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A Matched, Lossless, Reciprocal 3-Port Network
• Consider a 3-port device.

Such a device would have
a scattering matrix :

11 12 13

21 22 23

31 32 33

S S S

S S S

S S S

 
 


 
  

S

• Assuming the device is passive and made of simple
(isotropic) materials, the device will be reciprocal,
so that:

S21 = S12

S31 = S13

S23 = S32

• Similarly, if it is matched, we know that: S11 = S22 = S33 = 0

• As a result, a matched, reciprocal device
would have a scattering matrix of the form:

21 31

21 32

31 32

0

0

0

S S

S S

S S

 
 


 
  

S

• if we wish for this network to be lossless,
the scattering matrix must be unitary,
and therefore:

22

21 31 1S S 

22

12 32 1S S 

2 2

13 23 1S S 

*

31 32 0S S 

*

21 32 0S S 

*

31 31 0S S 
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A Matched, Lossless, Reciprocal 3-Port Network (contd.)

• Since each complex value S is represented by two real numbers (i.e., real
and imaginary parts), the unitary equations result in 9 real equations. The
problem is, the 3 complex values S21, S31 and S32 are represented by only 6
real unknowns.

We have over constrained our problem ! There are 
no unique solutions to these equations !

As unlikely as it might seem, this means that a matched, lossless, 
reciprocal 3-port device of any kind is a physical impossibility!

You can make a lossless reciprocal 3-port device, or a matched 
reciprocal 3-port device, or even a matched, lossless (but non-

reciprocal) 3-port network.

But try as you might, you cannot make a lossless, matched, and 
reciprocal three port component!
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Matched, Lossless, Reciprocal 4-Port Network 

• The first solution is referred to as the
symmetric solution:

0

0

0

0

00

0

0

j

j

j

j 













 
 
 
 
 
 

S

Guess what! I have determined that—unlike a 3-port device—
a matched, lossless, reciprocal 4-port device is physically 

possible! In fact, I’ve found two general solutions!

• Note for the symmetric solution, every row and every column of the
scattering matrix has the same four values (i.e., α, jβ, and two zeros)!

• The second solution is referred to as the anti-symmetric solution.

0

0

0

00

0

0

0



















 
 
 

 
 




S

Note that for anti-symmetric solution, two rows and 
two columns have the same four values (i.e., α, β, and 
two zeros), while the other two row and columns have 

(slightly) different values (α, -β, and two zeros)
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Matched, Lossless, Reciprocal 4-Port Network (contd.) 

• It is quite evident that each of these solutions are
matched and reciprocal. However, to ensure that
the solutions are indeed lossless, we must place an
additional constraint on the values of α, β. Recall
that a necessary condition for a lossless device is:

2

1

1
N

mn
m

S


 For all n

• Similarly, for the anti-symmetric case, we find: 2 2
1  

• For the symmetric case, we find: 2 2
1  

• It is evident that if the scattering matrix is unitary (i.e.,
lossless), the values α and β cannot be independent, but
must be related as:

2 2
1  

• Generally speaking, we can find that α
≥ β. Given the constraint on these two
values, we can thus conclude that:

1
0

2
 

1
1

2
 
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1 1( )V z

1 1( )V z

0Z0Z

0Z

0Z Z

0Z 

2 2( )V z

2 2( )V z

3 3( )V z

3 3( )V z

P
o

rt
-1

P
o

rt
-3

Port-2

2 0Pz 

3 0Pz 1 0Pz 

3-port 
Linear 

Microwave 
Device

Example – 1 
• Say we have a 3-port network that is

completely characterized at some
frequency ω by the scattering matrix:

0.0 0.2 0.5

0.5 0 0.2

0.5 0.5 0

 
 


 
  

S

• A matched load is attached
to port 2, while a short circuit
has been placed at port 3:

a) Find the reflection
coefficient at port 1, i.e.:

1 1
1

1 1

( )

( )

P

P

V z

V z




 

b) Find the transmission
coefficient from port 1 to
port 2, i.e.,

2 2
21

1 1

( )

( )

P

P

V z
T

V z





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Example – 1 (contd.)

Solution:

I am amused by the trivial problems that you
apparently find so difficult. I know that:

1
1 11

1

0.0
V

S
V




   

and
2

21 21

1

0.5
V

T S
V




  

NO!!! The above solution is not correct!

Remember, V1
−/V1

+ = S11 only if ports 2 and 3 are terminated in
matched loads! In this problem port 3 is terminated with a
short circuit.

Therefore: 1
1 11

1

V
S

V




   and similarly: 2

21 21

1

V
T S

V




 
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Example – 1 (contd.)

• To determine the values T21 and Γ1, we must start with the three
equations provided by the scattering matrix:

1 2 30.2 0.5V V V    2 1 30.5 0.2V V V    3 1 20.5 0.5V V V   

• and the two equations provided by the attached loads:

2 0V   3 3V V  

Solve those five expressions to find: 1
1

1

0.25
V

V




   

2
21

1

0.4
V

T
V




 
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Example – 2
• Consider a two-port device with Z0 =50Ω and

scattering matrix (at some specific frequency ω0):
 0

0.1 0.7

0.7 0.2

j
S

j
 

 
   

 

• Say that the transmission line connected to port 2 of this device is
terminated in a matched load, and that the wave incident on port 1 is:

1

1 1( ) 2 j zV z j e    where z1P = z2P = 0.

Determine:

1. the port voltages V1(z1 = z1P) and V2(z2 =z2P) 

2. the port currents I1(z1 = z1P) and I2(z2 =z2P) 

3. the net power flowing into port 1

Solution: 1. Given the incident wave on port 1 is: 1

1 1( ) 2 j zV z j e   

• we can conclude (since z1P = 0):

 1
0

1 1 1( ) 2 2 2P
jj z

PV z z j e j e j
        
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Example – 2 (contd.)

• since port 2 is matched (and only because its matched!), we find:

1 1 1 11 1 1 1( ) ( ) 0.1( 2) 0.2P PV z z S V z z j j       

• The voltage at port 1 is thus:
( /2)

1 1 1 1 1 1 1 1 1( ) ( ) ( ) 2 ( 0.2) 2.2 2.2 j

P P PV z z V z z V z z j j j e              

• Similarly, since port 2 is matched: 2 2 2( ) 0PV z z  

• Therefore:
2 2 2 21 1 1 1( ) ( ) 0.7( 2) 1.4P PV z z S V z z j j      

• The voltage at port 2 is thus:
0

2 2 2 2 2 2 2 2 2( ) ( ) ( ) 0 1.4 1.4 1.4 j

P P PV z z V z z V z z e          
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Example – 2 (contd.)

2. The port currents can be easily determined from the results of the
previous section

1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

0 0

( ) ( )
( ) ( ) ( ) P P

P P P

V z z V z z
I z z I z z I z z

Z Z

 
   

      

/2

1 1 1

2.0 0.2 1.8
( ) 0.036 0.036

50 50 50

j

PI z z j j j j e          

2 2 2 2 2 2
2 2 2 2 2 2 2 2 2

0 0

( ) ( )
( ) ( ) ( ) P P

P P P

V z z V z z
I z z I z z I z z

Z Z

 
   

      

2 2 2

0 1.4 1.4
( ) 0.028 0.028

50 50 50

j

PI z z e         

3. The net power flowing into port 1 is: 1 1 1P P P   

2 2

1 1

1

0 02 2

V V
P

Z Z

 

  
   

 

2 2

1

2 0.2
0.0396

2 50
P


    Watts
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Example – 3 

2
𝑍
0

𝑧1 𝑧2
𝑧1𝑝 = 0 𝑧2𝑝 = 0

• determine the scattering matrix of this two-port device:
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Q: OK, but how can we determine the scattering matrix of a device?
A: We must carefully apply our transmission line theory!

Q: Determination of the Scattering Matrix of a multi-port device would seem
to be particularly laborious. Is there any way to simplify the process?
A: Many (if not most) of the useful devices made by us humans exhibit a high
degree of symmetry. This can greatly simplify circuit analysis—if we know
how to exploit it!

Q: Is there any other way to use circuit symmetry to our advantage?
A: Absolutely! One of the most powerful tools in circuit analysis is Odd-Even
Mode analysis.
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Circuit Symmetry
• One of the most powerful concepts in for evaluating circuits is that of

symmetry. Normal humans have a conceptual understanding of symmetry,
based on an aesthetic perception of structures and figures.

• On the other hand, mathematicians (as they are wont to do) have defined
symmetry in a very precise and unambiguous way. Using a branch of
mathematics called Group Theory, first developed by the young genius
Évariste Galois (1811-1832), symmetry is defined by a set of operations (a
group) that leaves an object unchanged.

• Initially, the symmetric “objects” under consideration by Galois were
polynomial functions, but group theory can likewise be applied to
evaluate the symmetry of structures.

• For example, consider an ordinary
equilateral triangle; we find that it
is a highly symmetric object!
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Circuit Symmetry (contd.)
Q: Obviously this is true. We don’t need a mathematician to tell us that!
A: Yes, but how symmetric is it? How does the symmetry of an equilateral
triangle compare to that of an isosceles triangle, a rectangle, or a square?

• To determine its level
of symmetry, let’s first
label each corner as
corner 1, corner 2, and
corner 3.

1

2

3

• First, we note that
the triangle exhibits
a plane of reflection
symmetry:

1

2

3

• Thus, if we
“reflect” the
triangle across
this plane we get:

1

2

3
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Circuit Symmetry (contd.)

Note that although corners 1 and 3 have changed places, the triangle itself 
remains unchanged—that is, it has the same shape, same size, and same 

orientation after reflecting across the symmetric plane!

• Mathematicians say that these two triangles are congruent.
• Note that we can write this reflection operation as a

permutation (an exchange of position) of the corners,
defined as:

1 → 3

2 → 2

3 → 1

Q: But wait! Isn’t there more than just one plane of reflection symmetry?
A: Definitely! There are two more:

1

2

3

1

2 3

1 → 2

2 → 1

3 → 3
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Circuit Symmetry (contd.)

In addition, an equilateral triangle exhibits rotation symmetry!

1

2

3

1 → 1

2 → 3

3 → 2 1 2

3

• Rotating the triangle 120° clockwise also results in a congruent triangle:

1

2

3

1

3 2

1 → 2
2 → 3

3 → 1

• Likewise, rotating the triangle 120° counter-clockwise results in a
congruent triangle:

1

2

3

3

2 1

1 → 3

2 → 1

3 → 2
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• Additionally, there is one more operation that will result in a congruent
triangle—do nothing!

Circuit Symmetry (contd.)

1

2

3

2

1 3

1 → 1

2 → 2

3 → 3

This seemingly trivial operation is known as the identity operation, 
and is an element of every symmetry group.

These 6 operations form the dihedral symmetry group D3 which has 
order six (i.e., it consists of six operations). An object that remains 

congruent when operated on by any and all of these six operations is 
said to have D3 symmetry.

An equilateral triangle has D3 symmetry!
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• By applying a similar analysis to an isosceles trapezoid, rectangle, and
square, we find that:

Circuit Symmetry (contd.)

An isosceles trapezoid has D1 symmetry, a dihedral group
of order 2.

A square has D4 symmetry, a dihedral group of order 8.D4

A rectangle has D2 symmetry, a dihedral group of order 4.D2

D1

Thus, a square is the most symmetric object of the four we have 
discussed; the isosceles trapezoid is the least.

Q: Well that’s all just fascinating—but just what the heck does this have to
do with RF circuits!?!
A: Plenty! Useful circuits often display high levels of symmetry.
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Circuit Symmetry (contd.)

• For example consider
these D1 symmetric
multi-port circuits:

1 → 2

2 → 1

3 → 4

4 → 3

100Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4

• Or this circuit with D2

symmetry: which is
congruent under these
permutations:

1 → 3, 2 → 4, 3 → 1, 4 → 2

1 → 2, 2 → 1, 3 → 4, 4 → 3

1 → 4, 2 → 3, 3 → 2, 4 → 1

50Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• Or this circuit with D4 symmetry: which is congruent under these

permutations:

1 → 3, 2 → 4, 3 → 1, 4 → 2

1 → 2, 2 → 1, 3 → 4, 4 → 3

1 → 4, 2 → 3, 3 → 2, 4 → 1

1 → 4, 2 → 2, 3 → 3, 4 → 1

1 → 1, 2 → 3, 3 → 2, 4 → 4

The importance of this can be seen when considering the scattering matrix, 
impedance matrix, or admittance matrix of these networks.

50Ω

50Ω

50Ω 50Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)

• For example, consider again this 
symmetric circuit:

• This four-port network has a
single plane of reflection
symmetry (i.e., D1 symmetry),
and thus is congruent under
the permutation:

1 → 2, 2 → 1, 3 → 4, 4 → 3

• So, since (for example) 1→2, we find that for this circuit:

𝑆11 = 𝑆22 𝑍11 = 𝑍22 𝑌11 = 𝑌22 must be true!

• Or, since 1→2 and 3→4 we find:

𝑆13 = 𝑆24 𝑍13 = 𝑍24 𝑌13 = 𝑌24

𝑆31 = 𝑆42 𝑍31 = 𝑍42 𝑌31 = 𝑌42

100Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)

• Continuing for all elements of the permutation,
we find that for this symmetric circuit, the
scattering matrix must have this form:

11 21 13 14

21 11 14 13

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

and the impedance and admittance matrices 
would likewise have this same form.

• Note there are just 8 independent elements in
this matrix. If we also consider reciprocity (a
constraint independent of symmetry) we find that
𝑆31 = 𝑆13 and 𝑆41 = 𝑆14, and the matrix reduces
further to one with just 6 independent elements:

11 21 31 41

21 11 41 31

31 41 33 43

41 31 43 33

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 
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Circuit Symmetry (contd.)

11 21 31 41

21 22 41 31

31 41 11 21

41 31 21 22

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Q: Interesting. But why do we care?
A: This will greatly simplify the analysis of this symmetric circuit, as we 
need to determine only six matrix elements!

• Or, for circuits with this D1

symmetry:

1 → 3, 2 → 4, 3 → 1, 4 → 2

50Ω

50Ω

100Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)

• For a circuit with D2

symmetry:
• we find that the impedance

(or scattering, or admittance)
matrix has the form:

11 21 31 41

21 11 41 31

31 41 11 21

41 31 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Note: there are just four 
independent values!

50Ω

50Ω

200Ω 200Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• For a circuit with D4 symmetry: • we find that the admittance (or

scattering, or impedance) matrix
has the form:

11 21 21 41

21 11 41 21

21 41 11 21

41 21 21 11

S S S S

S S S S
S

S S S S

S S S S

 
 
 
 
 
 

Note: there are just three 
independent values!

50Ω

50Ω

50Ω 50Ω

𝑃𝑜𝑟𝑡 − 1 𝑃𝑜𝑟𝑡 − 2

𝑃𝑜𝑟𝑡 − 3 𝑃𝑜𝑟𝑡 − 4
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Circuit Symmetry (contd.)
• One more interesting thing (yet another one!); recall that we earlier found

that a matched, lossless, reciprocal 4-port device must have a scattering
matrix with one of two forms:

0 0

0 0

0 0

0 0

j

j
S

j

j

 

 

 

 

 
 
 
 
 
 

0 0

0 0

0 0

0 0

j

S

 

 

 

 

 
 


 
 
 

 

Symmetric Anti-symmetric

• The “symmetric solution” has the
same form as the scattering matrix of
a circuit with D2 symmetry!

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 
 
 
 
 

Q: Does this mean that a matched, lossless, reciprocal four-port device with
the “symmetric” scattering matrix must exhibit D2 symmetry?
A: That’s exactly what it means!
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Circuit Symmetry (contd.)
• Not only can we determine from the form of the scattering matrix whether

a particular design is possible (e.g., a matched, lossless, reciprocal 3-port
device is impossible), we can also determine the general structure of a
possible solutions (e.g. the circuit must have D2 symmetry).

• Likewise, the “anti-symmetric” matched,
lossless, reciprocal four-port network must
exhibit D1 symmetry!

21 31

21 31

31 21

31 21

0 0

0 0

0 0

0 0

S S

S S
S

S S

S S

 
 


 
 
 

 

We’ll see just what these symmetric, matched, lossless, reciprocal 
four-port circuits actually are later in the course!
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Example – 4 
• determine the scattering matrix of the simple two-port device shown

below:

Port-1 Port-2
𝑍0, 𝛽 𝑍0, 𝛽

𝑧 = 0𝑧 = −𝑙

𝑆 = 0 𝑒−𝑗𝛽𝑙

𝑒−𝑗𝛽𝑙 0
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Symmetric Circuit Analysis 
200Ω

100Ω 100Ω

50Ω

𝐼1 𝐼2

+

−
𝑉1

+

−
𝑉2

• Consider this D1 symmetric two-
port device:

Q: Yikes! The plane of reflection
symmetry slices through two resistors.
What can we do about that?
A: Resistors are easily split into two
equal pieces: the 200Ω resistor into
two 100Ω resistors in series, and the
50Ω resistor as two 100 Ω resistors in
parallel.

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

• Recall that the symmetry of this
2-port device leads to simplified
network matrices:

𝑆 =
𝑆11 𝑆21
𝑆21 𝑆11
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Symmetric Circuit Analysis (contd.) 

Q: can circuit symmetry likewise simplify the procedure of determining these
elements? In other words, can symmetry be used to simplify circuit analysis?
A: You bet!

• First, consider the case where
we attach sources to circuit in a
way that preserves the circuit
symmetry:

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

But remember! In order for symmetry to be preserved, the 
source values on both sides (i.e, Vs) must be identical!
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Symmetric Circuit Analysis (contd.) 

𝐼2𝐼1

+

−
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

+

−

𝑉2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏

• Since this circuit possesses bilateral (reflection) symmetry (1→2, 2→1),
symmetric currents and voltages must be equal:

𝑉1 = 𝑉2 𝑉1𝑎 = 𝑉2𝑎 𝑉1𝑏= 𝑉2𝑏 𝑉1𝑐 = 𝑉2𝑐

𝐼1 = 𝐼2 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑏 = 𝐼2𝑏 𝐼1𝑐 = 𝐼2𝑐 𝐼1𝑑= 𝐼2𝑑

• Now, consider the voltages and currents within this circuit under this symmetric
configuration:
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Symmetric Circuit Analysis (contd.) 
Q: Wait! This can’t possibly be correct! Look at currents 𝐼1𝑎 and

𝐼2𝑎, as well as currents 𝐼1𝑑 and 𝐼2𝑑. From KCL, this must be true:

𝐼1𝑎 = −𝐼2𝑎
𝐼1𝑑= −𝐼2𝑑

• Yet you say that this must be true: 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑑= 𝐼2𝑑

There is an obvious contradiction here! There is no way that both sets of 
equations can simultaneously be correct, is there?

A: Actually there is! There is one solution that will satisfy both sets of
equations: 𝐼1𝑎 = 𝐼2𝑎 = 0 𝐼1𝑑= 𝐼2𝑑 = 0

The currents are zero!

If you think about it, this makes perfect sense! The result says 
that no current will flow from one side of the symmetric 

circuit into the other.

• If current did flow across the symmetry plane, then the circuit symmetry
would be destroyed—one side would effectively become the “source
side”, and the other the “load side” (i.e., the source side delivers current
to the load side).
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𝐼2𝐼1

𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏
+

−

𝑉1𝑐

+

−

𝑉2𝑐
+

−
𝑉2

+

−
𝑉1

𝑽𝒊𝒕𝒖𝒂𝒍 𝑶𝒑𝒆𝒏, 𝐈 = 𝟎

Symmetric Circuit Analysis (contd.) 
• Thus, no current will flow across the reflection symmetry plane of a

symmetric circuit—the symmetry plane thus acts as a open circuit!

The plane of 
symmetry thus 

becomes a virtual 
open!
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Symmetric Circuit Analysis (contd.) 

A: So what! This means that our circuit can be split apart into two separate
but identical circuits. Solve one half-circuit, and you have solved the other!

𝐼1

𝐼1𝑐

+ −𝑉1𝑎

+ −𝑉1𝑏

+

−

𝑉1𝑐
+

−
𝑉1

𝐼1𝑏

𝑉1 = 𝑉2 = 𝑉𝑠

𝐼1𝑑 = 𝐼2𝑑 = 0

𝑉1𝑎 = 𝑉2𝑎 = 0

𝑉1𝑏= 𝑉2𝑏 =  𝑉𝑠 2
𝑉1𝑐 = 𝑉2𝑐 =  𝑉𝑠 2

𝐼1 = 𝐼2 =  𝑉𝑠 200
𝐼1𝑎 = 𝐼2𝑎 = 0

𝐼1𝑏 = 𝐼2𝑏 =  𝑉𝑠 200 𝐼1𝑐 = 𝐼2𝑐 =  𝑉𝑠 200

Q: So what?
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Asymmetric Circuit Analysis
• Now, consider another type of symmetry, where the sources are equal but

opposite (i.e., 180 degrees out of phase).

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

This situation still preserves the symmetry of the circuit— somewhat. 
The voltages and currents in the circuit will now posses odd 

symmetry—they will be equal but opposite (180 degrees out of 
phase) at symmetric points across the symmetry plane.
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𝐼2𝐼1

+

−
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

+

−

𝑉2𝑐

+ −𝑉1𝑎 +− 𝑉2𝑎

+ −𝑉1𝑏 +− 𝑉2𝑏

Asymmetric Circuit Analysis (contd.)

𝑉1 = −𝑉2 𝑉1𝑎 = −𝑉2𝑎 𝑉1𝑏= −𝑉2𝑏 𝑉1𝑐 = −𝑉2𝑐

𝐼1 = −𝐼2 𝐼1𝑎 = −𝐼2𝑎 𝐼1𝑏 = −𝐼2𝑏 𝐼1𝑐 = −𝐼2𝑐 𝐼1𝑑= −𝐼2𝑑
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Asymmetric Circuit Analysis (contd.)
• Perhaps it would be easier to redefine the circuit variables as:

𝐼2𝐼1

−

+
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

−

+

𝑉2𝑐

+ −𝑉1𝑎 −+ 𝑉2𝑎

+ −𝑉1𝑏 −+ 𝑉2𝑏

𝑉1 = 𝑉2 𝑉1𝑎 = 𝑉2𝑎 𝑉1𝑏= 𝑉2𝑏 𝑉1𝑐 = 𝑉2𝑐

𝐼1 = 𝐼2 𝐼1𝑎 = 𝐼2𝑎 𝐼1𝑏 = 𝐼2𝑏 𝐼1𝑐 = 𝐼2𝑐 𝐼1𝑑= 𝐼2𝑑

Q: But wait! Again I see a problem. By KVL it is evident that: 𝑉1𝑐 = −𝑉2𝑐

Yet you say that 𝑉1𝑐 = 𝑉2𝑐 must be true!
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Asymmetric Circuit Analysis (contd.)
A: Again, the solution to both equations is zero! 𝑉1𝑐 = 𝑉2𝑐 = 0

For the case of odd symmetry, the symmetric plane must be a plane of 
constant potential (i.e., constant voltage)—just like a short circuit!

𝐼2𝐼1

−

+
𝑉2

+

−
𝑉1

𝐼1𝑎 𝐼2𝑎

𝐼1𝑑 𝐼2𝑑𝐼1𝑏 𝐼2𝑏

𝐼1𝑐 𝐼2𝑐

+

−

𝑉1𝑐

−

+

𝑉2𝑐

+ −𝑉1𝑎 −+ 𝑉2𝑎

+ −𝑉1𝑏 −+ 𝑉2𝑏

𝑽𝒊𝒕𝒖𝒂𝒍 𝑺𝒉𝒐𝒓𝒕, 𝐕 = 𝟎

• Thus, for odd
symmetry, the
symmetric plane
forms a virtual
short.
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Asymmetric Circuit Analysis (contd.)

𝑉1 = 𝑉𝑠

𝐼1𝑑 =  𝑉𝑠 100

𝑉1𝑎 = 𝑉𝑠

𝑉1𝑏 = 𝑉𝑠

𝑉1𝑐 = 0

𝐼1 =  𝑉𝑠
50

𝐼1𝑎 =  𝑉𝑠 100

𝐼1𝑏 =  𝑉𝑠 100

𝐼1𝑐 = 0

+

−
𝑉1

𝐼1

𝐼1𝑏 + −𝑉1𝑏

+ −𝑉1𝑎

𝐼1𝑎

𝐼1𝑑

+

−

𝑉1𝑐

𝐼1𝑐
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Odd/Even Mode Analysis 

Q: Although symmetric circuits appear to be plentiful in microwave
engineering, it seems unlikely that we would often encounter symmetric
sources . Do virtual shorts and opens typically ever occur?
A: One word—superposition!

If the elements of our circuit are independent and linear, we can 
apply superposition to analyze symmetric circuits when non-

symmetric sources are attached.

+

−
𝑉1

+

−
𝑉2

𝐼1 𝐼2

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

• For example, say we wish to
determine the admittance
matrix of this circuit. We would
place a voltage source at port 1,
and a short circuit at port 2—a
set of asymmetric sources if
there ever was one!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Odd/Even Mode Analysis (contd.) 

• Here’s the really neat part. We find that the source on port 1 can be
modelled as two equal voltage sources in series, whereas the source at
port 2 can be modelled as two equal but opposite sources in series.

+

−

+

−

+

−
𝑉𝑠

𝑉𝑠
2

𝑉𝑠
2

+

−

+

−

𝑉𝑠
2

−
𝑉𝑠
2

+

−
0
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Odd/Even Mode Analysis (contd.) 

• Therefore an equivalent
circuit is:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

• Now, the above circuit (due to
the sources) is obviously
asymmetric—no virtual ground,
nor virtual short is present. But,
let’s say we turn off (i.e., set to
V =0) the bottom source on
each side of the circuit:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝑉𝑠
2

𝑉𝑠
2

𝐼1 𝐼2

Our symmetry has been restored! The symmetry plane is 
a virtual open.
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Odd/Even Mode Analysis (contd.) 

• The circuit is referred to as its even mode, and analysis of it is known as the
even mode analysis. The solutions are known as the even mode currents
and voltages!

• Evaluating the resulting even 
mode half circuit we find:

𝐼1
𝑒

100Ω

100Ω

100Ω
𝑉𝑠
21 2

1

2 200 400

e es sV V
I I  
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• Now, let’s turn the bottom
sources back on—but turn off the
top two!

• We now have a circuit with odd
symmetry—the symmetry plane
is a virtual short!

Odd/Even Mode Analysis (contd.) 

• This circuit is referred to as its odd mode, and analysis of it is known as the
odd mode analysis. The solutions are known as the odd mode currents
and voltages!

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

𝑉𝑠
2

−
𝑉𝑠
2

𝑉𝑠
2

• Evaluating the resulting odd mode
half circuit we find:

1 2

1

2 50 100

o os sV V
I I   

𝐼1
𝑜

100Ω

100Ω

100Ω
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Odd/Even Mode Analysis (contd.) 
Q: But what good is this “even mode” and “odd mode” analysis? After all, the
source on port 1 is 𝑉𝑠1 = 𝑉𝑠, and the source on port 2 is 𝑉𝑠2 = 0. What are the
currents 𝐼1 = 𝐼2 for these sources?

• and thus—since all the devices in the circuit are
linear—we know from superposition that the
currents 𝐼1 and 𝐼2 are simply the sum of the odd
and even mode currents !

1 1 1

e oI I I 

2 2 2

e oI I I 

2 2

s s
s

V V
V  First Source:

2 2

s s
s

V V
V  Second Source:

A: Recall that these sources are the sum of the even and odd mode sources:
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Odd/Even Mode Analysis (contd.) 
100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 = 𝐼1
𝑒 + 𝐼1

𝑜
𝐼2 = 𝐼2

𝑒 + 𝐼2
𝑜

• Thus, adding the odd
and even mode analysis
results together:

1 1 1
400 100 80

e o s s sV V V
I I I    

2 2 2

3

400 100 400

e o s s sV V V
I I I     

• And then the admittance parameters for this two port network is:

2

1
11 0

1

1 1
|

80 80s

s
V

s s

I V
y

V V
  

2

2
21 0

1

3 1 3
|

400 400s

s
V

s s

I V
y

V V



   

• And from the symmetry of the
device we know: 22 11

1

80
y y  12 21

3

400
y y


 

• Thus, the full admittance matrix is: 𝑌 =
1/80 −3/400

−3/400 1/80
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Odd/Even Mode Analysis (contd.) 
Q: What happens if both sources
are non-zero? Can we use
symmetry then?
A: Absolutely! Consider this
problem, where neither source is
equal to zero:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

+

−
𝑉2

+

−
𝑉1

𝐼1 𝐼2

• In this case we can define an even
mode and an odd mode source as:

1 2

2

e s s
s

V V
V


 1 2

2

o s s
s

V V
V




+

−

+

−

+

−
𝑉𝑠1

𝑉𝑠
𝑒

𝑉𝑠
𝑜

+

−

+

−

+

−
𝑉𝑠2

𝑉𝑠
𝑒

−𝑉𝑠
𝑜
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Odd/Even Mode Analysis (contd.) 

• We can then analyze the even
mode circuit:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

𝑉𝑠
𝑒 𝑉𝑠

𝑒

• And then the odd mode
circuit:

100Ω 100Ω

100Ω 100Ω

100Ω 100Ω

𝐼1 𝐼2

−𝑉𝑠
𝑜𝑉𝑠

𝑜

And then combine these results in a linear superposition!
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Odd/Even Mode Analysis (contd.) 
Q: What about current sources? Can I likewise consider them to be a sum of
an odd mode source and an even mode source?

𝐼𝑠1 𝐼𝑠
𝑜 𝐼𝑠

𝑒
𝐼𝑠2 −𝐼𝑠

𝑜 𝐼𝑠
𝑒

• One final word (I promise!) about circuit symmetry and even/odd mode
analysis: precisely the same concept exits in electronic circuit design!

Specifically, the differential (odd) and common (even)
mode analysis of bilaterally symmetric electronic circuits,
such as differential amplifiers!

1 2

2

e s s
s

I I
I




1 2

2

o s s
s

I I
I




A: Yes, but be very careful! The current of two source will add if they are
placed in parallel—not in series! Therefore:
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Example – 2 

• Carefully (very carefully) consider the symmetric circuit below:

4.0𝑉 𝑍0 = 50Ω

𝑍0 = 50Ω

50Ω

50Ω

50Ω50Ω

50Ω

50Ω λ

 λ 2

+

−
𝑽𝟏

Use odd-even mode analysis to determine the value 
of voltage 𝑽𝟏.
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Generalized Scattering Parameters 

4-port 
Linear 

Microwave 
Device

1 1( )V z
3 3( )V z

2 2( )V z

4 4( )V z

Port-1

Port-4

Port-3

Port-2

3 3Pz z

4 4Pz z

2 2Pz z

1 1Pz z

04Z

03Z01Z

02Z

2 2( )V z

1 1( )V z 3 3( )V z

4 4( )V z

Consider now this microwave network:

Boring! We studied this before; this 
will lead to the definition of 

scattering parameters, right?

Not exactly. For this 
network, the 

characteristic impedance 
of each transmission line 
is different (i.e., Z01 ≠Z02

≠Z03 ≠Z04)!
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Generalized Scattering Parameters (contd.) 

Yikes! You said scattering parameters are dependent on transmission line 
characteristic impedance Z0. If these values are different for each port, 

which Z0 do we use?

For this general case, we must use generalized scattering parameters! 
First, we define a slightly new form of complex wave amplitudes

0

n
n

n

V
a

Z




0

n
n

n

V
b

Z





• The key things to note are:

variable a (e.g., a1,a2, …) denotes the complex amplitude of an
incident (i.e., plus) wave.

a

variable b (e.g., a1,a2, …) denotes the complex amplitude of an
exiting (i.e., minus) wave.

b
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Generalized Scattering Parameters (contd.) 

We now get to rewrite all our transmission line
knowledge in terms of these generalized complex
amplitudes!

• First, our two propagating wave amplitudes (i.e., plus and minus) are
compactly written as:

0n n nV a Z  0n n nV b Z 

• Therefore:

0( ) . nj z

n n n nV z a Z e
  0( ) . nj z

n n n nV z b Z e
 

2
( ) nj zn

n

n

b

a
z e


 
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Generalized Scattering Parameters (contd.) 

• Similarly, the total voltage, current, and impedance at the nth port are:

 0( ) . n nj z j z

n n n n nV z Z a e b e
  

   

0

.
( )

n nj z j z

n n

n n

n

a e b e
I z

Z

  




.
( )

.

n n

n n

j z j z

n n
n j z j z

n n

a e b e
Z z

a e b e

 

 

 

 






• Assuming that our port planes are defined with znP = 0, we can
determine the total voltage, current, and impedance at port n as:

 0( 0)n n n n n nV V z Z a b  
 

0

( 0)
n n

n n n

n

a b
I I z

Z


 

( 0) n n
n n

n n

a b
Z Z z

a b


 


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Generalized Scattering Parameters (contd.) 

• Similarly, the power associated with each wave is:
2 2

02 2

n n

n

n

V a
P

Z



  

2 2

02 2

n n

n

n

V b
P

Z



  

• As such, the power delivered to port n (i.e., the power absorbed by port
n) is:

2 2

2

n n

n n n

a b
P P P 


  

So what’s the big deal? This is yet 
another way to express transmission 

line activity. 
Do we really need to know this, or is 
this simply a strategy for making the 

next quiz even harder?
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Generalized Scattering Parameters (contd.) 

• You may have noticed that this notation (an, bn) provides descriptions that
are a bit “cleaner” and more symmetric between current and voltage.

• However, the main reason for this notation is for evaluating the
scattering parameters of a device with dissimilar transmission line
impedance (e.g., Z01 ≠ Z02 ≠ Z03 ≠ Z04).

0

0

nm
mn

n m

ZV
S

V Z




 when Vk

+(zk) = 0 for all k ≠ n)

• For these cases we must use generalized scattering parameters:

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network

01 50Z   02 50Z  

Port-1 Port-2
Here, Z01 = Z02

2
21

1

V
S

V




 when, V2

+ = 0
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Generalized Scattering Parameters (contd.) 

1 1( )V z
2 2( )V z

2 2( )V z

1 1( )V z

2-Port 
Network

01 50Z   02 75Z  

Port-1 Port-2
Here, Z01 ≠ Z02

2
21

1

V
S

V




 when, V2

+ = 0

Instead 2
21

1

50

75

V
S

V




 when, V2

+ = 0

• Note that the generalized scattering parameters can be more compactly
written in terms of our new wave amplitude notation:

0

0

nm m

nm

n

n

m

Z

a

V

V Z

b
S




 when ak = 0 for all k ≠ n)

Remember, this is the generalized form of scattering parameter—it
always provides the correct answer, regardless of the values of Z0m or Z0n!
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Generalized Scattering Parameters (contd.) 
• But why can’t we define the scattering parameter as Smn =Vm

−/Vn
+,

regardless of Z0m or Z0n?? Who says we must define it with those awful
Z0n values in there?

Recall that a lossless device will always have a unitary scattering 
matrix. As a result, the scattering parameters of a lossless device 

will always satisfy, for example:
2

1

1
N

mn

m

S




This is true only if 
generalized scattering 
parameters are used

The scattering parameters of a lossless 
device will form a unitary matrix only if 
defined as Smn = bm/an. If we use Smn = 

Vm
−/Vn

+, the matrix will be unitary only if 
the connecting transmission lines have the 

same characteristic impedance.
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• Do we really care if the matrix of a lossless device is unitary or not?

Generalized Scattering Parameters (contd.) 

Absolutely! we do!

lossless device ⇔ unitary scattering matrix

This relationship is a very powerful one. It allows us to 
identify lossless devices, and it allows us to determine if 

specific lossless devices are even possible!
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Example – 3
• let’s consider a perfect connector—an electrically very small two-port

device that allows us to connect the ends of different transmission lines
together.

Determine the S-matrix of this ideal connector:
1. First case: it connects two transmission lines with same characteristic

impedance of 𝑍0.
2. Second case: it connects two transmission lines with characteristic

impedances of 𝑍01 and 𝑍02 respectively.
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Shifting of Planes 
• It is not often easy or feasible to match network ports for determination

of S-parameters→ in such a situation S-parameters are determined
through transmission lines of finite length.

• Let us consider a 2-port network to understand these situations.

1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
1 1( 0)inV z V  

1 1

1 1 1( ) j l

inV z l V e    
We can similarly define wave 

functions on the output 
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Shifting of Planes (contd.)

• The equations can be combined to form following matrix 

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at 
the network ports shifted by 

TL segments

1 1

2 2

1 1

22

( )

( )

0

0

in

out

j l

j l

V l

V l Ve

Ve 



 

  

  
 

 

  
 




  
 
  

Links the incident waves at 
the network ports shifted by 

TL segments

• We can also deduce that S-parameters are linked to the generalized
coefficients an and bn (which in turn can be expressed through voltages)
through following expressions (if we assume Z01 = Z02)

11 12

21 22

1

2 2

1V

V

V

S V

S S

S









  
 


  
  

  




  

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Shifting of Planes (contd.)
• Simplification of these three matrix expression results in:

1 1 1 1

2 22 2

11 12

21

1

22

1

2 2

( )( )

( )

0

00)

0

(

j l
in

ou

j l

in

ou

l

l

t

j

t

j

VS S

S S

e

e

e

e

V l l

V lV l
 

 







 



   
 

  

  
 


 

 
 

 

 
 

    

S-parameters of the shifted network  [S]SHIFT

 
1 1 2 2

1 1

1

2 2 2 2

1 ( )

(

11 12

21 2

2

2

2)

SH

j l

j l l

j l

FT

l

I
j lS e

e

S

S eS

e  

 





 

 





 
 

S

Physical Meaning

The first term (S11) reveals that we have to take into account twice the travel 
time for the incident voltage to reach port-1 and, upon reflection, return to 
the end of the TL segment. Similarly for S22 at   port-2. The cross terms (S12

and S21) require additive phase shifts associated with TL segments at port-1 
and port-2
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The Transmission Matrix

• If a network has two ports, then we can alternatively define the
voltages and currents at each port as:

2V

1I

1V

2I

 



2-Port 
Network 

Input 
Port 

Output 
Port 

For such a network, we can relate the input port parameters  (I1 and 
V1) and output port parameters (I2 and V2) using transmission 

parameters also known as ABCD parameters 

1 2 2V AV BI 

1 2 2I CV DI 

21

21

A B V

I

V

C DI

 
 




 
 


 
 

Transmission 
Matrix ‘T’ 
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The Transmission Matrix (contd.)

• Similar to the impedance and admittance matrices, we determine the
elements of the transmission matrix using shorts and opens.

• Note when I2 = 0 then: V1 =AV2
1

2

V
A

V
 A is unitless (i.e., it 

is a coefficient)

• Note when V2 = 0 then: V1 =BI2
1

2

V
B

I
 B has unit of 

impedance (i.e., 
Ohms)

• Note when I2 = 0 then: I1 =CV2
1

2

I
C

V
 C has unit of 

admittance (i.e., 
mhos)

• Note when V2 = 0 then: I1 =DI2
1

2

I
D

I
 D is unitless (i.e., it 

is a coefficient)
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The Transmission Matrix (contd.)

Crying out loud! We already have 
the impedance matrix, the 
scattering matrix, and the 

admittance matrix. Why do we 
need the transmission matrix? Is it 

somehow uniquely useful?
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The Transmission Matrix (contd.)

• Let us consider the case where a 2-port network is created by connecting
(i.e., cascading) two networks:

T

TA TB

1I

1V




21

21

V V

II

 
 



 


 
 

A
T

32

32

B

V V

I I

 



 
 


 


T
3

3

1

1

V

I

V

I

 


 
 
 

 
 

T
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The Transmission Matrix (contd.)

• Combining the first two equations we get:
3

1

21

32

B

VV

I

V

I I

  
   



 
 

    
A AT T T

• Combining this combined relationship to the third we get:

2

1 3

1

32

3 3

B

V VV

II I

V

I

    
     

 

 
  

   
A AT T T T

• Note this result is only true for the transmission matrix T. No equivalent
result exists for S ,Z ,Y !

• Similarly, for N cascaded networks, the total transmission matrix T can
be determined as the product of all N networks!


N

1 2 3 N n
n=1

= TT T .............T = TT

BAT = T T

• Thus, the transmission matrix can greatly simplify the analysis of complex
networks constructed from two-port devices. We find that the T matrix is
particularly useful when creating design software for CAD applications.


