

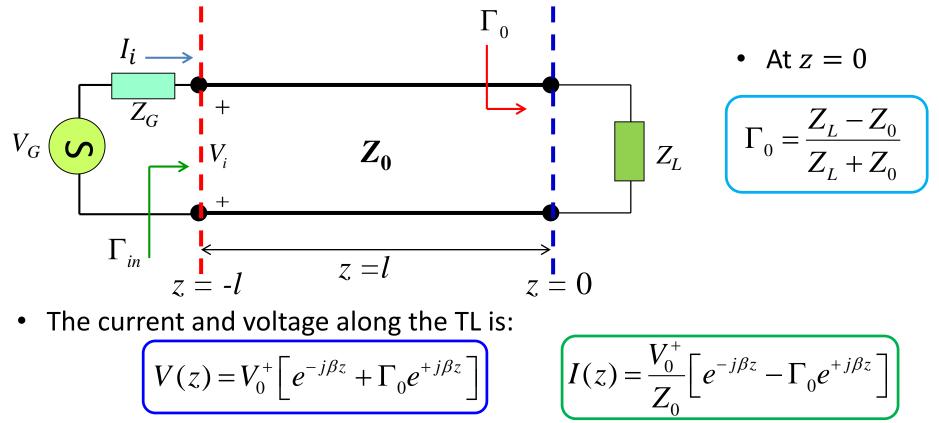
Lecture – 5

Date: 18.01.2016

- Sourced and Loaded TL
- Lossy TL

Sourced and Loaded Transmission Line

 Thus far, we have discussed a TL with terminated load impedance → Let us now consider a TL with terminated load impedance and a source at the input (with line-to-source mismatch)



 V_0^+ depends on the signal **source**! To determine its exact **value**, we must now apply **boundary conditions** at z = -l.

ECE321/521

Sourced and Loaded Transmission Line (contd.)

At the beginning of the transmission line:

$$V(z = -l) = V_0^+ \left[e^{+j\beta l} + \Gamma_0 e^{-j\beta l} \right] \qquad I(z = -l) = \frac{V_0^+}{Z_0} \left[e^{+j\beta l} - \Gamma_0 e^{-j\beta l} \right]$$

• Likewise, we know that the **source** must satisfy:

$$V_G = V_i + Z_G I_i$$

 $l_i \longrightarrow I(z = -l)$ From **KVL** we find: $Z_G + + V_G V_i \quad V(z = -l) \qquad Z_0$ $V_i = V(z = -l)$ Z_L From **KCL** we find: z = -lz=0 $I_i = I(z = -l)$ **Combining** these equations, we find: $V_{G} = V_{0}^{+} \left[e^{+j\beta l} + \Gamma_{0} e^{-j\beta l} \right] + Z_{G} \frac{V_{0}^{+}}{Z} \left[e^{+j\beta l} - \Gamma_{0} e^{-j\beta l} \right]$ **One** equation **\rightarrow one** unknown $(V_0^+)!!$

Sourced and Loaded Transmission Line (contd.)

 $\Gamma_G = \frac{Z_G - Z_0}{Z_G + Z_0}$

• Solving, we find the value of V_0^+ :

$$=V_{G}e^{-j\beta l}\frac{Z_{0}}{Z_{0}(1+\Gamma_{in})+Z_{G}(1-\Gamma_{in})}$$

 Note this result looks different than the equation in your book (Pozar):

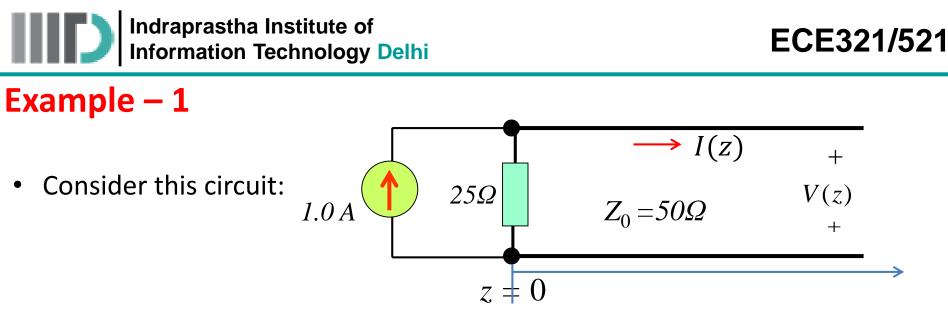
 $\Gamma_{in} = \Gamma(z = -l) = \Gamma_0 e^{-j\beta l}$

$$V_{0}^{+} = V_{G} \frac{Z_{0}}{Z_{0} + Z_{G}} \frac{e^{-j\beta l}}{\left(1 - \Gamma_{0}\Gamma_{G}e^{-j\beta l}\right)}$$

like the first expression better.

Although the two equations are equivalent, **first** expression is explicitly written in terms of $\Gamma_{in} = \Gamma(z = -l)$ (a very **useful**, **precise**, and **unambiguous** value), while the book's expression is written in terms of this **so-called** "source reflection coefficient" Γ_G (a **misleading**, **confusing**, **ambiguous**, and mostly **useless** value).

Specifically, we might be **tempted** to equate Γ_G with the value $\Gamma_{in} = \Gamma(z = -l)$, but it is **not** $\Gamma_G \neq \Gamma(z = -l)$!



• It is known that the **current** along the transmission line is:

 $I(z) = 0.4e^{-j\beta z} - Be^{+j\beta z}$ Amp for z > 0

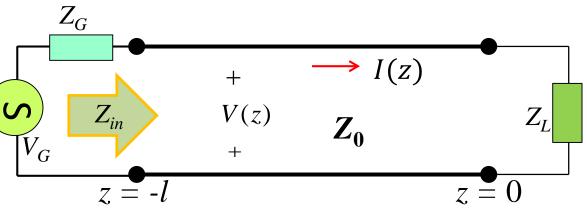
where B is some unknown complex value.

Determine the value of B.

ECE321/521

Sourced and Loaded Transmission Line (contd.)

Q: If the purpose of a transmission line is to transfer **power** from a source to a load, then exactly how much power is **delivered** to Z_L for this circuit??



A: We of course **could** determine V_0^+ and V_0^- , and then determine the power absorbed by the load (P_{abs}) as:

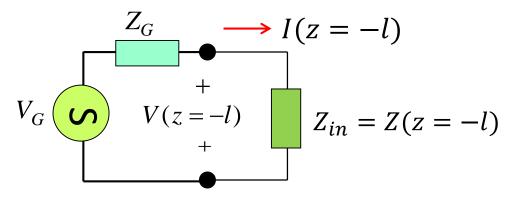
 If the transmission line is lossless, then we know that the power delivered to the load must be equal to the power "delivered" to the input (P_{in}) of the transmission line:

$$P_{abs} = \frac{1}{2} \operatorname{Re} \left\{ V(z=0) I^*(z=0) \right\}$$

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V(z = -l) I^*(z = -l) \right\}$$

Sourced and Loaded Transmission Line (contd.)

- We can determine this power **without** having to solve for V_0^+ and V_0^- (i.e., V(z) and I(z)). We can simply use our knowledge of **circuit theory**!
- We can transform load Z_L to the beginning of the transmission line, so that we can replace the transmission line with its input impedance Z_{in}:



• Note by **voltage division** we can determine:

$$V(z=-l) = V_G \frac{Z_{in}}{Z_G + Z_{in}}$$

• And from **Ohm's Law** we conclude:

$$I(z=-l) = \frac{V_G}{Z_G + Z_{in}}$$

Sourced and Loaded Transmission Line (contd.)

 $V_{0}^{+} = V_{G} e^{-j\beta l} \frac{Z_{0}}{Z_{0} (1 + \Gamma_{in}) + Z_{G} (1 - \Gamma_{in})}$

• And thus, the **power** P_{in} delivered to Z_{in} (and thus the **power** P_{abs} delivered to the load Z_L) is:

$$P_{abs} = P_{in} = \frac{1}{2} \operatorname{Re} \left\{ V(z = -l) I^{*}(z = -l) \right\} = \frac{1}{2} \operatorname{Re} \left\{ V_{G} \frac{Z_{in}}{Z_{G} + Z_{in}} \frac{V_{G}^{*}}{(Z_{G} + Z_{in})^{*}} \right\}$$

$$\Rightarrow P_{abs} = P_{in} = \frac{1}{2} \frac{|V_{G}|^{2}}{|Z_{G} + Z_{in}|^{2}} \operatorname{Re} \left\{ Z_{in} \right\}$$
Note, that we could

Note that we could also determine P_{abs} from our earlier expression:

$$P_{abs} = \frac{1}{2} \operatorname{Re} \left\{ V(z=0) I^*(z=0) \right\} = \frac{\left| V_0^+ \right|^2}{2Z_0} \left(1 - \left| \Gamma_0 \right|^2 \right)$$

But we would of course have to first determine $V_0^+(!)$:

 $Z_G = Z_0$

Sourced and Loaded Transmission Line (contd.)

• Let's look at **specific cases** of Z_G and Z_L , and determine how they affect V_0^+ and P_{abs} .

• For this case, we find tha
$$V_0^+$$
 simplifies greatly:

$$V_0^+ = \frac{1}{2} V_G e^{-j\beta l}$$

It says that the incident wave in this case is **independent** of the load attached at the other end!

Thus, for the **one** case $Z_G = Z_0$, we in fact can consider $V^+(z)$ as being the source wave, and then the reflected wave $V^-(z)$ as being the result of this stimulus.

• The complex value V_0^+ is the value of the incident wave evaluated at the end of the transmission line $(V_0^+ = V^+(z = 0))$. We can also determine the value of the incident wave at the **beginning** of the transmission line (i.e. $V^+(z = -l)$).

Sourced and Loaded Transmission Line (contd.)

Likewise, we find that the delivered power for this case can be simply stated as:

$$P_{abs} = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} \left(1 - \left|\Gamma_{0}\right|^{2}\right) = \frac{\left|V_{G}\right|^{2}}{8Z_{0}} \left(1 - \left|\Gamma_{0}\right|^{2}\right)$$

$$Z_L = Z_0$$

In this case, we find
that
$$\Gamma_0 = 0$$
, and thus $V_0^+ = V_G e^{-j\beta l} \frac{Z_0}{Z_0 + Z_G}$
 $\Gamma_{in} = 0$. As a result:

Likewise, we find that:

$$P_{abs} = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} \left(1 - \left|\Gamma_{0}\right|^{2}\right) = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}}$$

Here the delivered power P_{abs} is simply that of the incident wave (P⁺), as the matched condition causes the reflected power to be zero $(P^{-} = 0)!$

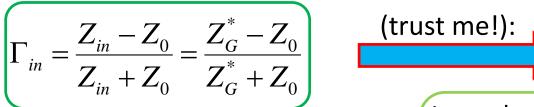
Inserting the value of V_0^+ , we find: $V_0^+ = V_G e^{-j\beta l} \frac{Z_0}{Z_0 + Z_G}$

this result can also be found by recognizing that $Z_{in} = Z_0$ when $Z_L =$

Sourced and Loaded Transmission Line (contd.)

 $Z_{in} = Z_{G}^{*}$ For this case, we find Z_{L} takes on whatever value required to make $Z_{in} = Z_{G}^{*}$. This is a **very** important case!

First, we can express:



look at the absorbed power:

$$P_{abs} = \frac{1}{2} \frac{|V_G|^2}{|Z_G + Z_{in}|^2} \operatorname{Re}\{Z_{in}\}$$

We can show that

 $V_0^+ = V_G e^{-j\beta l} \frac{Z_G^* + Z_0}{4 \operatorname{Re}\{Z_G\}}$

It can be shown that—for a **given** V_G and Z_{G} —the value of input impedance Z_{in} that will absorb the largest possible amount of power is the value $Z_{in} = Z_{G}^{*}$.

• For this purpose, let us consider:
• For this purpose, let us consider:
• Power available for transfer to
• TL is given by:
•
$$P_{in} = \frac{1}{2} \operatorname{Re} \left(V_{in} \frac{V_{in}^*}{Z_{in}^*} \right) = \frac{1}{2} \frac{|V_G|^2}{\operatorname{Re} \left(Z_{in}^* \right)} \left| \frac{Z_G}{Z_G + Z_{in}} \right|^2$$

Indraprastha Institute of ECE321/521 Information Technology Delhi Sourced and Loaded Transmission Line (contd.) If $Z_G = R_G + jX_G$ is fixed then for complex Z_{in} $\frac{\partial P_{in}}{\partial R_{in}} = \frac{\partial P_{in}}{\partial X_{in}} = 0$ following conditions must be valid for maximum P_{in} transferred to TL Elaboration of these conditions $R_G^2 - R_{in}^2 + (X_G^2 + 2X_G X_{in} + X_{in}^2) = 0$ result in: $X_{in}(X_G + X_{in}) = 0$ Simplification $R_{in} = R_G$ $X_{in} = -X_G$ $\square Z_{in} = Z_G^*$ $P_{abs} = \frac{1}{2} \frac{|V_G|^2}{|Z_G + Z_G^*|^2} \operatorname{Re}\left\{Z_G^*\right\}$ $\therefore P_{abs} = \frac{1}{2} |V_G|^2 \frac{1}{4 \operatorname{Re} \{Z_G^*\}} \doteq P_{avl}$

This case is known as the **conjugate match**, and is essentially the goal of every transmission line problem—to deliver the largest possible power to Z_{in} , and thus to Z_{L} as well! \rightarrow This power is known as the **available power** (P_{avl}) of the source.

ECE321/521

Sourced and Loaded Transmission Line (contd.)

There are **two** very important things to understand about this result! 💋

Very Important Thing #1

- - But note if $Z_L = Z_0$, the input impedance $Z_{in} = Z_0$ —but then $Z_{in} \neq Z_G^*$ (generally)! In other words, $Z_L = Z_0$ does **not** (generally) result in a **conjugate match**, and thus setting $Z_L = Z_0$ does **not** result in maximum power absorption!

Sourced and Loaded Transmission Line (contd.)

Q: Huh!? This makes **no** sense! A load value of $Z_L = Z_0$ will **minimize** the reflected wave $(P^- = 0)$ —**all** of the incident power will be absorbed.

- Any other value of Z_L will result in **some** of the incident wave being reflected—how in the world could this **increase** absorbed power?
- After all, just **look** at the expression for absorbed power:

$$P_{abs} = \frac{\left|V_{0}^{+}\right|^{2}}{2Z_{0}} \left(1 - \left|\Gamma_{0}\right|^{2}\right)$$

Clearly, this value is maximized when
$$\Gamma_0 = 0$$
 (i.e., when $Z_L = Z_0$)

A: You are forgetting one very important fact! Although it is true that the load impedance Z_L affects the **reflected** wave power P^- , the value of Z_L — as we have shown— **likewise** helps determine the value of the **incident** wave (i.e., the value of P^+) as well.

Sourced and Loaded Transmission Line (contd.)

- Thus, the value of Z_L that minimizes P^- will **not** generally maximize P^+ !
- Likewise the value of Z_L that maximizes P^+ will not generally minimize P^- .
- Instead, the value of Z_L that maximizes the **absorbed** power P_{abs} is, by definition, the value that maximizes the **difference** $P^+ P^-$.
- We find that this impedance Z_L is the value that results in the **ideal** case of $Z_{in} = Z_G^*$.

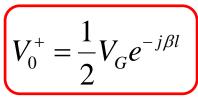
Q: Yes, but what about the case where $Z_G = Z_0$? For **that** case, we determined that the incident wave **is** independent of Z_L . Thus, it would seem that at least for that case, the **delivered** power would be maximized when the **reflected** power was minimized (i.e., $Z_L = Z_0$).

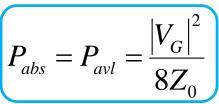
A: True! But think about what the **input** impedance would be in that case— $Z_{in} = Z_0$. Oh by the way, that provides a **conjugate match** ($Z_{in} = Z_0 = Z_0^*$).

ECE321/521

Sourced and Loaded Transmission Line (contd.)

• Thus, in some ways, the case $Z_G = Z_0 = Z_L$ (i.e., both source and load impedances are numerically equal to Z_0) is ideal. A conjugate match occurs, the incident wave is independent of Z_L , there is no reflected wave, and all the math simplifies quite nicely:





Very Important Thing #2

- Note the conjugate match criteria **says**: **Given** source impedance Z_G , maximum power transfer occurs when the input impedance is set at value $Z_{in} = Z_G^*$.
- It does <u>NOT</u> say: **Given** input impedance Z_{in} , maximum power transfer occurs when the source impedance is set at value $Z_G = Z_{in}^*$.

This last statement is in fact false!

• A **factual** statement is this: **Given** input impedance Z_{in} , maximum power transfer occurs when the source impedance is set at value $Z_G = 0 - jX_{in}$ (i.e., $R_G = 0$).

ECE321/521

Sourced and Loaded Transmission Line (contd.)

Q: Huh??

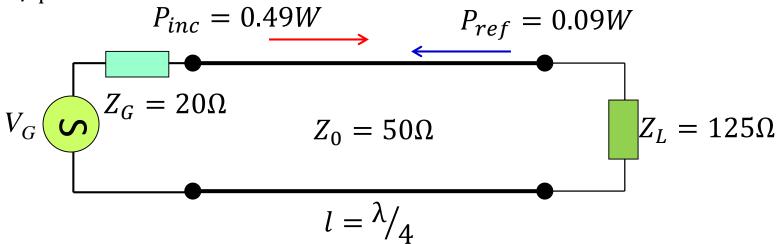
A: Remember, the value of source impedance Z_G affects the available power P_{avl} of the source. To maximize P_{avl} , the real (resistive) component of the source impedance should be as small as possible (regardless of Z_{in} !), a fact that is **evident** when observing the expression for **available power**:

$$P_{avl} = \frac{1}{2} |V_G|^2 \frac{1}{4 \operatorname{Re} \{Z_G^*\}} = \frac{|V_G|^2}{8R_G}$$

- Thus, maximizing the power delivered to a load (P_{abs}), from a source, has two components:
 - 1. Maximize the **power available** (P_{avl}) from a source (e.g., minimize R_G).
 - **2.** Extract all of this available power by setting the input impedance Z_{in} to a value $Z_{in} = Z_{G}^{*}$ (thus $P_{abs} = P_{avl}$).

Example – 2

• Consider this circuit, where the transmission line is **lossless** and has length $l = \frac{\lambda}{4}$:



Determine the magnitude of source voltage V_G (i.e., determine $|V_G|$).

Hint: This is **not** a boundary condition problem. Do **not** attempt to find V(z) and/or I(z)!

• Recall that we have been **approximating** lowloss transmission lines as lossless (R =G = 0): $\alpha = 0 \qquad \beta = \omega \sqrt{LC}$

 But, long low-loss lines require a better approximation:

Indraprastha Institute of

Information Technology Delhi

• Now, if we have **really long** transmission lines $\alpha = \operatorname{Re}\{\gamma\}$ (e.g., long distance communications), we can apply **no** approximations at all:

For these **very** long transmission lines, $\beta = Im\{\gamma\}$ is a **function** of signal **frequency** ω . This results in an extremely serious problem—signal **dispersion**.

• Recall that the **phase velocity** v_p (i.e., propagation velocity) of a wave in a transmission line is:

$$\beta = \operatorname{Im}\{\gamma\} = \operatorname{Im}\{\sqrt{(R + j\omega L)(G + j\omega C)}\}$$

For a lossy line, v_p is a function of frequency ω (i.e., $v_p(\omega)$)—this is **bad**!

$$\alpha = \frac{1}{2} \left(\frac{R}{Z_0} + GZ_0 \right)$$

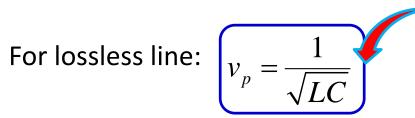
$$\beta = \omega \sqrt{LC}$$

$$\int \beta = \operatorname{Im}\{\gamma\}$$

$$v_p = \frac{\omega}{\beta}$$

Lossy Transmission Lines (contd.)

- Any signal that carries significant information must has some non-zero **bandwidth**. In other words, the signal energy (as well as the information it carries) is **spread** across many frequencies.
- If the different frequencies that comprise a signal travel at different velocities, that signal will arrive at the end of a transmission line **distorted**. We call this phenomenon signal **dispersion**.
- Recall for **lossless** lines, however, the phase velocity is **independent** of frequency—**no** dispersion will occur!



however, a perfectly lossless line is impossible, but we find phase velocity is **approximately** constant if the line is low-loss.

ECE321/521

Lossy Transmission Lines (contd.)

Q: You say "most often" not a problem that phrase seems to imply that dispersion sometimes is a problem!

A: for low-loss transmission lines, dispersion can be a problem **if** the lines are **very** long—just a small difference in phase velocity can result in significant differences in propagation delay **if** the line is very long!

- Modern examples of long transmission lines include phone lines and cable TV.
 However, the original long transmission line problem occurred with the telegraph.
- Early telegraph "engineers" discovered that if they made their telegraph lines too long, the dots and dashes characterizing Morse code turned into a muddled, indecipherable mess. Although they did not realize it, they had fallen victim to the heinous effects of dispersion!
- Thus, to send messages over long distances, they were forced to implement a series of intermediate "repeater" stations, wherein a human operator received and then retransmitted a message on to the next station. This really slowed things down!

Lossy Transmission Lines (contd.)

Q: Is there any way to **prevent** dispersion from occurring?

A: You bet! Oliver Heaviside figured out how in the **19th** Century!

• Heaviside found that a transmission line would be distortionless (i.e., no dispersion) if the line parameters exhibited the following ratio:

 $\frac{R}{L} = \frac{G}{C}$

 Let's see why this works. Note the complex propagation constant γ can be expressed as:

$$\gamma = \sqrt{\left(R + j\omega L\right)\left(G + j\omega C\right)} = \sqrt{LC\left(R / L + j\omega\right)\left(G / C + j\omega\right)}$$

• For $\frac{R}{L} = \frac{G}{C}$:

$$\gamma = \sqrt{LC(R/L + j\omega)(R/L + j\omega)} = (R/L + j\omega)\sqrt{LC} = R\sqrt{\frac{C}{L} + j\omega\sqrt{LC}}$$

Lossy Transmission Lines (contd.)

• Thus:
$$\alpha = \operatorname{Re}\{\gamma\} = R\sqrt{\frac{C}{L}}$$
 $\beta = \operatorname{Im}\{\gamma\} = \omega\sqrt{LC}$

• The propagation **velocity** of the wave is thus:

$$v_p = \frac{\omega}{\beta} = \frac{1}{\sqrt{LC}}$$

The propagation velocity is **independent** of frequency! This lossy transmission line is **not** dispersive!

Q: Right. All the transmission lines I use have the property that ${}^{R}/{}_{L} > {}^{G}/{}_{C}$. I've **never** found a transmission line with this **ideal** property ${}^{R}/{}_{L} = {}^{G}/{}_{C}$!

A: It is true that typically ${}^{R}/{}_{L} > {}^{G}/{}_{C}$. But, we can reduce the ratio ${}^{R}/{}_{L}$ (until it is equal to ${}^{G}/{}_{C}$) by adding series **inductors** periodically along the transmission line.

Lossy Transmission Lines (contd.)

This was **Heaviside's** solution—and it worked! **Long** distance transmission lines were made possible.

Q: Why don't we increase G instead?

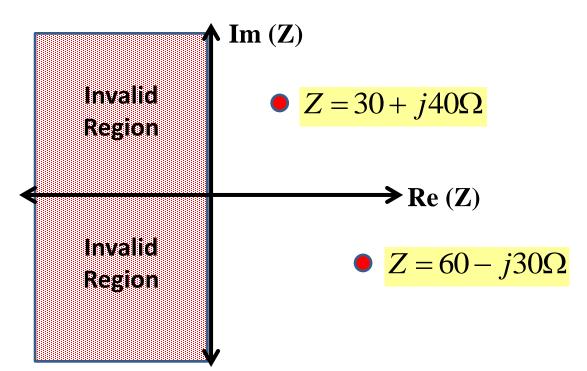
A:

Smith Chart

- Smith chart what?
- The Smith chart is a very <u>convenient graphical tool</u> for analyzing TLs studying their behavior.
- It is mapping of impedance in standard complex plane <u>into</u> a suitable complex reflection coefficient plane.
- It provides graphical display of reflection coefficients.
- The <u>impedances can be directly determined</u> from the graphical display (ie, from Smith chart)
- Furthermore, Smith charts facilitate the analysis and design of complicated circuit configurations.

The Complex **\[\Gamma - Plane \]**

• Let us first display the impedance Z on complex Z-plane

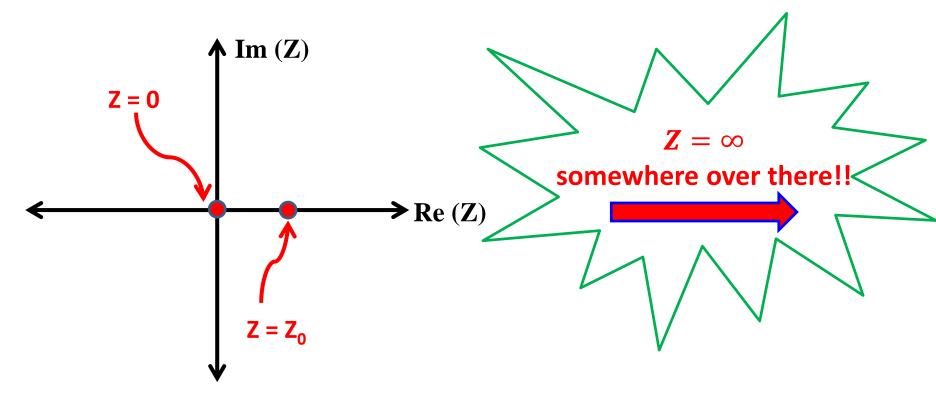


 Note that each dimension is defined by a single real line: the horizontal line (axis) indicates the real component of Z, and the vertical line (axis) indicates the imaginary component of Z → Intersection of these lines indicate the complex impedance

ECE321/521

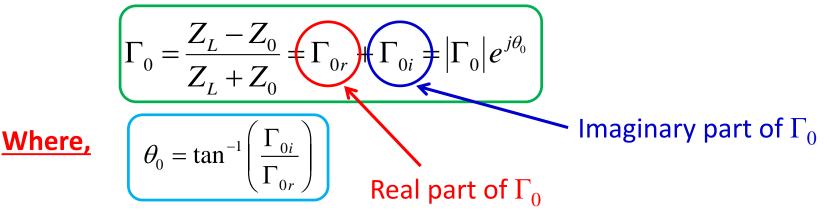
The Complex **\[-** Plane (contd.)

• How do we plot an **open circuit** (i.e, $Z = \infty$), **short circuit** (i.e, Z = 0), and **matching condition** (i.e, $Z = Z_0 = 50\Omega$) on the complex Z-plane



It is apparent that complex Z - plane is not very useful

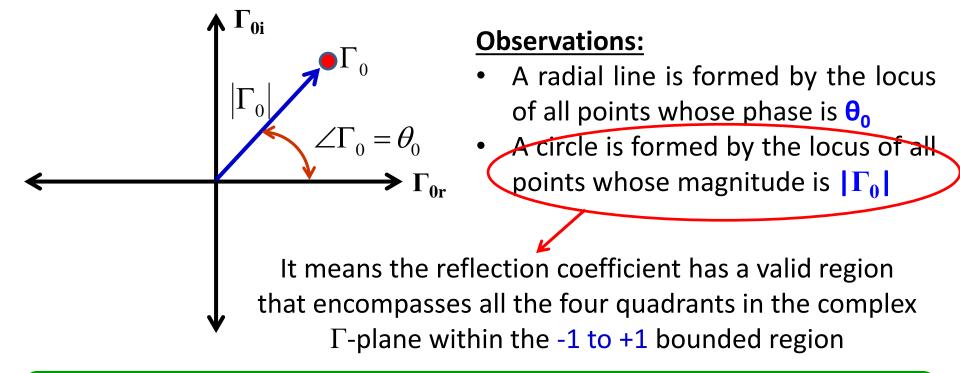
- The **limitations** of complex Z-plane can be overcome by complex Γ -plane
- We know $Z \leftrightarrow \Gamma$ (i.e, if you know **one**, you know the **other**).
- We can therefore define a complex Γ-plane in the same manner that we defined a complex Z-plane.
- Let us revisit the reflection coefficient in complex form:



• In the special terminated conditions of pure short-circuit and pure opencircuit conditions the corresponding Γ_0 are -1 and +1 located on the real axis in the complex Γ -plane.

$$\Gamma_{0} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} = \Gamma_{0r} + \Gamma_{0i} = \left| \Gamma_{0} \right| e^{j\theta_{0}}$$

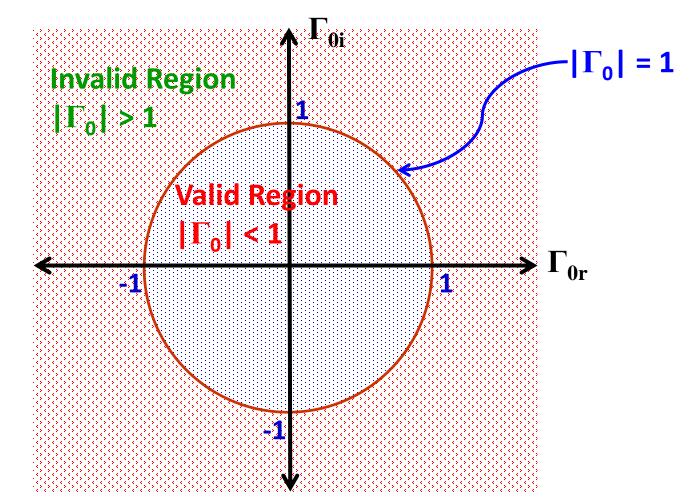
Representation of reflection coefficient in polar form



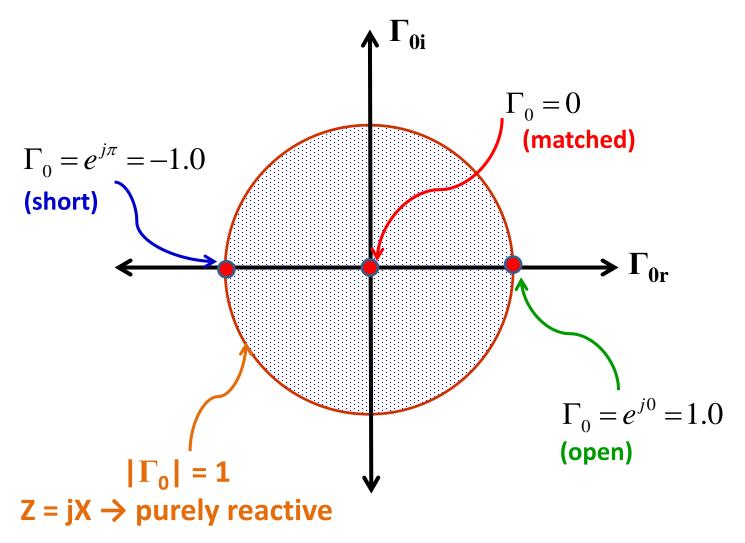
In complex Z-plane the valid region was unbounded on the right half of the plane \rightarrow as a result many important impedances could **not** be plotted

ECE321/521

Validity Region



• We can plot all the valid impedances (i.e R > 0) within this bounded region.



Example – 3

• A TL with a characteristic impedance of $Z_0 = 50\Omega$ is terminated into following load impedances:

(a)
$$Z_L = 0$$
 (Short Circuit)
(b) $Z_L \rightarrow \infty$ (Open Circuit)
(c) $Z_L = 50\Omega$
(d) $Z_L = (16.67 - j16.67)\Omega$
(e) $Z_I = (50 + j50)\Omega$

Display the respective reflection coefficients in complex Γ -plane

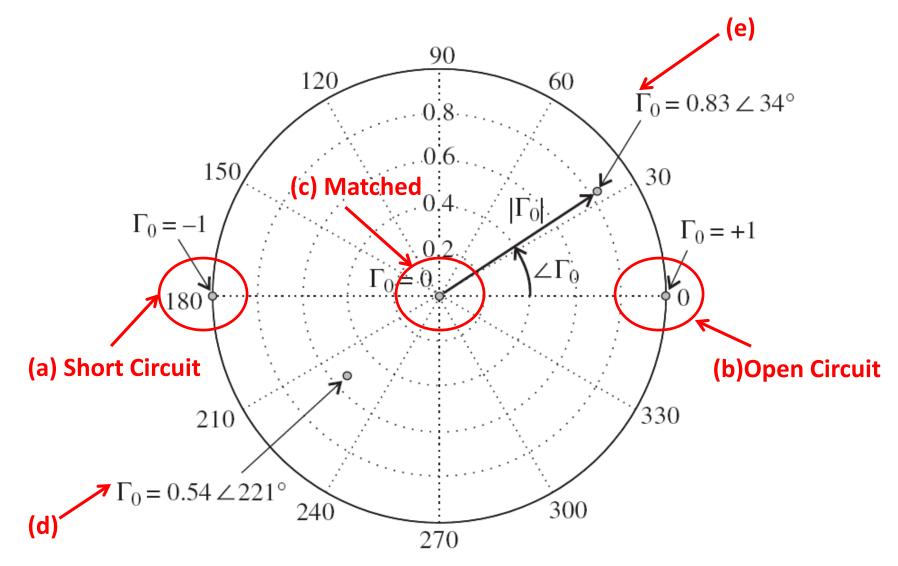
• Solution: We know the relationship between Z and Γ :

$$\Gamma_{0} = \frac{Z_{L} - Z_{0}}{Z_{L} + Z_{0}} = \Gamma_{0r} + \Gamma_{0i} = \left| \Gamma_{0} \right| e^{j\theta_{0}}$$

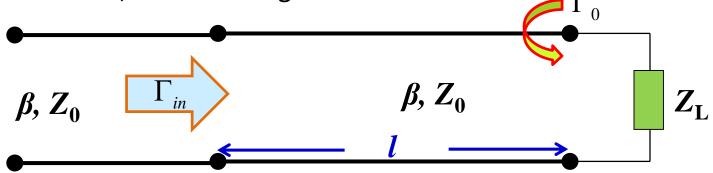
(a) $\Gamma_0 = -1$ (Short Circuit) (b) $\Gamma_0 = 1$ (Open Circuit) (c) $\Gamma_0 = 0$ (Matched) (d) $\Gamma_0 = 0.54 < 221^{\circ}$ (e) $\Gamma_0 = 0.83 < 34^{\circ}$

ECE321/521

Example – 3 (contd.)



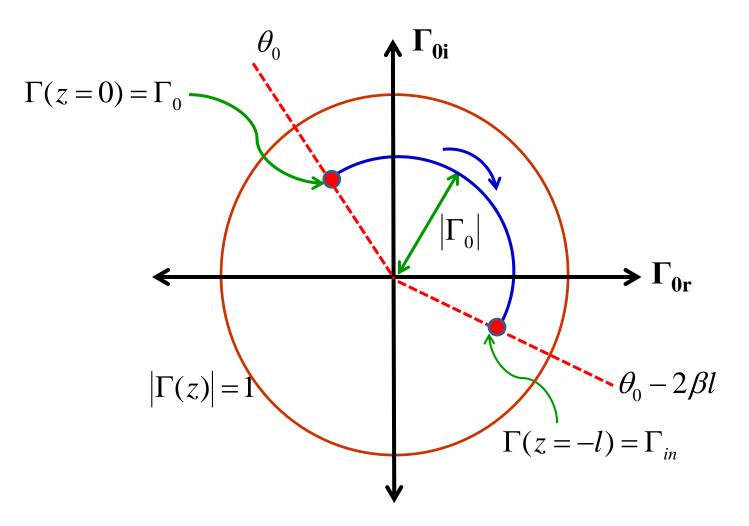
 The usefulness of the complex Γ-plane will be evident when we consider the terminated, lossless TL again.



- At z = 0, the reflection coefficient is called load reflection coefficient $(\Gamma_0) \rightarrow$ this actually describes the mismatch between the load impedance (Z_L) and the characteristic impedance (Z_0) of the TL.
- The move away from the load (or towards the input/source) in the negative z-direction (clockwise rotation) requires multiplication of Γ_0 by a factor $\exp(+j2\beta z)$ in order to explicitly define the mismatch at location 'z' known as $\Gamma(z)$.
- This transformation of Γ_0 to $\Gamma(z)$ is the key ingredient in Smith chart as a graphical design/display tool.

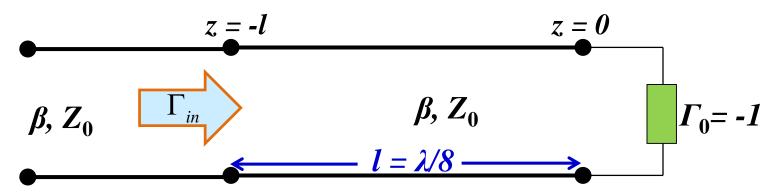
ECE321/521

• Graphical interpretation of $\Gamma(z) = \Gamma_0 e^{+2j\beta z}$



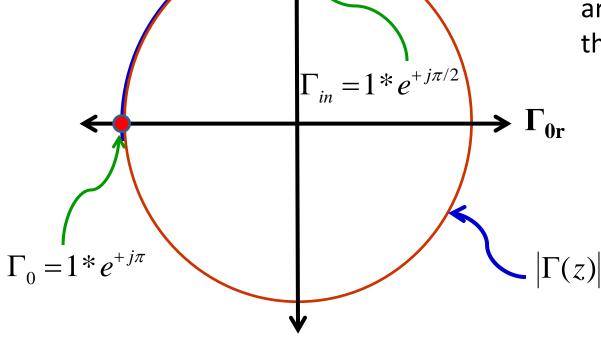
Transformations on the Complex **\[-Plane** (contd.)

- It is clear from the graphical display that addition of a length of TL to a load Γ₀ modifies the phase θ₀ but not the magnitude Γ₀, we trace a circular arc as we parametrically plot Γ (z)! This arc has a radius Γ₀ and an arc angle 2βl radians.
- We can therefore **easily** solve many interesting TL problems **graphically**—using the complex Γ -plane! For **example**, say we wish to determine Γ_{in} for a transmission line length $l = \lambda/8$ and terminated with a **short** circuit.



Indraprastha Institute of Information Technology Delhi

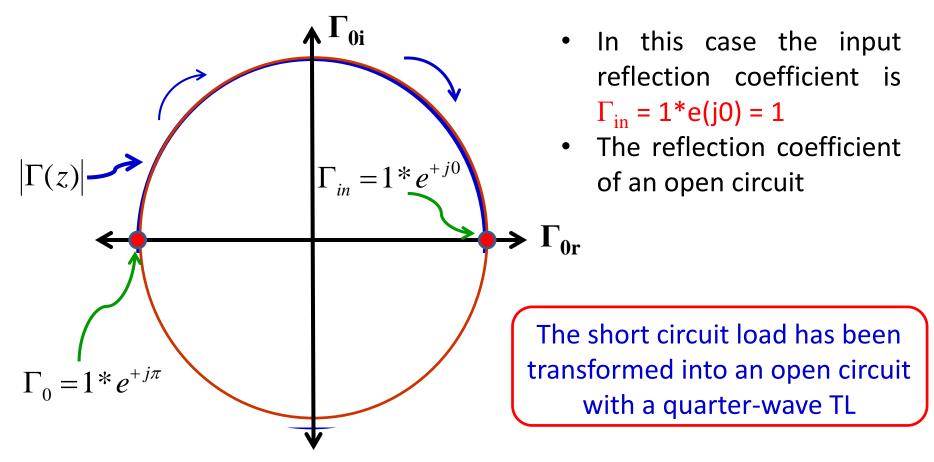
- The reflection coefficient of a **short** circuit is $\Gamma_0 = -1 = 1 * e(j\pi)$, and therefore we **begin** at the leftmost point on the complex Γ -plane. We then move along a **circular arc** $-2\beta l = -2(\pi/4) = -\pi/2$ radians (i.e., rotate **clockwise** 90°).
 - When we stop, we find we are at the point for Γ_{in} ; in this case $\Gamma_{in} = 1^* e(j\pi/2)$



l _{Oi}

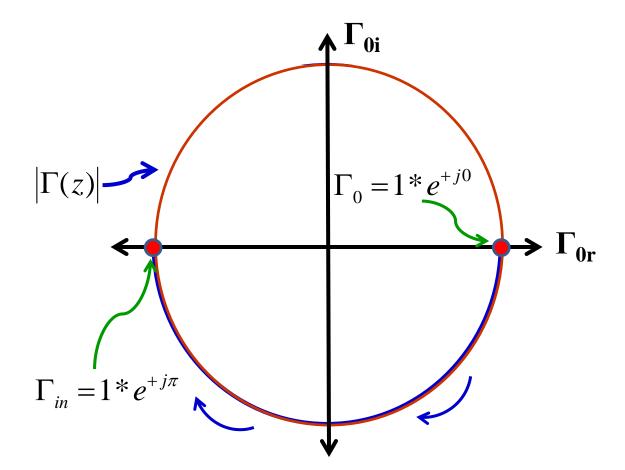
Transformations on the Complex \[-Plane (contd.)

- Now let us consider the same problem, only with a new transmission line length $l = \lambda/4$.
- Now we rotate clockwise $2\beta l = \pi$ radians.

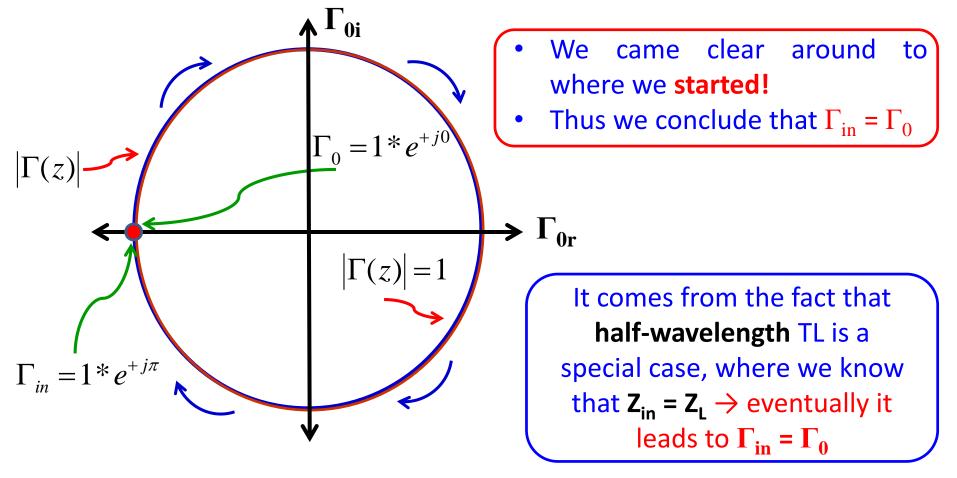


Transformations on the Complex \[-Plane (contd.)

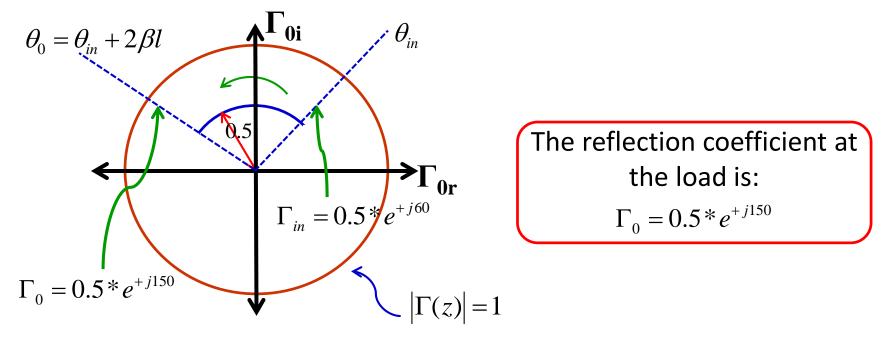
 We also know that a quarter-wave TL transforms an open-circuit into short-circuit → graphically it can be shown as:



- Now let us consider the same problem again, only with a new transmission line length $l = \lambda/2$.
- Now we rotate clockwise $2\beta l = 2\pi$ radians (360°)



- Now let us consider the **opposite** problem. Say we know that the **input** reflection coefficient at the beginning of a TL with length $l = \lambda/8$ is: $\Gamma_{in} = 0.5e(j60^\circ)$.
- What is the reflection coefficient at the **load**?
- In this case we rotate counter-clockwise along a circular arc (radius =0.5) by an amount $2\beta l = \pi/2$ radians (90°).
- In essence, we are removing the phase associated with the TL.



Mapping \mathbf{Z} to $\boldsymbol{\Gamma}$

We know that the line impedance and reflection coefficient are equivalent

 – either one can be expressed in terms of the other.

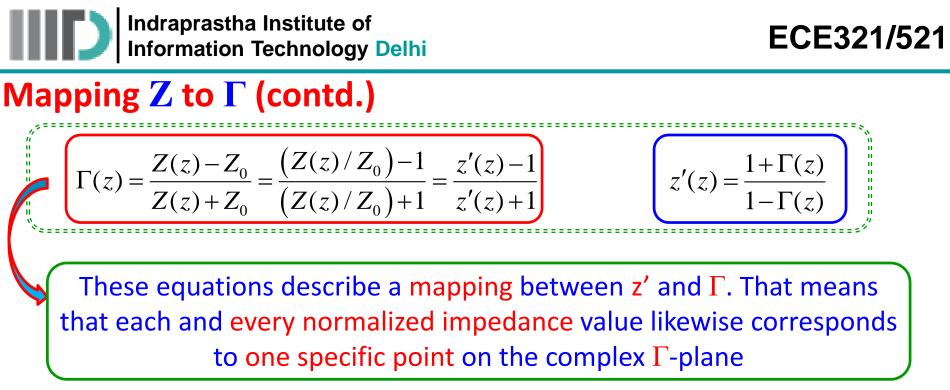
 The above expressions depend on the characteristic impedance Z₀ of the TL. In order to generalize the relationship, we first define a normalized impedance value z' as:

therefore

$$\Gamma(z) = \frac{Z(z)}{Z_0} = \frac{R(z)}{Z_0} + j \frac{X(z)}{Z_0} = r(z) + jx(z)$$

$$\Gamma(z) = \frac{Z(z) - Z_0}{Z(z) + Z_0} = \frac{(Z(z) / Z_0) - 1}{(Z(z) / Z_0) + 1} = \frac{z'(z) - 1}{z'(z) + 1}$$

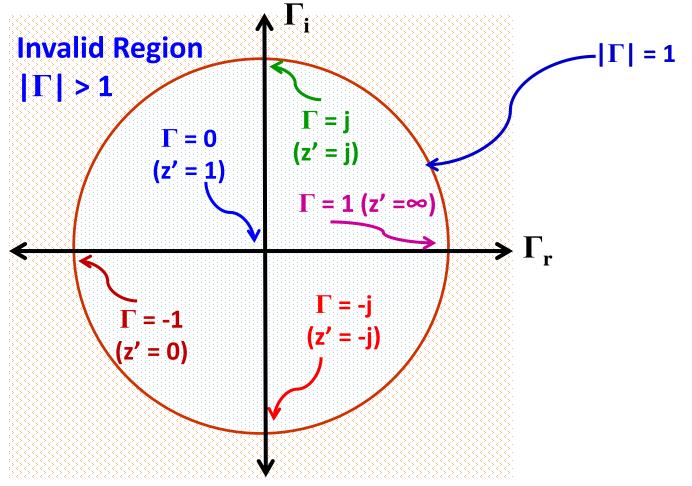
$$z'(z) = \frac{1 + \Gamma(z)}{1 - \Gamma(z)}$$



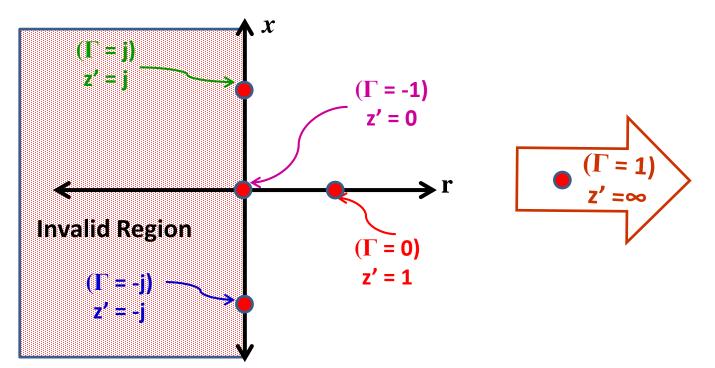
 For example, we wish to indicate the values of some common normalized impedances (shown below) on the complex Γ-plane and vice-versa.

Case	Z	z'	Γ
1	∞	∞	1
2	0	0	-1
3	Z ₀	1	0
4	jΖ _o	j	j
5	-jZ _o	-j	-j

• The five normalized impedances map five specific points on the complex Γ -plane.

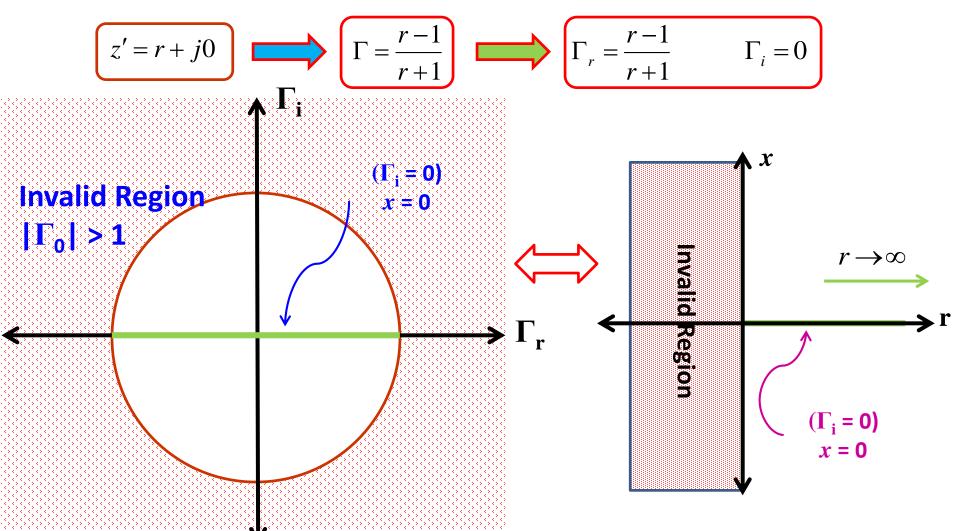


• The five complex- Γ map onto five points on the normalized Z-plane



- It is apparent that the normalized impedances can be mapped on complex Γ-plane and vice versa
- It gives us a clue that whole impedance contours (i.e, set of points) can be mapped to complex Γ -plane

<u>Case-I</u>: $Z = R \rightarrow$ impedance is purely real



<u>Case-II</u>: $Z = jX \rightarrow$ impedance is purely imaginary

