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• Smith Chart – Construction 
• Smith Chart – Geography 
• Smith Chart – Outer Scales 
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The Smith Chart (contd.) 

• Let us revisit the generalized
reflection coefficient formulation:
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• Therefore, the normalized
impedance can be formulated
as:
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• The separation of real
and imaginary part
results in:
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• Simplification and then elimination of reactance (x) from these two give:
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Similar equation to circle of radius  , 

centered at 
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The Smith Chart (contd.) 
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Observations:

• For r =0: p2 + q2 = 1; (p, q) = (0, 0) and l = 1
• For r =1/2: (p - 1/3)2 + q2 = (2/3)2; (p, q) = (1/3, 0) and l = 2/3
• For r =1: (p - 1/2)2 + q2 = (1/2)2; (p, q) = (1/2, 0) and l = 1/2
• For r =3: (p – 3/4)2 + q2 = (1/4)2; (p, q) = (3/4, 0) and l = 1/4

Circles of 
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centre and 
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Note:

Because of 
(q – 0)2

term, all the 
constant 

resistance (r) 
circles have 
centers on 

this line

This approach enables 
mapping of any 

realizable vertical line 
(representing r) in the 

complex Γ-plane
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• For the mapping of horizontal lines
of the normalized impedance plane
to Γ-plane, let us simplify and
eliminate resistance (r) from these:

   1 1r i rr x    

 1 r i ix r   

Real

Imaginary

The Smith Chart (contd.) 
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Note:

Observations:

• For x =1: (p – 1)2 + (q – 1)2 = (1)2; (p, q) = (1, 1) and l = 1
• For x =-1: (p – 1)2 + (q + 1)2 = (1)2; (p, q) = (1, -1) and l = 1
• For x =1/2: (p – 1)2 + (q – 2)2 = (2)2; (p, q) = (1, 2) and l = 2
• For x =-1/2: (p – 1)2 + (q + 2)2 = (2)2; (p, q) = (1, -2) and l = 2

Circles of 
distinct 

centre and 
radii
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0r 

The Smith Chart (contd.) 

r

i
1x 

1x  

0x 

0.5x 

0.5x  

3x  

3x 

x 

q l 
Note:

All constant reactance 
(x) circles have their 

origins along this line 
p=1 because of the 

term (p – 1)2

This approach enables mapping of any realizable horizontal line 
(representing x) in the complex Γ-plane



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Smith Chart (contd.)  
• Combination of these constant resistance and reactance circles define the

mappings from normalized impedance (z’) plane to Γ-plane and is called as
Smith chart.
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Actual 
Smith chart

The Smith Chart (contd.)
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The Smith Chart (contd.) – Geography 

• We have located specific points on the complex impedance plane, such as 
a short circuit or a matched load

• We’ve also identified contours, such as r =1 or x =1.5

We can likewise identify 
whole regions  (!) of the 

complex impedance plane, 
providing a bit of a 

geography lesson of the 
complex impedance plane
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r = -1

r = +1

Re{z’}

Im{z’}

The Smith Chart (contd.) – Geography 

r = 0

For example, 
we can divide 
the complex 
impedance 
plane into

four regions 
based on 

normalized 
resistance

value r:

r ≤ -1

-1 ≤r ≤ 0

0≤r ≤ 1

1≤r
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-1 ≤r ≤ 0

0≤r ≤ 1
1≤r

r ≤ -1

r = 0

r = +1

r = -1

The Smith Chart (contd.) – Geography 

Just like 
points and 
contours, 

these regions 
of the 

complex
impedance 

plane can be 
mapped onto 
the complex 

gamma 
plane!
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x ≤ -1

-1 ≤x ≤0

0 ≤x ≤1

x ≥1

The Smith Chart (contd.) – Geography 

Instead of 
dividing the 

complex 
impedance 
plane into 

regions
based on 

normalized 
resistance r, 

we could 
divide it 

based on
normalized 
reactance 

x:

x =0

x =1

x = -1

r =0
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0 ≤ x ≤1

-1 ≤ x ≤0

The Smith Chart (contd.) – Geography 

These 
four 

regions 
can 

likewise 
be 

mapped 
onto the 
complex
gamma 
plane:

x =0

x ≤ -1

x = -1

x ≥1

x =1

r =0
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The Smith Chart (contd.) – Geography 

• the four resistance regions
and the four reactance
regions combine to from 16
separate regions on the
complex impedance and
complex gamma planes!

• Eight of these sixteen regions
lie in the valid region (i.e., r >
0)

• Make sure you can locate the
eight impedance regions on a
Smith Chart—this
understanding of Smith Chart
geography will help you
understand your design and
analysis results!
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The Smith Chart – Important Points
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The Smith Chart (contd.)
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In general:

The Smith Chart (contd.)
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We go completely around
the Smith chart when

Note: the Smith chart already has wavelength scales on the 
periphery for your convenience.
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The Smith Chart (contd.)

• Go half-way around the Smith chart:
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The Smith Chart – Outer Scale

Note that around 
the outside of 

the Smith Chart 
there is a scale 
indicating the 
phase angle, 

from 180⁰ to -
180⁰. 
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The Smith Chart  – Outer Scale (contd.)

• Recall however, for a terminated transmission line, the reflection
coefficient function is:

  0(2 )2

0 0

j zj zz e e
      

• Thus, the phase of the reflection coefficient function depends on
transmission line position z as:
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• As a result, a change in line position z (i.e., Δz ) results in a change in
reflection coefficient phase θΓ (i.e., ∆θΓ):

4
z

 




 
   

 

• E.g., a change of position equal to one-quarter wavelength Δz =λ/4
results in a phase change of π radians—we rotate half-way around the
complex Γ-plane (otherwise known as the Smith Chart).
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• The Smith Chart then has a second scale (besides θΓ) that surrounds it 
—one that relates TL position in wavelengths (∆z/λ) to the θΓ:

• Since the phase scale on the Smith
Chart extends from -180⁰ < θΓ < 180⁰
(i.e., -π < θΓ <π ), this electrical
length scale extends from:

0 < z/λ <0.5

• Note, for this mapping the reflection 
coefficient phase at location z = 0 is 
θΓ = −π. Therefore, θ0 =−π , and we 
find that:

0

0 0 0 0

j je e
         

S.C. 
Point

The Smith Chart  – Outer Scale (contd.)
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• Example: say you’re at some
location z = z1 along a TL. The value
of the reflection coefficient at that
point happens to be:

65

1( ) 0.685 jz z e   

• Finding the phase angle of θΓ = -65⁰
on the outer scale of the Smith
Chart, we note that the
corresponding electrical length
value is:

0.160

Note: this tells us nothing about the 
location z  = z1. This does not mean 

that z1 =0.160λ , for example!

The Smith Chart  – Outer Scale (contd.)
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• Now, say we move a short distance Δz
(i.e., a distance less than λ/2) along the
transmission line, to a new location

denoted as z = z2 and find that the
reflection coefficient has a value of:

74

2( ) 0.685 jz z e   

• Now finding the phase angle of θΓ = 74⁰ on
the outer scale of the Smith Chart, we note
that the corresponding electrical length
value is:

0.353

Note: this tells us nothing about the 
location z = z2. This does not mean that z1

=0.353λ , for example!

The Smith Chart  – Outer Scale (contd.)
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Q: So what do the values 0.160λ and 0.353λ tell us?

A: They allow us to determine the distance between points z2 and z1 on
the transmission line.

2 1 0.353 0.160 0.193z z z        

The transmission line location z2 is a distance of 0.193λ from location z1!

Q: But, say the reflection coefficient at some point z3 has a phase value of
θΓ = -112⁰, which maps to a value of on the outer scale of Smith
chart. It gives . What does the –ve
value mean?

0.094

3 1 0.094 0.160 0.066z z z         

The Smith Chart  – Outer Scale (contd.)
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• In the first example, ∆z > 0 , meaning z2 > z1 → the location z2 is closer to
the load than is location z1

• the positive value ∆z maps to a phase change of 74⁰ - (-65⁰) = 139⁰
• In other words, as we move toward the load from location z1 to

location z2, we rotate counter-clockwise around the Smith chart
• In the second example, ∆z < 0 , meaning z3 < z1 → the location z3 is closer

to the beginning of the TL (i.e., farther from the load) than is location z1

• the negative value ∆z maps to a phase change of -112⁰ - (-65⁰) = -47⁰
• In other words, as we move away from the load (i.e, towards the

generator) from location z1 to location z3, we rotate clockwise
around the Smith chart

The Smith Chart  – Outer Scale (contd.)
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The Smith Chart – Outer Scale (contd.)
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Q: Wait! I just used a Smith Chart to analyze a TL
problem in the manner you have just explained. At
one point on my transmission line the phase of the
reflection coefficient is θΓ = +170⁰, which is
denoted as 0.486λ on the “wavelengths toward
load” scale.

I then moved a short distance along the line toward
the load, and found that the reflection coefficient
phase was θΓ = −144ο, which is denoted as 0.050λ
on the “wavelengths toward load” scale.

According to your “instruction”, the distance
between these two points is:

0.050 0.486 0.436z      

A large negative value! This says that I moved nearly a half wavelength away
from the load, but I know that I moved just a short distance toward the load! 

What happened?

The Smith Chart  – Outer Scale (contd.)
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The electrical 
length scales on 
the Smith chart 
begin and end 
where 180    1( )z z 

2( )z z 

0.436z   

In your example,
when rotating
counter-
clockwise (i.e.,
moving toward
the load) you
passed by this
transition. This
makes the
calculation of Δz
a bit more
problematic.

The Smith Chart  – Outer Scale (contd.)
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• As you rotate counter-clockwise around the Smith Chart, the “wavelengths
toward load” scale increases in value, until it reaches a maximum value of 0.5λ
(at θΓ = ± π)

• At that point, the scale “resets” to its minimum value of zero
• Thus, in such a situation, we must divide the problem into two steps:
• Step 1: Determine the electrical length from the initial point to the “end” of the

scale at 0.5λ
• Step 2: Determine the electrical distance from the “beginning” of the scale (i.e.,

0) and the second location on the transmission line
• Add the results of steps 1 and 2, and you have your answer!

For example, let’s look at the case that originally gave us the erroneous result. The
distance from the initial location to the end of the scale is:

0.500 0.486 0.014    

And the distance from the beginning of the scale to the second point is:

0.050 0.000 0.050    

Thus the distance between the two points is: 0.014 0.050 0.064     

The Smith Chart  – Outer Scale (contd.)
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0.014
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The Smith Chart  – Outer Scale (contd.)
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• The ∆z towards generator could also be mentioned as a +ve term if we 
consider the upper metric in the “Outer Scale”  

Clockwise Rotation 
• gives +ve distance when moving 

towards generator
• gives –ve distance when moving 

towards load

Counter-clockwise Rotation 
• gives -ve distance when moving 

towards generator
• gives +ve distance when moving 

towards load

The Smith Chart  – Outer Scale (contd.)


