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• Quarter Wave Impedance Transformer
• Multiple Reflection Viewpoints 
• Theory of Small Reflections    
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The Quarter Wave Transformer
• By now you must have noticed that a quarter-wave length of transmission line (l

= λ/4, 2βl = π) appears often in RF/microwave engineering problems.
• Another application of the l = λ/4 transmission line is as an impedance matching

network.

Q: Why does the quarter-wave matching network work — after all, the 
quarter-wave line is mismatched at both ends?

• Let us consider a TL (with characteristic impedance Z0) where the end is
terminated with a resistive (i.e., real) load:

0Z
LR

Unless RL = Z0 , the resistor is 
mismatched to the line, and thus 

some of the incident power will be 
reflected.
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The Quarter Wave Transformer (contd.)
• We can correct this situation by placing a matching network between the line and

the load:

0Z LR

In addition to the designs we have 
just studied (e.g., L-networks, stub 

tuners), one of the simplest 
matching network designs is the 

quarter-wave transformer.

• The quarter-wave transformer is simply a transmission line with characteristic
impedance Z1 and length l = λ/4 (i.e., a quarter-wave line).

LR

l = λ/4 

This λ/4 line is the matching network!

Q: But what about the characteristic impedance Z1; what should its value be??
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The Quarter Wave Transformer (contd.)
A: Remember, the λ/4 case is one of the special cases that we
studied. In such a situation the input impedance of the line is:

In other words, the characteristic impedance of the 
quarter wave line is the geometric average of Z0 and RL!

   
2 2

1 1

in

L L

Z Z

Z R
 Z

• Thus, if we wish for Zin to be 
numerically equal to Z0, we find:

 
2

1

0in

L

Z
Z

R
 Z

• we find the required
value of Z1 be:

1 0 LZ Z R

Therefore, a λ/4 line with characteristic impedance 𝑍1 = 𝑍0𝑅𝐿 will match a 

transmission line with characteristic impedance Z0 to a resistive load RL

LR

l = λ/4 

This ensures that all 
power is delivered to 

load 𝑅𝐿!

Alas, the quarter-wave transformer (like all our designs) have a few problems!
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The Quarter Wave Transformer (contd.)
Problem #1

• The matching bandwidth is narrow !
• In other words, we obtain a perfect match at precisely the frequency where the

length of the matching transmission line is a quarter-wavelength.

remember, this length can be a quarter-wavelength at  just one frequency!

• Wavelength is related 
to frequency as:

1pv

f f LC
   vp is propagation 

velocity of wave 

• For example, assuming that vp = c (the speed of light in vacuum), one wavelength
at 1 GHz is 30 cm (λ = 0.3m ), while one wavelength at 3 GHz is 10 cm (λ = 0.1m ).
As a result, a TL length l = 7.5cm is a quarter wavelength for a signal at 1GHz only.

Thus, a quarter-wave transformer provides a perfect match (Γin = 0) 
at one and only one signal frequency!

In other words, as the signal frequency (i.e., wavelength) changes, the electrical 
length of the matching TL segment changes. It will no longer be a quarter 

wavelength, and thus we no longer will have a perfect match
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The Quarter Wave Transformer (contd.)

It can be observed that the closer RL (or Rin) is to characteristic impedance Z0, the 
wider the bandwidth of the quarter wavelength transformer

In principle, the bandwidth can be 
increased by adding multiple λ/4 

sections!

Problem #2

Recall the matching solution was limited to loads that were purely real! i.e.:

0L LZ R j 
Obviously, this is a BIG problem, as most loads will 

have a reactive component!
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The Quarter Wave Transformer (contd.)
• Fortunately, we have a relatively easy solution to this problem, as we can always

add some length l of TL to the load to make the impedance completely real:

LZ

l

0 ,Z 

Transforms 
RL + jXL into 

Rin

Clearly two possible solutions

However, it should be understood that the input impedance will be purely 
real at only one frequency!

Once the output impedance has been converted to purely real, one can then build 
a quarter-wave transformer to match the line Z0 to resistance Rin
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The Quarter Wave Transformer (contd.)

LZ

ll = λ/4 

Again, since the transmission lines 
are lossless, all of the incident 

power is delivered to the load ZL .

• A quarter wave
transformer can be
thought of as a cascaded
series of two two-port
devices, terminated with a
load RL:

LR

LR

Q: Two two-port devices? It appears to me that a quarter-wave transformer is not
that complex. What are the two two–port devices?

A: The first is a “connector”. Note a connector is the interface between one
transmission line (characteristic impedance Z0) to a second transmission line
(characteristic impedance Z1 ).
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The Quarter Wave Transformer (contd.)

1I 2I

1Port  2Port 

• we earlier determined
the scattering matrix of
this two-port device as:

0 11 0

1 0 1 0

0 1 0 1

1 0 1 0

2

2
x

Z ZZ

Z Z Z Z

Z Z Z

Z Z Z Z

 
 

  

 

 
   

Z

S
Z

x

T

T

 
  

 
S

Compact 
Form

• Therefore signal flow
graph of the connector
can be given as:

1xa

2xa1xb

2xb



T

T



• Now, the second two-port device
is a quarter wavelength of TL:
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The Quarter Wave Transformer (contd.)

• The second device 
has the scattering 
matrix and SFG as:

0

0

j l

y j l

e

e









 
  
 

S

1ya

1yb

j le 

2 ya

2 yb

j le 

• Finally, a load has a 
“scattering matrix” 
and SFG as:

1Z LR
1

1

L
L

L

R Z

R Z

 
   

 
S

1La

1Lb

L

• if we connect the ideal
connector to a λ/4 of
transmission line, and
terminate the whole thing
with load RL, we have formed
a λ/4 matching network!

LR

l = λ/4 

1 2y xa b

2 1x ya b

1 2L ya b

2 1y La b

• The boundary conditions
associated with these
connections are likewise:

1 2y xa b 2 1x ya b 1 2L ya b 2 1y La b
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The Quarter Wave Transformer (contd.)

• Therefore, we can put the
signal-flow graph pieces
together to form the signal-
flow graph of the quarter
wave network:

• Simplification gives:
1xa

1xb

2 2

1

j l

L

L

T e 



Simplification:

Final 
Simplification

1xa

1xb

2 2

1

j l

L

L

T e 
 


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The Quarter Wave Transformer (contd.)

Therefore:
2 2

1

1 1

j l

x L
in

x L

b T e

a


   

 

Q: Hey wait! If the quarter-wave transformer is a matching network,
shouldn’t Γin = 0??

A: Who says it isn’t! Consider now three important facts.

• For a quarter wave transformer, we
set Z1 such that:

2

1 0 LZ Z R 
2

1
0

L

Z
Z

R


• Inserting this into the scattering
parameter S11 of the connector, we find:

2

1 0 1 1 1

2

1 0 1 1 1

/

/

L L

L L

Z Z R R Z

Z Z Z Z R R Z

  
   

  

Z Z

• For the quarter-wave transformer, the
connector S11 value (i.e., Γ ) is the same as
the load reflection coefficient ΓL :

1

1

L
L

L

R Z

R Z


   


Fact 1

• Since the connector is lossless (unitary scattering
matrix!), we can conclude (and likewise show) that:

2 2 2 2

11 211 S S T    
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The Quarter Wave Transformer (contd.)

• Since Z0 , Z1 , and RL are all real, the values Γ

and Τ are also real valued. As a result, |Γ|2 = Γ2

and |Τ|2 = Τ2, and we can likewise conclude:

2 2 2 2 1T T      Fact 2

• Likewise, the Z1

transmission line has
l = λ/4 , so that:

2
2 2

4
l

 
 



 
  

 
1j l je e     Fact 3

• As a result:
2 2 2

1 1

j l

L L
in

L L

T e T 
      

 

• And using the newly discovered fact that (for a
correctly designed transformer) ΓL = Γ:

2

21
in

T 
   



• We also have a recent discovery
that says Τ2= 1 − Γ2, therefore:

2 2

2 2
0

1
in

T T

T

 
       



A perfect match! The quarter-wave transformer does indeed work!
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𝑙 =  λ 4

TT

𝑅𝐿

𝑧 = −𝑙 𝑧 = 0

Multiple Reflection Viewpoint
• The λ/4 - transformer

brings up an
interesting question in
μ-wave engineering.

Q: Why is there no reflection at 𝑧 = −𝑙? It appears that the line is mismatched at
both 𝑧 = 0 and 𝑧 = −𝑙.

𝑧 = −𝑙 𝑧 = 0

𝑙 =  λ 4

𝑅𝐿

We can use signal flow graph to determine the propagation series, once we 
determine all the propagation paths through the quarter-wave transformer.

A: there are reflections at the mismatched interfaces—an infinite number of them!

T

T

Γ -Γ

−𝑗

−𝑗

𝑎

𝑏

ΓL

1

n

n

b a p




 
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Multiple Reflection Viewpoint (contd.)
• Now, let’s try to interpret what physically happens when the incident voltage

wave reaches the interface at 𝑧 = −𝑙.
• We find that there are two forward paths through the quarter-wave transformer

signal flow graph.

T

T

Γ -Γ Γ𝐿

−𝑗

−𝑗

𝑎

𝑏

Path 1. At 𝑧 = −𝑙, the characteristic impedance of the transmission line changes from
Z0 to 𝑍1. This mismatch creates a reflected wave, with complex amplitude p1a :

𝑅𝐿

𝑧 = −𝑙 𝑧 = 0

1p Γ
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Multiple Reflection Viewpoint (contd.)
Path 2. However, a portion of the incident wave is transmitted (Τ) across the interface
at 𝑧 = −𝑙, this wave travels a distance of 𝛽𝑙 = 90° to the load at 𝑧 = 0, where a
portion of it is reflected (Γ𝐿). This wave travels back 𝛽𝑙 = 90° to the interface at 𝑧 =
− 𝑙, where a portion is again transmitted (Τ) across into the Z0 transmission line—
another reflected wave !

𝑅𝐿

• So the second direct path is:

90 90 2

2

j j

L Lp Te e T T       

note that traveling  2𝛽𝑙 = 180° has 
produced a minus sign in the result.

T

T
Γ -Γ Γ𝐿

−𝑗

−𝑗

𝑎

𝑏

2b p a
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Multiple Reflection Viewpoint (contd.)
Path 3. However, a portion of this second wave is also reflected (Γ) back into the Z1

transmission line at 𝑧 = −𝑙, where it again travels by 𝛽𝑙 = 90° to the load, is partially
reflected (Γ𝐿), travels 𝛽𝑙 = 90° back to 𝑧 = −𝑙, and is partially transmitted into Z0(Τ)—
our third reflected wave!

𝑅𝐿

Note that path 3 is 
not a direct path!

SFG T

T

Γ -Γ
Γ𝐿

−𝑗

−𝑗

𝑎

𝑏

   
290 90 90 90 2

3

j j j j

L L Lp Te e e e T T              



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Multiple Reflection Viewpoint (contd.)
Path n. We can see that this “bouncing” back and forth can go on forever, with each
trip launching a new reflected wave into the Z0 transmission line.

Note however, that the power associated with each successive reflected 
wave is smaller than the previous, and so eventually, the power associated 

with the reflected waves will diminish to insignificance!

Q: But, why then is Γ = 0 ?
A: Each reflected wave is a coherent wave. That is, they all oscillate at same frequency
ω; the reflected waves differ only in terms of their magnitude and phase.

• Therefore, to determine the total reflected wave, we must
perform a coherent summation of each reflected wave—this
summation results in our propagation series, a series that must
converge for passive devices.

1

n

n

b a p




 

• It can be shown that the infinite propagation series
for this quarter-wavelength structure converges to
the closed-form expression:

2 2

2
1 1

L L
n

n

b T
p

a





    
 

 


• Thus, the input reflection coefficient is:
2 2

21

L L
in

b T

a

    
  

 
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Multiple Reflection Viewpoint (contd.)
• Using our definitions, it can be shown that

the numerator of this expression is:
 

  

2

1 02 2

1 0 1

2 L

L L

L

Z Z R
T

Z Z R Z


      

 

• It is evident that the numerator (and therefore Γin ) will be zero if:

2

1 0 0LZ Z R  Just as we 
expected!

1 0 LZ Z R

Physically, this result ensures that all the reflected waves add 
coherently together to produce a zero value!

Note all of our transmission line analysis has been steady-state analysis. We assume 
our signals are sinusoidal, of the form exp(𝑗𝜔𝑡). This signal exists for all time t—the 
signal is assumed to have been “on” forever, and assumed to continue “on” forever.

In other words, in steady-state analysis, all the multiple reflections have long since 
occurred, and thus have reached a steady state—the reflected wave is zero!
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The Theory of Small Reflections

• Recall that we analysed a
quarter-wave transformer
using the multiple reflection
view point.

• We found that the solution could be written as an infinite summation of terms
(the propagation series):

1

n

n

b a p




  where each term had a specific physical interpretation, in 
terms of reflections, transmissions, and propagations.

𝒍 =  𝝀 𝟒

TT

𝑅𝐿

𝑧 = −𝑙 𝑧 = 0

• For example, the third term was path: 

𝑅𝐿

 
22 2

3

j l

Lp T e   

T

T

Γ -Γ ΓL

𝑒−𝑗𝛽𝑙
𝑎1

𝑏1
𝑒−𝑗𝛽𝑙

𝑏2

𝑏5
𝑎2

𝑎5

SFG
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The Theory of Small Reflections (contd.)

• Now let’s consider the
magnitude of this path:

2 2 2

3

j l

Lp T e    2 2

3 Lp T  

• Recall that 𝛤 = 𝛤𝐿 for a properly
designed quarter-wave transformer:

1

1

L
L

L

R Z

R Z


   



2 3

3 Lp T 

• For the case where values RL and Z1 are numerically “close”,
𝑹𝑳 − 𝒁𝟏 ≪ 𝑹𝑳 + 𝒁𝟏 , the magnitude of the reflection

coefficient will be very small:

1

1

1.0L
L

L

R Z

R Z


 



• As a result, the value  Γ𝐿
3 will be very, very, very small.

• Moreover, we know (since the connector is lossless) that:
2 2 2 2

1LT T     

• We can thus conclude that the magnitude of path p3 is
likewise very, very, very small:

2 3 3

3 1L Lp T   

This is a classic case where we can approximate the propagation series using 
only the forward paths!!
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The Theory of Small Reflections (contd.)
• Recall there are two forward paths:

𝑅𝐿

T

T

Γ -Γ ΓL

𝑒−𝑗𝛽𝑙
𝑎

𝑝1 = Γ 𝑒−𝑗𝛽𝑙

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙

• Therefore if Z0 and RL are very close in value, the
approx reflected wave using only the direct paths of
the infinite series can be found from the SFG:

   2 2

1 2

j l

Lb p p a T e a    

• Now, if we likewise apply the approximation
that 𝑇 ≅ 1.0, we conclude for this quarter
wave transformer (at the design frequency):

   2

1 2

j l

Lb p p a e a   

This approximation, where we:
1. use only the direct paths to calculate the propagation series,
2. approximate the transmission coefficients as one (i.e., 𝑇 = 1.0).

is known as the Theory of Small Reflections, and allows us to use the
propagation series as an analysis tool (we don’t have to consider an infinite
number of terms!).
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The Theory of Small Reflections (contd.)
• Consider again the quarter-wave matching network SFG. Note there is one

branch (−Γ = 𝑆22 of the connector), that is not included in either direct path.

T

T

Γ -Γ ΓL

𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙

𝑎

𝑝1 = Γ

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙

With respect to the theory of small 
reflections (where only direct paths are 

considered), this branch can be removed 
from the SFG without affect.

T

T

Γ ΓL

𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙

𝑎

𝑝1 = Γ

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙
1.0

1.0

Γ ΓL

𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙

𝑎

𝑝1 = Γ

𝑝2 = 𝑇2Γ𝑒−𝑗2𝛽𝑙

Moreover, the theory of small 
reflections implements the 

approximation, 𝑇 = 1.0, so that the 
SFG becomes:
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The Theory of Small Reflections (contd.)
• Reducing this SFG by combining the 1.0 branch and the 𝑒−𝑗𝛽𝑙 branch via the series 

rule, we get the following approximate SFG:

The approximate SFG when 
applying the theory of 

small reflections ! 
Γ ΓL

𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙

2j l

in L

b
e

a

    

Note this approx SFG provides precisely the results of the theory of small reflections!

Q: But wait! The quarter-wave transformer is a matching
network, therefore Γ𝑖𝑛 = 0. The theory of small reflections,
however, provides the approximate result:

2j l

in Le
   

Is this approximation very accurate? How close is this approximate value to the 
correct answer of Γ𝑖𝑛 = 0?

A: Let’s find out!

• Recall that Γ=ΓL for a properly designed
quarter-wave matching network, and so:  2 21j l j l

in L Le e       
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The Theory of Small Reflections (contd.)

• Likewise, l = λ/4 (but only at
the design frequency!) so that:

2
2 2

4
l

 
 



 
  

 

where you of course 
recall that 𝛽 =  2𝜋

λ!

• Thus:  2 1 (1 1) 0j l j

in L L Le e           

Q: Wow! The theory of small reflections appears to be a perfect approximation—no
error at all!?!
A: Not so fast.

As a result, the solutions derived using the theory of small reflections will—
generally speaking—exhibit some (hopefully small) error.

The theory of small reflections most definitely provides an approximate 
solution (e.g., it ignores most of the terms of the propagation series, and 

it approximates connector transmission as Τ = 1, when in fact Τ ≠ 1).
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The Theory of Small Reflections (contd.)

The theory of small reflections is an approximate analysis tool!

We just got a bit “lucky” for the quarter-wave 
matching network; the “approximate” result 

Γ𝑖𝑛 = 0 was exact for this one case!

Example – 1 

• Use the theory of small
reflections to determine a
numeric value for the input
reflection coefficient Γ𝑖𝑛, at
the design frequency 𝜔0.

𝑍0 𝑍1 𝑍2 𝑍𝐿Γ𝑖𝑛

Γ0 = 0.1 Γ0 = 0.05 Γ0 = 0.15

𝑙1 =  3λ0
8 𝑙2 =  λ0

8

Note that the transmission line sections have different lengths!


