f      

Q: So what is the numerical value of Γ𝑚?
A: I don’t know—it’s up to you to decide!

Every engineer must determine what they consider to be an acceptable match
(i.e., decide Γ𝑚). This decision depends on the application involved, and the
specifications of the overall microwave system being designed.

However, we typically set Γ𝑚 to be 0.2 or less.
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The Binomial Multi-Section Transformer (contd.)
Q: OK, after we have selected Γ𝑚, can we determine the two frequencies 𝑓𝑚?
A: Sure! We just have to do a little algebra.

• We start by rewriting the Binomial function:

   21
N

jA e      
N

jN j jAe e e       2cos
NjNAe  

• Now, we take the magnitude of this function:

  2 cos
NN jNA e      2 cos

NN A  

• Now, we define the values 𝜃
where Γ(𝜃) = Γ𝑚 as 𝜃𝑚. i.e., :   2 cos

NN

m m mA      

• We can now solve
for 𝜃𝑚 (in radians!)
in terms of Γ𝑚:

1/

1

1

1
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2

N

m
m

A
 

  
       

1/

1

2

1
cos

2

N

m
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A
 

  
        

Note that there are two solutions (one 
less than  𝝅

𝟐 and one greater than  𝝅
𝟐 )!• Now, we can convert the values

of 𝜃𝑚 into specific frequencies.
• Recall that ωT =θ, therefore:

1 p

m m m

v

T l
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The Binomial Multi-Section Transformer (contd.)

• But recall also that 𝑙 =  λ0
4, where λ0 is the wavelength at the design frequency

𝑓0(not 𝑓𝑚!), and where λ0 =  
𝑣𝑝

𝑓0
.

 0

0

4
4

p p

m m m m

v v
f

l
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mm
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where 𝜃𝑚 is 
expressed in radians. 

• Therefore:
1/

10
1

2 1
cos

2

N

m
m

f
f

A


  
       

1/

10
2

2 1
cos

2

N

m
m

f
f

A


  
        

• Thus, the bandwidth of the binomial
matching network can be determined as:

 

1/
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4 1
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• Thus we can
conclude:

Note that this equation can be used to determine the bandwidth of a 
binomial matching network, given Γ𝑚 and number of sections N.

It can also be used to determine the number of sections 
N required to meet a specific bandwidth requirement!
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The Binomial Multi-Section Transformer (contd.)

• Finally, we can list the design steps for a binomial matching network:

1. Determine the value N required to meet the bandwidth (∆𝑓 and Γ𝑚 )
requirements.

2. Determine the approximate value A from Z0, RL and N.

3. Determine the marginal reflection coefficients Γ𝑛 = 𝐴𝐶𝑛
𝑁 required by the

binomial function.
4. Determine the characteristic impedance of each section using the iterative

approximation: 𝑍𝑛+1 = 𝑍𝑛𝑒𝑥𝑝 2Γ𝑛 .

5. Perform the sanity check: Γ𝑁 ≈
1

2
𝑙𝑛

𝑅𝐿

𝑍𝑛
= 𝐴𝐶𝑛

𝑁.

6. Determine section length 𝑙 =  λ0
4 for design frequency 𝑓0.

Chebyshev Multi-section 
Matching Transformer Self Study 
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Tapered Lines
• We can also build matching networks where the characteristic impedance of a

transmission line changes continuously with position 𝑧.
• We call these matching networks tapered lines.
• Note all our multi-section transformer designs have involved a monotonic change

in characteristic impedance, from Z0 to RL (e.g., 𝑍0 < 𝑍1 < 𝑍2 < ⋯ < 𝑅𝐿).

• Now, instead of having a stepped
change in characteristic impedance
as a function of position 𝑧 (i.e., a
multi-section transformer), we can
also design matching networks with
continuous tapers.

𝑍

𝑧

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑇𝑎𝑝𝑒𝑟

𝑀𝑢𝑙𝑡𝑖 − 𝑠𝑒𝑐𝑡𝑖𝑜𝑛
𝐼𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑇𝑎𝑝𝑒𝑟

0−𝑙−2𝑙−3𝑙

𝑅𝐿

𝑍3

𝑍2

𝑍1

𝑍0

• A tapered impedance matching
network is defined by two
characteristics—its length L and its
taper function 𝑍1(𝑧).

𝑅𝐿

𝑧 = 0 𝑧 = 𝐿
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Tapered Lines (contd.)

There are of course an infinite number of possible functions 𝑍1(𝑧). Your book discusses 
three: the exponential taper, the triangular taper, and the Klopfenstein taper.

• For example, the exponential taper 
has the form:

 1 0

azZ z Z e 0 < 𝑧 < 𝐿

• where:

0

1
ln LZ

a
L Z

 
  

 

Note for the exponential taper, we get the expected result that 
𝑍1 𝑧 = 0 = 𝑍0 and 𝑍1 𝑧 = 𝐿 = 𝑅𝐿.

Recall the bandwidth of a multi-section matching transformer increases with the 
number of sections. Similarly, the bandwidth of a tapered line will typically 

increase as the length L is increased.



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Tapered Lines (contd.)
Impedance 

variations for the 
triangular, 

exponential, and 
Klopfenstein tapers.

Resulting reflection 
coefficient magnitude 

versus frequency for the 
tapers

Q: But how can we physically taper the characteristic impedance of a transmission
line?
A: Most tapered lines are implemented in stripline or microstrip. As a result, we can
modify the characteristic impedance of the transmission line by simply tapering the
width W of the conductor (i.e., 𝑊(𝑧)).

In other words, we can continuously increase or decrease the  width of the 
microstrip or stripline to create the desired impedance taper 𝑍1(𝑧).


