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• Consider a load resistance 𝑅𝐿 = 100Ω to be matched to a 50Ω line with a
quarter-wave transformer. Find the characteristic impedance of the
matching section and plot the magnitude of the reflection coefficient

versus normalized frequency,  𝑓 𝑓0
, where 𝑓0 is the frequency at which the

line is λ/4 long.

Example 

• the necessary characteristic impedance is:

0 L inZ Z Z
0 50 100 70.71L inZ Z Z     

𝑍𝑖𝑛 is dependent on frequency

• The reflection coefficient magnitude is given as

0
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Z Z

Z Z
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Example – (contd.) 
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             

For higher frequencies the matching section looks electrically 
longer, and for lower frequencies it looks shorter.

Plot the magnitude of the reflection coefficient 

versus  𝑓 𝑓0
using these two equations

HW # 0
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Transmission Line Input Impedance – Special Cases (contd.)  

• ZL = Z0

In other words, if the load impedance (ZL) is equal to the TL characteristic 
impedance (Z0), the input impedance (Zin) likewise will be equal to 

characteristic impedance (Z0) of the TL irrespective of its length

ZL=Z0β, Z0

l

0inZ Z

the load is numerically equal to the characteristic 
impedance of the transmission line (a real value).

0 0
0 0

0 0

tan( )

tan( )
in

Z jZ l
Z Z Z

Z jZ l






 



• ZL = jXL the load is purely reactive (i.e., the resistive component is zero)

0 0
0 0

0 0

tan( ) tan( )
( )

tan( ) tan( )

L L
in

L L

jX jZ l X Z l
Z Z z l Z jZ

Z X l Z X l

 

 

 
    

 

Purely 
Reactive
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Transmission Line Input Impedance – Special Cases (contd.)  

ZL=jXLβ, Z0
in LZ jX

Note that the opposite is not true: even if the load is purely resistive (ZL = R), the 
input impedance will be complex (both resistive and reactive components).

In other words, if the load impedance (ZL) is purely reactive then the input 
impedance likewise will be purely reactive irrespective of the line length (l)

• l << λ the transmission line is electrically small

• If length 𝑙 is small
with respect to signal
wavelength λ then:

2
2 0

l
l l


 

 
  

• Therefore: cos( ) 1l 

s ( ) 0in l 

• Thus the input 
impedance is:

0 0
0 0 0

0 0

cos( ) sin( ) (1) (0)

cos( ) sin( ) (1) (0)

L L
in

L L

Z l jZ l Z jZ
Z Z Z Z

Z l jZ l Z jZ

 

 

 
  

 
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Transmission Line Input Impedance – Special Cases (contd.)  

In other words, if the transmission line length is much smaller than a 
wavelength, the input impedance 𝑍𝑖𝑛 will always be equal to the load 

impedance 𝑍𝐿.

This is the assumption we used in all previous circuits courses (e.g., Linear 
Circuits, Digital Circuits, Integrated Electronics,  Analog Circuit Design etc.)! 
In those courses, we assumed that the signal frequency ω is relatively low, 

such that the signal wavelength λ is very large (λ ≫ 𝑙).

• Note also for this case (the electrically short transmission line), the
voltage and current at each end of the transmission line are
approximately the same!

( ) ( 0)V z l V z    ( ) ( 0)I z l I z   

If 𝑙 ≪ λ , our “wire” behaves exactly as it did in Linear Circuits course!
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Example – 1
Determine the input impedance of the following circuit:

Z
L
=

 1
 +

 j
2

??inZ 

2

3j
0 2.0Z 0 1.5Z 

0 1.0Z 

/ 8l / 4l / 2l 

Z
L
=

 1
 +

 j
2

??inZ 

2

3j

How about the following solution?

3*(2 1 2)
2.7 2.1

3 (2 1 2)
in

j j
Z j

j j

  
  
   

Where are the contributions of 
the TL??
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Example – 1 (contd.)

• Let us define Z1 as the input impedance of the last section as:

Z
L
=

 1
 +

 j
2

1Z
0 2.0Z 

/ 8l 

0
1 0

0

tan( )

tan( )

L

L

Z jZ d
Z Z

Z jZ d










Then the impedance Z1 is:

Where:
2

*
8 4

d
  




 

1

(1 2) 2 tan( / 4)
2

2 (1 2) tan( / 4)

j j
Z

j j





  
  

  

Therefore:

1

1 4
2

j
Z

j

 
  

 

1 8 2Z j  
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Example – 1 (contd.) 

Z
1
=

 8
 –

j2
 

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2
The problem simplifies to: Series

Simplification of 
the problem

Z
2
=

 1
0
 –

j2
 

??inZ 
3j

0 1.5Z 
0 1.0Z 

/ 4l / 2l 

2 10 2Z j 
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Example – 1 (contd.) 

• Now let us define the input impedance of the middle TL as Z3:

2

3

(1.5)

10 2
Z

j



Therefore:

3 0.21 0.043Z j  
Z

2
=

 1
0
 –

j2
 

3Z
0 1.5Z 

/ 4l 

This is a quarter-wave TL → one of the 
special cases we considered earlier → 

where the input impedance is:
2

0
3

2

Z
Z

Z


• Then the problem simplifies to:

Z3= 0.21 + j0.043 

??inZ 
3j0 1.0Z 

/ 2l 

Parallel Combination

Z4= 0.22 + j0.028 
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Example – 1 (contd.) 
• Finally the simplified problem is:

??inZ 
0 1.0Z 

/ 2l 

Z4= 0.22 + j0.028 

TL is a half wavelength → special case we 
discussed earlier → input impedance 

equals the load impedance   

4 0.22 0.028inZ Z j   
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z = 0z = -l

β, Z0β, Z0
Z0/2 Z0/2

l =λ/4

( )
a

V z ( )
a

V z ( )
b

V z ( )
b

V z

For the following circuit determine: a

a

V

V





b

a

V

V





b

a

V

V





Given: 

( ) ( ) ( ) j z j z

a a a aV z V z V z V e V e          For z < -l

( ) ( ) ( ) j z j z

b b b bV z V z V z V e V e          For –l < z < 0

Example – 2  
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Example – 2 (contd.)  
• We can write current equations as: 

0 0 0 0

( ) ( )
( ) j z j za a a aV z V z V V

I z e e
Z Z Z Z

 
   

     For z < -l

0 0 0 0

( ) ( )
( ) j z j zb b b bV z V z V V

I z e e
Z Z Z Z

 
   

     For –l < z < 0

• At z = -l:

β, Z0β, Z0

z = -l

Z0/2

( )
a

I z l  ( )
b

I z l 

R
I

( )
a

V z l 





( )
b

V z l 





KVL gives:

( ) ( )a bV z l V z l    

KCL gives:

( ) ( )a b RI z l I z l I     

Ohm’s Law gives:

0 0 0

( ) 2 ( ) 2 ( )

/ 2

a a b
R

V z l V z l V z l
I

Z Z Z

     
  
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Example – 2 (contd.)  

• At z = -l:

It is given:
4

l



2

4 2
l

  



 

 ( /2) ( /2)( ) j j

a a a a aV z l V e V e j V V            

Similarly:

 ( )b b bV z l j V V    

0

( ) b b
b

V V
I z l j

Z

  
    

 

0

( ) a a
a

V V
I z l j

Z

  
    

 

( ) ( )( ) ( ) ( ) j l j l j l j l

a a a a a a aV z l V z l V z l V e V e V e V e                         
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Example – 2 (contd.)  

• Now let us revisit the expressions achieved from KVL, KCL and Ohm’s Law

   a a b bj V V j V V      

( ) ( )a bV z l V z l    
KVL

1 a b b

a a a

V V V

V V V

  

  
   

 
0 0

22 ( ) a aa
R

j V VV z l
I

Z Z

  
 

Ohm’s Law

 
0 0

22 ( ) b bb
R

j V VV z l
I

Z Z

  
 

( ) ( )a b RI z l I z l I     
KCL

0 0

a a b b
R

V V V V
j j I

Z Z

       
     

   

0a a b b RV V V V jI Z      

1 3a b b

a a a

V V V

V V V

  

  
   
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Example – 2 (contd.)  

z = 0

β, Z0 Z0/2

• At z = 0: ( 0)bI z 

( 0)
b

V z 





L
I

L
V





KVL: ( 0)b LV z V 

KCL: ( 0)b LI z I 

Ohm’s Law: 
0 0

2

/ 2

L L
L

V V
I

Z Z
 

(0) (0)( 0) j j

b b b b bV z V e V e V V          

(0) (0)

0 0 0

( 0) j jb b b b
b

V V V V
I z e e

Z Z Z

 
   

  
   
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At z = 0:

0 0

2

/ 2

L L
L

V V
I

Z Z
 

0

( 0) b b
b

V V
I z

Z

 
  

( 0)b b bV z V V    

 
0 0

2 b bb b
V VV V

Z Z

   
simplify

1

3
b bV V  

You can also achieve this result by 
writing the expression for 

reflection coefficient 

Example – 2 (contd.)  
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Let us bring all the three simplified equations together 

1 a b b

a a a

V V V

V V V

  

  
  

(1)

1 3a b b

a a a

V V V

V V V

  

  
  

(2)

1

3
b bV V  

(3)

4
1

3

a b

a a

V V

V V

 

 
 Simplification of (1) and (3) results in: (4)

10
1

3

a b

a a

V V

V V

 

 
 Simplification of (2) and (3) results in: (5)

Simplify all of these to obtain the values of

a

a

V

V





b

a

V

V





b

a

V

V





Example – 2 (contd.)  
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Let us now summarize the fruits of our effort

3

7

a

a

V

V






1

7

b

a

V

V




 

3

7

b

a

V

V






Example – 2 (contd.)  
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• We know that the load at the end of some length of a transmission line
(with characteristic impedance 𝑍0 ) can be specified in terms of its
impedance 𝑍𝐿 or its reflection coefficient Γ0.

Reflection Coefficient Transformation 

• Note both values are complex, and
either one completely specifies the
load—if you know one, you know
the other!

0
0

0

L

L

Z Z

Z Z


 


0

0

0

1

1
LZ Z

  
  

 

0
0

0

tan( )

tan( )

L
in

L

Z jZ l
Z Z

Z jZ l










• Recall that we determined how a length of transmission line transformed
the load impedance into an input impedance of a (generally) different
value:

ZL
β, Z0inZβ, Z0

l
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Reflection Coefficient Transformation (contd.) 

Q: Say we know the load in terms of its reflection coefficient. How can we
express the input impedance in terms its reflection coefficient (call this Γ𝑖𝑛)?

ZL
β, Z0?in β, Z0

l

A: Well, we could execute these three steps:

1. Convert Γ0 to 𝑍𝐿:

0
0

0

1

1
LZ Z

  
  

 

2. Transform 𝑍𝐿down the line to 𝑍𝑖𝑛:

0
0

0

tan( )

tan( )

L
in

L

Z jZ l
Z Z

Z jZ l










3. Convert  𝑍𝑖𝑛 to Γ𝑖𝑛: 0

0

in
in

in

Z Z

Z Z


 


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Reflection Coefficient Transformation (contd.) 
Q: Yikes! This is a ton of complex arithmetic—isn’t there an easier way?
A: Actually, there is!

• Recall that the input impedance of a transmission line length 𝑙, terminated
with a load Γ0, is:

0
0

0

( )
( )

( )

j l j l

in j l j l

V z l e e
Z Z z l Z

I z l e e

 

 





    
      

    

Note this directly relates Γ0 to 𝑍𝑖𝑛 (steps 1 and 2 combined!).

Directly 
insert this 

into:

0

0

in
in

in

Z Z

Z Z


 


directly relates Γ0 to Γ𝑖𝑛. 2

0

j l

in e   

Q: Hey! This result looks familiar.

2

0(z) j ze   
2

0(z ) j ll e     

A: Absolutely! Recall that we found the reflection coefficient function Γ(𝒛):
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Reflection Coefficient Transformation (contd.) 

2

0

j l

in e   
the magnitude of Γ𝑖𝑛 is the 

same as the magnitude of Γ0!
2

0 0

j l

in e     

The reflection coefficient at the input is simply 
related to Γ0 by a phase shift of 2𝛽𝑙.

Finally, the phase shift associated with transforming Γ0 down a transmission 
line can be attributed to the phase shift associated with the wave 

propagating a length 𝑙 down the line, reflecting from load 𝑍𝐿, and then 
propagating a length 𝑙 back up the line.

ZLin β, Z0

𝜑 = 𝛽𝑙

0

j l j le e  
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Terminated Lossless Transmission Line (contd.) 

Which relationship to use:

𝑽 𝒛 , 𝑰 𝒛 , 𝒁(𝒛)

or

𝑽+ 𝒛 , 𝑽− 𝒛 , Γ(𝒛)
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Terminated Lossless Transmission Line (contd.) 

Based on your circuits experience, 
you might well be tempted to 
always use V(z), I(z) and Z(z). 

However,  it is useful (as well as simple) to 
describe activity on a transmission line in 

terms of V+(z), V–(z) and Γ(z)
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Terminated Lossless Transmission Line (contd.) 
• The solution of Telegrapher equations (the equations defining the current

and voltages along a TL) boils down to determination of complex
coefficients V+, V–, I+ and I–. Once these are known, we can describe all
the quantities along the TL.

• For example, the wave representations are:

0( ) j zV z V e   

0( ) j zV z V e  

20 0

0 0

( )
( )

( )

j zV z V
z e

V z V


 

 
  

0( )V z V 

0( )V z V 

0

0

( )
V

z
V




 

Magnitudes

Relative Phases

 arg ( )V z z    arg ( )V z z    arg ( ) 2z z  
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Terminated Lossless Transmission Line (contd.) 
• Contrast the wave functions with complex voltage, current and impedance

0 0( ) j z j zV z V e V e    

0 0
0

0 0

( )
j z j z

j z j z

V e V e
Z z Z

V e V e

 

 

  

  






0 0

0

( )
j z j zV e V e

I z
Z

   


Magnitudes

0 0( ) ??j z j zV z V e V e     

0 0

0

( ) ??

j z j zV e V e
I z

Z

   
 

0 0

0

0 0

( ) ??

j z j z

j z j z

V e V e
Z z Z

V e V e

 

 

  

  


 



Relative Phases    0 0arg ( ) arg ??j z j zV z V e V e     

   0 0arg ( ) arg ??j z j zI z V e V e     

     0 0 0 0arg ( ) arg arg ??j z j z j z j zZ z V e V e V e V e            

• It is, thus, much easier and more straightforward to use the wave
representation → However, V(z ), I(z ), or Z(z ) are still fundamental and
very important—particularly at each end of the transmission line!
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Power Considerations on a TL
• We have discovered that two

waves propagate along a
transmission line, one in each
direction (𝑉+ 𝑧 𝑎𝑛𝑑 𝑉−(𝑧)).

z = 0

ZL

z = -l





l






LV

LV

( ) ( ) ( )V z V z V z  

The result is that electromagnetic energy flows along the 
transmission line at a given rate (i.e., power).

Q: How much power flows along a transmission line, and where does that
power go?
A: We can answer by determining the power absorbed by the load!

     
2

20* *

0

0

1 1
Re Re (0) (0) 1

2 2 2
abs L L

V
P V I V I

Z



    

2 2 2 2

0 0 0 0 0

0 0 0 02 2 2 2
abs

V V V V
P

Z Z Z Z

   
   

Incident Power, Pinc Reflected Power, Pref

2

20 0

0

02
ref inc

V
P P

Z


  



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Power Considerations on a TL (contd.)

• It is thus apparent that the
power flowing towards the
load (Pinc) is either absorbed
by the load (Pabs) or reflected
back from the load (Pref)

z = 0

ZL

z = -l l

incP refP

absP

Now let us consider some special cases:

There is no power absorbed by the load → all the incident power is reflected 

2

0ref inc incP P P  

0absP 

1.
0 1 

z = 0

|Γ0|=1

z = -l l

incP ref incP P

0absP 
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Power Considerations on a TL (contd.)

2

0 0ref incP P  

abs incP P 

2.
0 0 

z = 0z = -l l

incP 0refP 
abs incP P

|Γ0|=0

all the incident 
power is absorbed 

by the load
None of the incident 

power is reflected

3.
00 1  

2

00 0ref incP P   

 2

00 1abs inc incP P P     

z = 0z = -l l

incP
ref incP P

abs incP P

0<|Γ0|<1
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Power Considerations on a TL (contd.)

4.
0 1 

2

0ref inc incP P P    2

01 0abs incP P    

Power Absorbed is 
Negative

What type of load 
it could be?

Definitely not a passive load → A passive device can’t produce power 

0 1  For all passive loadsTherefore:

Alternatively, we can say that the load 
creates extra power → i.e, acts as a 

power source and not a sink!

Q: Can Γ0 every be greater than one?
A: Sure, if the “load” is an active device. In other words, the load must have
some external power source connected to it.

Q: What about the case where Γ0 < 0, shouldn’t we examine that situation
as well?
A: That would be just plain silly; do you see why?
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Return Loss

• The ratio of the reflected
power from a load, to the
incident power on that load, is
known as return loss. Typically,
return loss is expressed in dB:

ZL
Z0

0

z =l

incP refP

Return Loss (R.L.):  2

0[ ] 10log 10log
ref

inc

P
RL dB

P

 
     

 

• The return loss tells us the percentage of the incident power reflected at
the point of mismatch

• For example, if the return loss is 10dB, then 10% of the power is reflected
while the 90% is absorbed/transmitted → i.e, we lose 10% of the incident
power

• For the return loss of 30dB, the reflected power is 0.1% of the incident
power → we lose only 0.1% of the incident power

• A larger numeric value of return loss actually indicates smaller lost power
→ An ideal return loss would be ∞ → matched condition
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Return Loss (contd.)
• A return loss of 0dB indicates that reflection coefficient is ONE → reactive

termination
• Return Loss (RL) is very helpful as it provides real-valued measures of

mismatch (unlike the complex-valued 𝑍𝐿 and Γ0)

A match is good if the return loss is high. A high return loss is 
desirable and results in a lower insertion loss.

Insertion Loss 
• This is another parameter to address the mismatch problem and is

defined as:

 2
[ ] 10log 10log 10log 1

incident reflectedtransmitted
in

incident incident

P PP
IL dB

P P

   
         

   
For open- and short-

circuit conditions
IL

For perfectly 
matched conditions

0IL 

insertion loss signifies  the loss of signal power resulting from 
the insertion of a device in a transmission line.
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• Another traditional real-valued
measure of load match is
Voltage Standing Wave Ratio
(VSWR). Consider again the
voltage along a terminated
transmission line, as a function
of position 𝑧.

Standing Wave and Standing Wave Ratio 

0 0( ) j z j zV z V e e       

z = 0z = -l

Z0

ZL

0

0

j zV e  

0

j zV e 

0 0( ) j l j lV l V e e       

• For a short circuited line: Γ0 = -1  0( ) j l j lV l V e e     

2jsin(βl)

   0( , ) Re ( ) Re 2 ( )sin( )j t j tv l t V l e jV z l e    
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Where has the traveling 
wave V(z) gone?

• As the time and space are decoupled → No wave propagation
takes place

• The incident wave is 180ο out of phase with the reflected
wave → gives rise to zero crossings of the wave at 0, λ/2, λ,

3λ/2, and so on → standing wave pattern!!!

Standing Wave and Standing Wave Ratio (contd.)

0( , ) 2 sin( )cos( ( / 2))v l t V l t     
Always zero for -l=0 i.e., the 

point of short-circuitDefinitely not  a 
traveling wave!!
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Standing Wave Pattern for Various Instances of Time
𝛽𝑙

𝑉
(𝑙
)/
2
𝑉 0

+

Standing Wave and Standing Wave Ratio (contd.) 

Spatial Location: 
0, λ/2, λ, 3λ/2

Corresponding 
Electrical Length (βl): 

0, π, 2π, 3π

   2

0 0 0 0( ) 1j l j l j l j lV l V e e V e e              • for arbitrarily
terminated line:

 ( ) ( ) 1 ( )V l A l l      
Valid anywhere 

on the line
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Standing Wave and Standing Wave Ratio (contd.) 

 
0

( )
( ) 1 ( )

A l
I l l

Z


    Similarly:

Valid anywhere 
on the line

• Under the matched condition, Γ0 = 0 and therefore Γ(-l) = 0 → as
expected, only positive traveling wave exists.

• For other arbitrary impedance loads: Standing Wave Ratio (SWR) or
Voltage Standing Wave Ratio (VSWR) is the measure of mismatch.

• SWR is defined as the ratio of maximum voltage (or current) amplitude
and the minimum voltage (or current) amplitude along a line → therefore,
for an arbitrarily terminated line:

max max

min min

( ) ( )

( ) ( )

V l I l
VSWR ISWR SWR

V l I l

 
   

 

 2

0 0( ) 1j l j lV l V e e      We have:

• Two possibilities for extreme values: 0 1j le   0 1j le   
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00 1  Apparently: 1 VSWR  

 0 0max
V( ) 1l V    Max. voltage: Min. voltage:  0 0min

V( ) 1l V    

0

0

1

1
VSWR

 
 

 

Standing Wave and Standing Wave Ratio (contd.) 

• Note if Γ0 = 0 (i.e., 𝑍𝐿 = 𝑍0 ), then
VSWR = 1. We find for this case: 0max min

( ) ( )V z V z V  

In other words, the voltage magnitude is a constant 
with respect to position 𝑧.

• Conversely, if Γ0 = 1 (i.e., 𝑍𝐿 = 𝑍0), 
then VSWR = ∞. We find for this case: 0max

( ) 2V z V 
min

( ) 0V z 

In other words, the voltage magnitude varies 
greatly with respect to position 𝑧.
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Standing Wave and Standing Wave Ratio (contd.) 

• Similarly,  0

0

( ) j l j lV
I l e e

Z

 


    We have:

0

0

1

1
ISWR

 
 

 
1 ISWR  

Thus:     VSWR=ISWR=SWR
In our course we will mention both 

as VSWR

 0max
0

I( ) 1
V

d
Z

 
   
 

 0min
0

I( ) 1
V

d
Z

 
   
 

and

As with return loss, VSWR is dependent on the magnitude of 
Γ0 (i.e, Γ0 ) only !

In practice, SWR can only be defined for lossless line as the SWR equation 
is not valid for attenuating voltage and current  
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Standing Wave and Standing Wave Ratio (contd.) 

z

Standing Wave Pattern at Γ0=0.1

z

Standing Wave Pattern at Γ0=1

• It is apparent that the maximum and minimum repeats periodically and
its values can be used to identify the degree of mismatch by calculating
the Standing Wave Ratio
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• The following two-step procedure has been carried out with a 50Ω coaxial
slotted line to determine an unknown load impedance:

Example – 3 

1. short circuit is placed at the
load plane, resulting in a
standing wave on the line with
infinite SWR and sharply
defined voltage minima, as
shown in Figure.

On the arbitrarily positioned scale on the slotted line, voltage
minima are recorded at:

𝑧 = 0.2𝑐𝑚, 2.2𝑐𝑚, 4.2𝑐𝑚
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Example – 3  (contd.)

2. The short circuit is removed
and replaced with the unknown
load. The standing wave ratio is
measured as SWR = 1.5, and
voltage minima, which are not
as sharply defined as those in
step 1, are recorded at:

𝑧 = 0.72𝑐𝑚, 2.72𝑐𝑚, 4.72𝑐𝑚

Find the load impedance.
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Example – 3  (contd.)
• Knowing that voltage minima repeat every λ/2, we have from the data of

step 1 that λ = 4.0 cm.
• In addition, because the reflection coefficient and input impedance also

repeat every λ/2, we can consider the load terminals to be effectively
located at any of the voltage minima locations listed in step 1.

• Thus, if we say the load is at 4.2𝑐𝑚, then the data from step 2 show that
the next voltage minimum away from the load occurs at 2.72𝑐𝑚.

• Now:
0

1

1

SWR

SWR


 


0

1.5 1
0.2

1.5 1


  



min2 l     min

2
2 86.4l


 




 
     

 

𝑙𝑚𝑖𝑛 = 4.2 − 2.72 = 1.48𝑐𝑚 = 0.37λ• It gives:
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Example – 3  (contd.)

• Therefore: 86.4

0 0.2 0.0126 0.1996je j   

• The unknown impedance is then:

0
0

0

1

1
LZ Z

  
  

  

0

0

1
50 47.3 19.7

1
LZ j

  
    

  
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Potential Projects 

• Dual-band impedance-matching networks based on split-ring resonators
• A multiband reconfigurable matching network
• T-section dual-band impedance transformer for frequency-dependent

complex loads
• Dual-band matching technique based on dual-characteristic impedance

transformers
• Multi-band frequency transformations matching networks and amplifiers
• Analytical design of dual-band impedance transformer with extra

transmission zero
• A T-section dual-band matching network for frequency-dependent

complex loads incorporating coupled line with dc-block property
• Techniques to measure port impedances
• Pi -model dual-band impedance transformer for unequal complex

impedance loads, and its use in Power Divider, Coupler, Crossover etc.
• triple-frequency matching network for FDCLs


