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Sourced and Loaded Transmission Line
• Thus far, we have discussed a TL with terminated load impedance → Let us

now consider a TL with terminated load impedance and a source at the
input (with line-to-source mismatch)
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• The current and voltage along the TL is:
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• At 𝑧 = 0
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

iV
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𝑉0
+ depends on the signal source! To determine its exact value, we must 

now apply boundary conditions at 𝑧 = −𝑙.
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Sourced and Loaded Transmission Line (contd.)
• At the beginning of the transmission line:
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• Likewise, we know that the source must satisfy: G i G iV V Z I 

ZL
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iV

𝐼𝑖 𝐼(𝑧 = −𝑙)




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• From KVL we find:

( )iV V z l  

• From KCL we find:

( )iI I z l  

• Combining these equations, we find:

0
0 0 0

0

j l j l j l j l

G G

V
V V e e Z e e

Z

   


               
One equation → one 

unknown (𝑉0
+)!!
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Sourced and Loaded Transmission Line (contd.)

• Solving, we find the value of 𝑉0
+:    

0
0

0 1 1

j l

G

in G in

Z
V V e

Z Z

 
  

0( ) j l

in z l e       

• Note this result looks different than
the equation in your book (Pozar):  
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 


I like the first expression 

better.

Although the two equations are equivalent, first expression is 
explicitly written in terms of Γ𝑖𝑛 = Γ(𝑧 = −𝑙) (a very useful, precise, 

and unambiguous value), while the book’s expression is written in 
terms of this so-called “source reflection coefficient” Γ𝐺(a misleading, 

confusing, ambiguous, and mostly useless value).

Specifically, we might be tempted to equate Γ𝐺 with the 
value Γ𝑖𝑛 = Γ(𝑧 = −𝑙), but it is not Γ𝐺 ≠ Γ(𝑧 = −𝑙)!
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Example – 1 

• Consider this circuit:
Z0 =50Ω

25Ω
1.0 A

z = 0





𝐼(𝑧)

( )V z

• It is known that the current along the transmission line is:

𝐼 𝑧 = 0.4𝑒−𝑗𝛽𝑧 − 𝐵𝑒+𝑗𝛽𝑧 𝐴𝑚𝑝 𝑓𝑜𝑟 𝑧 > 0

where B is some unknown complex value.

Determine the value of B.
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Sourced and Loaded Transmission Line (contd.)
Q: If the purpose of a
transmission line is to
transfer power from a
source to a load, then
exactly how much power
is delivered to ZL for this
circuit??

ZLZ0

ZG

S

VG

z = 0z = -l

𝐼(𝑧)



( )V zZin

A: We of course could determine 𝑉0
+and

𝑉0
− , and then determine the power

absorbed by the load (Pabs) as:
 *1

Re ( 0) ( 0)
2

absP V z I z  

• If the transmission line is lossless,
then we know that the power
delivered to the load must be equal
to the power “delivered” to the
input (Pin) of the transmission line:

 *1
Re ( ) ( )

2
abs inP P V z l I z l     
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Sourced and Loaded Transmission Line (contd.)

• We can determine this power without having to solve for 𝑉0
+and 𝑉0

−

(i.e., V(z) and I(z)). We can simply use our knowledge of circuit theory!

• We can transform load ZL to
the beginning of the
transmission line, so that
we can replace the
transmission line with its
input impedance Zin:

𝑍𝑖𝑛 = 𝑍(𝑧 = −𝑙)Z0

ZG

SVG

𝐼(𝑧 = −𝑙)





( )V z l 

• Note by voltage division we can determine: ( ) in
G

G in

Z
V z l V

Z Z
  



• And from Ohm’s Law we conclude: ( ) G

G in

V
I z l

Z Z
  


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Sourced and Loaded Transmission Line (contd.)
• And thus, the power Pin delivered to Zin (and thus the power Pabs

delivered to the load ZL) is:
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*
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2

20*

0
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1
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Z


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• Note that we could
also determine Pabs

from our earlier
expression:

But we would of course have 
to first determine 𝑉0

+(! ):
   

0
0

0 1 1
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G
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Z
V V e
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 
    
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Sourced and Loaded Transmission Line (contd.)
• Let’s look at specific cases of ZG and ZL, and determine how they affect

𝑉0
+ and Pabs.

𝒁𝑮 = 𝒁𝟎 • For this case, we find that
𝑉0

+ simplifies greatly: 0

1

2

j l

GV V e  

It says that the incident wave in this case is independent of 
the load attached at the other end!

Thus, for the one case 𝒁𝑮 = 𝒁𝟎 , we in fact can consider 𝑉+(𝑧) as being 
the source wave, and then the reflected wave 𝑉−(𝑧) as being the result 

of this stimulus.

• The complex value 𝑉0
+ is the value of the incident wave evaluated at the

end of the transmission line (𝑉0
+= 𝑉+(𝑧 = 0)). We can also determine

the value of the incident wave at the beginning of the transmission line
(i.e. 𝑉+(𝑧 = −𝑙)).

0

1

2

j l

GV V e  
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Sourced and Loaded Transmission Line (contd.)
• Likewise, we find that the

delivered power for this case can
be simply stated as:

   
2 2

2 20

0 0

0 0

1 1
2 8

G

abs

V V
P

Z Z



     

𝒁𝑳 = 𝒁𝟎
• In this case, we find

that Γ0 = 0, and thus
Γ𝑖𝑛 = 0 . As a result:

0
0

0

j l

G

G

Z
V V e

Z Z

 


• Likewise, we find that:
 

2 2

20 0

0

0 0

1
2 2

abs

V V
P

Z Z

 

   

Here the delivered power Pabs is simply that of the incident wave (P+ ), as 
the matched condition causes the reflected power to be zero (P− = 0)!

• Inserting the value of 𝑉0
+, we find: 0

0

0

j l

G

G

Z
V V e

Z Z

 


this result can also be found by recognizing that 𝑍𝑖𝑛 = 𝑍0 when 𝑍𝐿 = 𝑍0.
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Sourced and Loaded Transmission Line (contd.)

𝒁𝒊𝒏 = 𝒁𝑮
∗ For this case, we find ZL takes on whatever value required

to make 𝒁𝒊𝒏 = 𝒁𝑮
∗. This is a very important case!

• First, we can express:

*

0 0

*

0 0

in G
in

in G

Z Z Z Z

Z Z Z Z

 
  

 

We can show that 
(trust me!):

 

*

0
0

4Re

j l G
G

G

Z Z
V V e

Z

  


• look at the absorbed power:

 
2

2

1
Re

2

G

abs in

G in

V
P Z

Z Z




It can be shown that—for a given VG and 
ZG—the value of input impedance Zin that 
will absorb the largest possible amount 

of power is the value 𝒁𝒊𝒏 = 𝒁𝑮
∗.

ZG
VG Zin





Vin

• For this purpose, let us consider:

 

22*

* *

1 1
Re

2 2 Re

Gin G
in in

in G inin

VV Z
P V

Z Z ZZ

 
  

 

Power available for transfer to 
TL is given by: 
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• If ZG = RG + jXG is fixed then for complex Zin

following conditions must be valid for maximum
Pin transferred to TL

0in in

in in

P P

R X

 
 

 

Sourced and Loaded Transmission Line (contd.)

• Elaboration of these conditions
result in:

 2 2 2 22 0G in G G in inR R X X X X    

  0in G inX X X 

Xin=-XG

Simplification 
gives

in GR R *

in GZ Z

 
2

*

2
*

1
Re

2

G

abs G

G G

V
P Z

Z Z


  
2

*

1 1

2 4Re
abs G avl

G

P V P
Z

 

This case is known as the conjugate match, and is essentially the goal of 
every transmission line problem—to deliver the largest possible power to 

Zin, and thus to ZL as well!  → This power is known as the available
power (Pavl) of the source.
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Sourced and Loaded Transmission Line (contd.)

There are two very important things to understand about this result!

Very Important Thing #1

• Consider again:

ZLZ0

Z
G

S

VG

z = 0z = -l

𝐼(𝑧)



( )V zZi

n

• Recall that if 𝒁𝑳 = 𝒁𝟎, the
reflected wave will be
zero, thus:

2

0

2

0
2

G

abs avl

G

V Z
P P

Z Z
 



 
2

*

2
*

1
Re

2

G

abs G

G G

V
P Z

Z Z


  
2

*

1 1

2 4Re
abs G avl

G

P V P
Z

 

• But note if 𝒁𝑳 = 𝒁𝟎, the input impedance 𝒁𝒊𝒏 = 𝒁𝟎 —but then 𝒁𝒊𝒏 ≠
𝒁𝑮

∗ (generally)! In other words, 𝒁𝑳 = 𝒁𝟎 does not (generally) result in a
conjugate match, and thus setting 𝒁𝑳 = 𝒁𝟎 does not result in maximum
power absorption!
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Sourced and Loaded Transmission Line (contd.)
Q: Huh!? This makes no sense! A load value of 𝒁𝑳 = 𝒁𝟎 will minimize the
reflected wave 𝑃− = 0 —all of the incident power will be absorbed.

• Any other value of 𝒁𝑳 will result in some of the incident wave being
reflected—how in the world could this increase absorbed power?

Clearly, this value is maximized when 
Γ0 = 0 (i.e., when 𝒁𝑳 = 𝒁𝟎) 

2

20

0

0

1
2

abs

V
P

Z



  

• After all, just look at the expression for absorbed power:

A: You are forgetting one very important fact! Although it is true that the
load impedance 𝒁𝑳 affects the reflected wave power 𝑃−, the value of 𝒁𝑳 —
as we have shown— likewise helps determine the value of the incident wave
(i.e., the value of 𝑃+) as well.



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Sourced and Loaded Transmission Line (contd.)
• Thus, the value of 𝒁𝑳 that minimizes 𝑃− will not generally maximize 𝑃+!
• Likewise the value of 𝒁𝑳 that maximizes 𝑃+ will not generally minimize

𝑃−.
• Instead, the value of 𝒁𝑳 that maximizes the absorbed power Pabs is, by

definition, the value that maximizes the difference 𝑃+ − 𝑃−.
• We find that this impedance 𝒁𝑳 is the value that results in the ideal case

of 𝒁𝒊𝒏 = 𝒁𝑮
∗.

Q: Yes, but what about the case where 𝒁𝑮 = 𝒁𝟎? For that case, we
determined that the incident wave is independent of 𝒁𝑳. Thus, it would seem
that at least for that case, the delivered power would be maximized when
the reflected power was minimized (i.e., 𝒁𝑳 = 𝒁𝟎).

A: True! But think about what the input impedance would be in that case—
𝒁𝒊𝒏 = 𝒁𝟎. Oh by the way, that provides a conjugate match (𝒁𝒊𝒏 = 𝒁𝟎 =
𝒁𝑮

∗).
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Sourced and Loaded Transmission Line (contd.)
• Thus, in some ways, the case 𝒁𝑮 = 𝒁𝟎 = 𝒁𝑳 (i.e., both

source and load impedances are numerically equal to
𝒁𝟎) is ideal. A conjugate match occurs, the incident
wave is independent of ZL, there is no reflected wave,
and all the math simplifies quite nicely:

0

1

2

j l

GV V e  

2

08

G

abs avl

V
P P

Z
 

Very Important Thing #2

• Note the conjugate match criteria says: Given source impedance 𝒁𝑮,
maximum power transfer occurs when the input impedance is set at value
𝒁𝒊𝒏 = 𝒁𝑮

∗.

• It does NOT say: Given input impedance 𝒁𝒊𝒏, maximum power transfer
occurs when the source impedance is set at value 𝒁𝑮 = 𝒁𝒊𝒏

∗.

This last statement is in fact false!

• A factual statement is this: Given input impedance 𝒁𝒊𝒏, maximum power
transfer occurs when the source impedance is set at value 𝒁𝑮 = 0 −
j𝑋𝑖𝑛(i.e., 𝑹𝑮 = 0).
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Sourced and Loaded Transmission Line (contd.)
Q: Huh??
A: Remember, the value of source impedance
𝒁𝑮 affects the available power Pavl of the
source. To maximize Pavl, the real (resistive)
component of the source impedance should
be as small as possible (regardless of 𝒁𝒊𝒏!), a
fact that is evident when observing the
expression for available power:

 

2

2

*

1 1

2 84Re

G

avl G

GG

V
P V

RZ
 

• Thus, maximizing the power delivered to a load (Pabs), from a source, has
two components:
1. Maximize the power available (Pavl) from a source (e.g., minimize 𝑅𝐺).
2. Extract all of this available power by setting the input impedance 𝒁𝒊𝒏

to a value 𝒁𝒊𝒏 = 𝒁𝑮
∗ (thus 𝑷𝒂𝒃𝒔 = 𝑷𝒂𝒗𝒍).
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Example – 2

S

VG

𝑍𝐺 = 20Ω
𝑍𝐿 = 125Ω

𝑃𝑖𝑛𝑐 = 0.49𝑊 𝑃𝑟𝑒𝑓 = 0.09𝑊

𝑍0 = 50Ω

𝑙 =  λ 4

• Consider this circuit, where the transmission line is lossless and has length
𝑙 =  λ 4 :

Determine the magnitude of source voltage 𝑽𝑮 (i.e., determine 𝑽𝑮 ).

Hint: This is not a boundary condition problem. Do not attempt to find 𝑉(𝑧)
and/or 𝐼(𝑧)!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Lossy Transmission Lines 
• Recall that we have been approximating low-

loss transmission lines as lossless (R =G = 0):
0  LC 

• But, long low-loss lines require a
better approximation: 0

0

1

2

R
GZ

Z


 
  

 
LC 

• Now, if we have really long transmission lines
(e.g., long distance communications), we can
apply no approximations at all:

 Re   Im 

For these very long transmission lines, 𝛽 = 𝐼𝑚 𝛾 is a function of signal 
frequency ω. This results in an extremely serious problem—signal dispersion.

• Recall that the phase velocity 𝒗𝒑 (i.e., propagation

velocity) of a wave in a transmission line is:
pv






     Im Im R j L G j C      

For a lossy line, 𝒗𝒑 is a function of frequency ω (i.e., 𝒗𝒑(𝝎))—this is bad!
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Lossy Transmission Lines (contd.) 
• Any signal that carries significant information must has some non-zero

bandwidth. In other words, the signal energy (as well as the information it
carries) is spread across many frequencies.

• If the different frequencies that comprise a signal travel at different
velocities, that signal will arrive at the end of a transmission line distorted.
We call this phenomenon signal dispersion.

• Recall for lossless lines, however, the phase velocity is independent of
frequency—no dispersion will occur!

• For lossless line: 1
pv

LC
 however, a perfectly lossless line is 

impossible, but we find phase 
velocity is approximately constant 

if the line is low-loss.
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Lossy Transmission Lines (contd.) 

Q: You say “most often” not a problem—
that phrase seems to imply that dispersion 

sometimes is a problem!

A: for low-loss transmission lines, dispersion can be a problem if the lines are very
long—just a small difference in phase velocity can result in significant differences in
propagation delay if the line is very long!
• Modern examples of long transmission lines include phone lines and cable TV.

However, the original long transmission line problem occurred with the telegraph.
• Early telegraph “engineers” discovered that if they made their telegraph lines too

long, the dots and dashes characterizing Morse code turned into a muddled,
indecipherable mess. Although they did not realize it, they had fallen victim to the
heinous effects of dispersion!

• Thus, to send messages over long distances, they were forced to implement a
series of intermediate “repeater” stations, wherein a human operator received
and then retransmitted a message on to the next station. This really slowed things
down!
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Lossy Transmission Lines (contd.) 

Q: Is there any way to prevent
dispersion from occurring?

A: You bet! Oliver Heaviside figured out
how in the 19th Century!

• Heaviside found that a transmission line would be
distortionless (i.e., no dispersion) if the line parameters
exhibited the following ratio:

R G

L C


• Let’s see why this works. Note the complex propagation constant 𝛾 can be
expressed as:

     / /R j L G j C LC R L j G C j         

• For 
𝑅

𝐿
=

𝐺

𝐶
:

    / / /
C

LC R L j R L j R L j LC R j LC
L

          
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Lossy Transmission Lines (contd.) 

• Thus:  Re
C

R
L

    Im LC   

• The propagation velocity of the wave is thus:
1

pv
LC




 

The propagation velocity is independent of frequency! This lossy 
transmission line is not dispersive!

Q: Right. All the transmission lines I use have the property that  
 𝑅 𝐿 >  𝐺 𝐶. I’ve never found a transmission line with this ideal 

property  𝑅 𝐿 =  𝐺 𝐶!

A: It is true that typically  𝑅 𝐿 >  𝐺 𝐶. But, we can reduce the ratio  𝑅 𝐿(until it
is equal to  𝐺 𝐶 ) by adding series inductors periodically along the
transmission line.
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Lossy Transmission Lines (contd.) 

This was Heaviside’s solution—and it worked! Long distance 
transmission lines were made possible.

Q: Why don’t we increase G instead?

A: 
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Smith Chart 
• Smith chart – what?
• The Smith chart is a very convenient graphical tool for analyzing TLs

studying their behavior.
• It is mapping of impedance in standard complex plane into a suitable

complex reflection coefficient plane.
• It provides graphical display of reflection coefficients.
• The impedances can be directly determined from the graphical display (ie,

from Smith chart)
• Furthermore, Smith charts facilitate the analysis and design of

complicated circuit configurations.
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The Complex Γ- Plane
• Let us first display the impedance Z on complex Z-plane

30 40Z j  

60 30Z j  

Invalid 
Region

Invalid 
Region

Re (Z)

Im (Z)

• Note that each dimension is defined by a single real line: the horizontal
line (axis) indicates the real component of Z, and the vertical line (axis)
indicates the imaginary component of Z → Intersection of these lines
indicate the complex impedance
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The Complex Γ- Plane  (contd.)

• How do we plot an open circuit (i.e, 𝑍 = ∞), short circuit (i.e, 𝑍 = 0), and
matching condition (i.e, 𝑍 = 𝑍0 = 50Ω ) on the complex Z-plane

Re (Z)

Im (Z)

Z = Z0

Z = 0

𝒁 = ∞
somewhere over there!!

It is apparent that complex 𝒁 − 𝒑𝒍𝒂𝒏𝒆 is not very useful 
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The Complex Γ-Plane (contd.)

• The limitations of complex Z-plane can be overcome by complex Γ-plane
• We know Z ↔ Γ (i.e, if you know one, you know the other).
• We can therefore define a complex Γ-plane in the same manner that we

defined a complex Z-plane.

• In the special terminated conditions of pure short-circuit and pure open-
circuit conditions the corresponding Γ0 are -1 and +1 located on the real
axis in the complex Γ-plane.

• Let us revisit the reflection coefficient in complex form:

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


      



Real part of Γ0

Imaginary part of Γ0Where, 1 0
0

0

tan i

r

   
  

 
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The Complex Γ-Plane (contd.)

Γ0r

Γ0i

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


      



Representation of reflection 
coefficient in polar form

0

0

0 0 

Observations:
• A radial line is formed by the locus

of all points whose phase is θ0

• A circle is formed by the locus of all
points whose magnitude is |Γ0|

It means the reflection coefficient has a valid region 
that encompasses all the four quadrants in the complex 

Γ-plane within the -1 to +1 bounded region

In complex Z-plane the valid region was unbounded on the right half of the 
plane → as a result many important impedances could not be plotted
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The Complex Γ-Plane (contd.)

Γ0r

Γ0i

• Validity Region

Invalid Region
|Γ0| > 1

Valid Region
|Γ0| < 1

|Γ0| = 1

1

-1

-1

1
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The Complex Γ-Plane (contd.)
• We can plot all the valid impedances (i.e R > 0) within this bounded region.

Γ0r

Γ0i

(short)
0 1.0je    

(matched)
0 0 

(open)

0

0 1.0je  

|Γ0| = 1
Z = jX → purely reactive
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• A TL with a characteristic impedance of Z0 = 50Ω is terminated into
following load impedances:

(a) ZL = 0 (Short Circuit)
(b) ZL → ∞ (Open Circuit)
(c) ZL = 50Ω
(d) ZL = (16.67 – j16.67)Ω
(e) ZL = (50 + j50)Ω

Display the respective reflection coefficients in complex Γ-plane

Example – 3 

• Solution: We know the
relationship between Z and Γ:

00
0 0 0 0

0

jL
r i

L

Z Z
e

Z Z


      



(a) Γ0 = -1 (Short Circuit)
(b) Γ0 = 1 (Open Circuit)
(c) Γ0 = 0 (Matched)
(d) Γ0 = 0.54<221ο

(e) Γ0 = 0.83<34ο
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(a) Short Circuit (b)Open Circuit

(c) Matched

(e)

(d)

Example – 3 (contd.) 
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Transformations on the Complex Γ-Plane 

• At z =0, the reflection coefficient is called load reflection coefficient (Γ0) →
this actually describes the mismatch between the load impedance (ZL) and
the characteristic impedance (𝑍0) of the TL.

• The move away from the load (or towards the input/source) in the
negative z-direction (clockwise rotation) requires multiplication of Γ0 by a
factor exp(+𝑗2𝛽𝑧) in order to explicitly define the mismatch at location ‘z’
known as Γ(z).

• This transformation of Γ0 to Γ(z) is the key ingredient in Smith chart as a
graphical design/display tool.

• The usefulness of the complex Γ-plane will be evident when we consider
the terminated, lossless TL again.

β, Z0β, Z0
ZL

l

in

0
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Transformations on the Complex Γ-Plane (contd.)
• Graphical interpretation of 2

0( ) j zz e   

0

( ) 1z 

( ) inz l    

0 2 l 

Γ0r

Γ0i

0( 0)z   

0
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Transformations on the Complex Γ-Plane (contd.)

• It is clear from the graphical display that addition of a length of TL to a
load Γ0 modifies the phase θ0 but not the magnitude Γ0, we trace a
circular arc as we parametrically plot Γ (z)! This arc has a radius Γ0 and
an arc angle 2βl radians.

in β, Z0β, Z0
Γ0= -1 

l = λ/8

z = -l z = 0

• We can therefore easily solve many interesting TL problems
graphically—using the complex Γ-plane! For example, say we wish to
determine Γin for a transmission line length l = λ/8 and terminated with a
short circuit.
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Transformations on the Complex Γ-Plane (contd.)
• The reflection coefficient of a short circuit is Γ0 = −1 =1*e(jπ), and

therefore we begin at the leftmost point on the complex Γ-plane. We
then move along a circular arc −2βl = −2(π/4) = −π/2 radians (i.e., rotate
clockwise 90⁰).

• When we stop, we find we
are at the point for Γin; in
this case Γin = 1*e(jπ/2)

Γ0r

Γ0i

( )z

/21* j

in e  

0 1* je  
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Transformations on the Complex Γ-Plane (contd.)

• Now let us consider the same problem, only with a new transmission line
length l = λ/4.

• Now we rotate clockwise 2βl = π radians.

( )z

• In this case the input
reflection coefficient is
Γin = 1*e(j0) = 1

• The reflection coefficient
of an open circuit

The short circuit load has been 
transformed into an open circuit 

with a quarter-wave TL

Γ0r

Γ0i

0 1* je  

01* j

in e 
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Transformations on the Complex Γ-Plane (contd.)

• We also know that a quarter-wave TL transforms an open-circuit into
short-circuit → graphically it can be shown as:

Γ0r

Γ0i

1* j

in e  

0

0 1* je ( )z
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Transformations on the Complex Γ-Plane (contd.)
• Now let us consider the same problem again, only with a new

transmission line length l = λ/2.
• Now we rotate clockwise 2βl = 2π radians (360⁰)

( )z
0

0 1* je 

( ) 1z 

• We came clear around to
where we started!

• Thus we conclude that Γin = Γ0

It comes from the fact that 
half-wavelength TL is a 

special case, where we know 
that Zin = ZL → eventually it 

leads to Γin = Γ0

Γ0r

Γ0i

1* j

in e  
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Transformations on the Complex Γ-Plane (contd.)
• Now let us consider the opposite problem. Say we know that the input

reflection coefficient at the beginning of a TL with length l = λ/8 is: Γ𝒊𝒏 =
𝟎. 𝟓𝒆 𝒋𝟔𝟎° .

• What is the reflection coefficient at the load?
• In this case we rotate counter-clockwise along a circular arc (radius =0.5)

by an amount 2βl = π/2 radians (90⁰).
• In essence, we are removing the phase associated with the TL.

( ) 1z 

The reflection coefficient at 
the load is:

150

0 0.5* je 

0.5

Γ0r

Γ0i

150

0 0.5* je 

0 2in l   

600.5* j

in e 

in
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Mapping Z to Γ
• We know that the line impedance and reflection coefficient are equivalent

– either one can be expressed in terms of the other.

0

0

( )
( )

( )

Z z Z
z

Z z Z


 

 0

1 ( )
( )

1 ( )

z
Z z Z

z

 
  

 

• The above expressions depend on the characteristic impedance Z0 of the
TL. In order to generalize the relationship, we first define a normalized
impedance value z’ as:

0 0 0

( ) ( ) ( )
( ) ( ) ( )

Z z R z X z
z z j r z jx z

Z Z Z
     

therefore  

 
00

0 0

( ) / 1( ) ( ) 1
( )

( ) ( ) / 1 ( ) 1

Z z ZZ z Z z z
z

Z z Z Z z Z z z

  
   

  

1 ( )
( )

1 ( )

z
z z

z


 


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Mapping Z to Γ (contd.)

 

 
00

0 0

( ) / 1( ) ( ) 1
( )

( ) ( ) / 1 ( ) 1

Z z ZZ z Z z z
z

Z z Z Z z Z z z

  
   

  

1 ( )
( )

1 ( )

z
z z

z


 



These equations describe a mapping between z’ and Γ. That means 
that each and every normalized impedance value likewise corresponds 

to one specific point on the complex Γ-plane

• For example, we wish to indicate the values of some common normalized
impedances (shown below) on the complex Γ-plane and vice-versa.

Case Z z’ Γ

1 ∞ ∞ 1

2 0 0 -1

3 Z0 1 0

4 jZ0 j j

5 -jZ0 -j -j
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Mapping Z to Γ (contd.)

Γr

Γi

Invalid Region
|Γ| > 1

|Γ| = 1

Γ = j
(z’ = j)

Γ = -1
(z’ = 0)

Γ = -j
(z’ = -j)

Γ = 0
(z’ = 1)

Γ = 1 (z’ =∞)

• The five normalized impedances map five specific points on the complex
Γ-plane.
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Mapping Z to Γ (contd.)

Invalid Region

r

x

(Γ = 0)
z’ = 1

(Γ = -1)
z’ = 0

(Γ = -j)
z’ = -j

(Γ = j)
z’ = j

• The five complex-Γ map onto five points on the normalized Z-plane

• It is apparent that the normalized impedances can be mapped on complex
Γ-plane and vice versa

• It gives us a clue that whole impedance contours (i.e, set of points) can be
mapped to complex Γ-plane
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Mapping Z to Γ (contd.)
Case-I: Z = R → impedance is purely real

0z r j  
1

1

r

r


 



1

1
r

r

r


 


0i 

Γr

Γi

Invalid Region
|Γ0| > 1

(Γi = 0)
x = 0

(Γi = 0)
x = 0

r

In
valid

 R
e

gio
n

r

x
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Mapping Z to Γ (contd.)
Case-II: Z = jX → impedance is purely imaginary

0z jx  
Purely reactive impedance results in a 

reflection coefficient with unity magnitude
1 

Γr

Γi

|Γ|= 1
r = 0

Invalid Region
|Γ0| > 1

x j 

x j 

In
valid

 R
e

gio
n

r

x

These cases (I and II) demonstrate that 
effectively any complex impedance can be 

mapped to complex Γ-plane → Smith Chart

|Γ|= 1
r = 0
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The Smith Chart 

In summary
• A vertical line r = 0 on complex Z-plane maps to a circle |Γ| = 1 on the

complex Γ-plane
• A horizontal line x = 0 on complex Z-plane maps to the line Γi = 0 on

the complex Γ-plane

Very fascinating in an academic sense, but are not relevant considering 
that actual values of impedance generally have both a real and imaginary 

component 

Mappings of more general impedance contours (e.g, 
r = 0.5 and x = - 1.5 corresponding to normalized 

impedance 0. 5 – j1.5) can also be mapped 
Smith Chart


