
Indraprastha Institute of 

Information Technology Delhi ECE321/521

Lecture – 3 Date: 11.01.2016

• Transmission Lines (TL) Introduction 
• TL Equivalent Circuit Representation
• Definition of Some TL Parameters 
• Examples of Transmission Lines  
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Line Impedance (Z) – contd. 

It appears to me that 𝒁𝟎 is a 
transmission line parameter, 

depending only  on the 
transmission line values R, L, 

C and G.

Whereas, 𝒁(𝒛) depends on the 
magnitude and the phase of the two 

propagating waves 𝑽+ 𝒛 and 𝑽− 𝒛 → 
values that depend not only on the 

transmission line, but also on the two 
things attached to either end of the 

transmission line.

Right? Exactly!!!
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Example of Transmission Lines

Two common examples:

twin linecoaxial cable
r

 a

bz

A transmission line is normally used in the balanced mode, meaning equal 
and opposite currents (and charges) on the two conductors.

twin line coax to twin line 
matching section

coaxial cable

Here’s what they look like in real-life:



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Example of Transmission Lines (contd.)

Twin Line

a = radius of wires
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Example of Transmission Lines (contd.)

2

m





(skin depth 
of metal)

d = conductivity of dielectric [S/m].

m = conductivity of metal [S/m].

Coaxial Cable

r
 a

bz

 

 

0

0

2
F/m

ln

ln H/m
2

rC
b

a

b
L

a

 






 
 
 

 
  

 

 

 

2
S/m

ln

1 1 1
/m

2 2

d

m

G
b

a

R
a b



   


 
 
 

 
   

 



Indraprastha Institute of 

Information Technology Delhi ECE321/521

microstrip line

Another common example (for printed circuit boards):

w

h
r

Ground plane helps in 
preventing the field leakage and 
thus reduces the radiation loss

Example of Transmission Lines (contd.)
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• The severity of field leakage also depends on the relative dielectric
constants 𝜀𝑟 .

It is apparent that the radiation loss could be 
minimized by using substrates with high dielectric 

constants

Microstrip Line (contd.)

Magnetic 
Field Lines

Electric 
Field Lines

Alternative approaches to reduce radiation loss and interference are 
shielded microstrip line and multi-layer boards    



Indraprastha Institute of 

Information Technology Delhi ECE321/521

microstrip line
Microstrip Line (contd.)
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Microstrip Transmission Lines Design

w

h

r

t

• Simple parallel plate model can not
accurately define this structure.

• Because, if the substrate thickness
increases or the conductor width
decreases then fringing field become
more prominent (and therefore need to
be incorporated in the model).

Case-I: thickness (t) of the line is negligible

• For narrow microstrips (  𝒘 𝒉 ≤ 𝟏):
0 ln 8

42

f

eff

Z h w
Z

w h

 
  

  

Where,
0 0/ 377fZ     wave impedance in free space

1/2 2
1 1

1 12 0.004 1
2 2

r r
eff

h w

w h

      
        

     

 
 Effective Dielectric 

Constant
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Microstrip Transmission Lines Design (contd.)

• The two distinct expressions give approximate values of characteristic
impedance and effective dielectric constant for narrow and wide strip
microstrip lines → these can be used to plot Z0 and εeff as a function of  𝑤 ℎ.

• For wide microstrips  𝑤 ℎ ≥ 1 :

0
2

1.393 ln 1.444
3
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• Where the effective dielectric constant is expressed as: 
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Microstrip Transmission Lines Design (contd.)

For a desired characteristic 
impedance using known 
substrate, the dimension 

w/h can be identified from 
this curve 
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Microstrip Transmission Lines Design (contd.)

Once the line dimensions 
are known, the effective 

dielectric constant can be 
identified
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Microstrip Transmission Lines Design (contd.)

• The effective dielectric constant (εeff) is
viewed as the dielectric constant of a
homogenous material that fills the entire
space around the line. Therefore:

0p

eff eff

v c

f f
  




 
Speed of Light

Free Space 
Wavelength

• The wavelength in the
microstrip line for  𝑊

ℎ ≥ 0.6 is:
 

1/2

0
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1 0.63( 1) /
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• The wavelength in the
microstrip line for  𝑊

ℎ ≤ 0.6 is:
 
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Microstrip Transmission Lines Design (contd.)

• In some specifications, wavelength is known. In that case following curve
can be used to identify the w/h ratio.

It is a good 
approximation at lower 
microwave frequencies. 

However, at higher 
microwave frequencies  
this assumption is no 

more valid. 
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• If Z0 and εr is specified or known, following expression can be used to
determine w/h:

2

8

2

A

A

w e

h e



For w/h≤2: Where: 0 1 1 0.11

2 0.23
2 1
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f r r

Z
A
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  
   

  

Microstrip Transmission Lines Design (contd.)

12 0.61
1 ln(2 1) ln( 1) 0.39

2

r

r r

w
B B B
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  
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For w/h≥2:
Where:

02

f

r

Z
B

Z






Case-II: thickness (t) of the line is not negligible → in this scenario all the
formulas are valid with the assumption that the effective width of the line
increases as:

2
1 lneff

t x
w w

t

 
   

 

Where 𝒙 = 𝒉 𝒊𝒇 𝒘 >  𝒉 𝟐𝝅 or 𝒙 = 𝟐𝝅𝒘 𝒊𝒇  𝒉 𝟐𝝅 > 𝒘 > 𝟐𝒕
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Example – 1 
A microstrip material with εr = 10 and h = 1.016 mm is used to build a narrow
transmission line. Determine the width for the microstrip transmission line to
have a characteristic impedance of 50Ω. Also determine the wavelength and the
effective relative dielectric constant of the microstrip line.

Using the Formulas:

2

8

2

A

A

w e

h e



Let us consider the first formula:

0 1 1 0.11 50 10 1 10 1 0.11
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 

2.1515A 
2.1515

2(2.1515)

8
0.9563

2

w e

h e
 


Therefore:

Now: h = 1.016 mm = 0.1016 cm = 0.1016(1000/2.54) mils = 40 mils 

0.9563*40 38.2w mils mils  
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1/2

0
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Example – 1 (contd.) 
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Using the Design Curves

0 50Z  

10r 

1
w

h


h = 1.016 mm = 40 mils

=> w = 40 mils

Example – 1 (contd.) 
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Using the Design Curves

1
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h

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Example – 1 (contd.) 
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Example – 2  
a. Using the design curves, calculate W, λ, and 𝜀𝑒𝑓𝑓 for a characteristic

impedance of 50Ω using RT/Duroid with 𝜀𝑟 = 2.23 and ℎ = 0.7874 𝑚𝑚.
b. Use design equations to show that for RT/Duroid with εr = 2.23 and ℎ =

0.7874 𝑚𝑚, a 50Ω-characteristic impedance is obtained with  𝑊
ℎ =

3.073. Also show, 𝜀𝑒𝑓𝑓 = 1.91 and λ = 0.7236λ0.

𝑊

ℎ
≈ 3.1

W=3.1 × ℎ = 3.1 × 0.784 = 2.44𝑚𝑚
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Example – 2 (contd.) 

λ

λ𝑇𝐸𝑀
= 1.08

𝑊

ℎ
≈ 3.1For and 𝜀𝑟 = 2.23

λ = 1.08λ𝑇𝐸𝑀

λ𝑇𝐸𝑀 =
λ0
𝜀𝑟

We know:

∴ λ = 0.723λ0

λ =
λ0
𝜀𝑒𝑓𝑓

Also: 𝜀𝑒𝑓𝑓 = 1.91
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Example – 2 (contd.) 

12 0.61
1 ln(2 1) ln( 1) 0.39
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For w/h≥2:
Where:
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Z





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w
B B B

h 
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Therefore:

Where:
377

7.931
2 50 2.23

B


 
 

3.073
w

h
 

• For  𝑊
ℎ ≥ 0.6:

 
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 
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   

 
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0
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0.724

2.23 1 0.63(2.23 1) 3.073


 

 
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Lossless Transmission Line 

• For a lossless transmission line:

LC 

0 0( ) j z j zV z V e V e    

0 0

0 0

( ) j z j zV V
I z e e

Z Z

 
 

  

• Similarly the current phasor for a lossless line can be described:

0

L L L
Z

CLC

 

 
  

Q: 𝑍0 and 𝛽 are determined from L, C, and ω. How do we find 𝑉0
+ 𝑎𝑛𝑑 𝑉0

−?
A: Apply Boundary Conditions!

Every transmission line has 2
“boundaries”:
1) At one end of the transmission line.
2) At the other end of the trans line!

Typically, there is a source 
at one end of the line, and 

a load at the other.
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Terminated Lossless Transmission Line 
• Now let’s attach something to our transmission line. Consider a lossless

line, length 𝑙, terminated with a load 𝑍𝑙.
Reflection 

Coefficient at Load

Load 
Impedance

Characteristic 
Impedance

Input 
Impedance 
to the Line ZL

z = zlz =zl - l

Zin 0

Z0

z

Q: What is the current and voltage at each and every point on the
transmission line (i.e., what is 𝐼(𝑧) and 𝑉(𝑧) for all points 𝑧 where 𝑧𝑙 − 𝑙 <
𝑧 < 𝑧𝑙 .

A: To find out, we must apply boundary conditions!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Terminated Lossless Transmission Line (contd.) 

• The load is assumed at z = zl

• The voltage wave couples
into the line at z =zl - l

Reflected WaveIncident Wave

ZL

𝐼(𝑧)
LI

Z0

( )V z 0

j zV e  

0

j zV e 

+

−

+

−

LI

z

z =zl - l z =zl0 0( ) j z j zV z V e V e    

• At the load:
0 0( ) ( ) ( ) l lj z j z

l l lV z z V z z V z z V e V e
          

0 0

0 0 0 0

( ) ( )
( ) l lj z j zl l

l

V z z V z z V V
I z z e e

Z Z Z Z

 
   

 
    
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Terminated Lossless Transmission Line (contd.) 
• Furthermore, the load voltage and

current must be related by Ohm’s law: L L LV Z I

( )l LV z z V ( )l LI z z I 

• Most importantly, we
recognize that the values
𝐼 𝑧 = 𝑧𝑙 , 𝑉(𝑧 = 𝑧𝑙) and
𝐼𝐿 , 𝑉𝐿 are not independent,
but in fact are strictly related
by Kirchoff’s Laws!

ZL

𝐼(𝑧 = 𝑧𝑙) LI

Z0

( )lV z z

+

−

+

−

LI

z
z =zl - l z =zl

So now we have the boundary conditions for this particular problem.

Careful! Different transmission line problems lead to different
boundary conditions—you must assess each problem individually
and independently!
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Terminated Lossless Transmission Line (contd.) 
• Combining these equations and boundary conditions, we find that:

( ) ( )l L L L L lV z z V Z I Z I z z    

 
0

( ) ( ) ( ) ( )L
l l l l

Z
V z z V z z V z z V z z

Z

         

• Rearranging, we can conclude: 0

0

( )

( )

l L

l L

V z z Z Z

V z z Z Z





 


 

Voltage Reflection Coefficient Γ(𝒛 = 𝒛𝒍)
also holds true for current 

wave but with opposite sign

This value is of fundamental importance for the 
terminated transmission line problem, so we 
provide it with its own special symbol (Γ0)!
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Terminated Lossless Transmission Line (contd.) 

0

( )

( )

l

l

V z z

V z z






 



0

j zV e  

0

j zV e 
ZLZ0

0

z =zl - l z =zl

Q: I’m confused! Just what
are we trying to accomplish
in this handout?

A: We are trying to find
V(z) and I(z) when a
lossless transmission line
is terminated by a load ZL!

0
0

0

L

L

Z Z

Z Z


 



• We can express the reflected voltage  wave as:

0
0

0

( )

( )

l

l

j z

l

j z

l

V z z V e

V z z V e





 

 


  



2

0 0 0
lj z

V V e
  

More useful 
representation as it 

involves known 
circuit/system quantities
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Terminated Lossless Transmission Line (contd.) 

• Therefore:  2

0 0( ) lj z j zV z V e e
    

 20
0

0 0

( ) ( )
( ) lj zj z j zV z V z V

I z e e e
Z Z

 
  

 
    
 

 2

0 0( ) ( ) ( ) lj zj z j zV z V z V z V e e e
          

 

• Simplify by arbitrarily assigning the end point a zero value (i.e., 𝑧𝑙 = 0)

(0) (0)

0 0 0 0( 0) ( 0) ( 0) j jV z V z V z V e V e V V                

0 0

0

( 0)
V V

I z
Z

 
  0 0

0

0 0

( 0)
( 0)

( 0)
L

V z V V
Z z Z Z

I z V V

 

 

  
    

  
• The current and voltage along the line in this case are:

0 0( ) j z j zV z V e e       
0

0

0

( ) j z j zV
I z e e

Z

 


     

Q: But, how do we determine 𝑉0
+??
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Special Termination Conditions 

ZL

z = 0z =-l

Zin

0

Z0

• Let us once again consider a
generic TL terminated in
arbitrary impedance ZL

V(z)

I(z)

z = 0

ZL

z = -l

Zin

0

Z0

I(z)




( )V z

( )Z z

 

 

(2 )

0

(2 )

0

0

1( )
( )

( )
1

j z j z

j z
j z

V e eV z
Z z

V eI z
e

Z

 




  

 



 



• It’s interesting to note that ZL enforces a boundary
condition that explicitly determines neither V(z) nor
I(z)—but completely specifies line impedance Z(z)!

( )
( )

( )

V z
Z z

I z

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Special Termination Conditions (contd.) 

2 20
0

0

( )
( )

( )

j z j zL

L

V z Z Z
z e e

V z Z Z

 


 




    



• Likewise, the load boundary condition leaves 𝑉+(𝑧) and 𝑉−(𝑧)
undetermined, but completely determines reflection coefficient function
Γ(𝒛)!

0 0
0 0

0 0

cos( ) sin( )
( )

cos( ) sin( )

j z j z

L

j z j z

L

e e Z z jZ z
Z z Z Z

e e Z z jZ z

 

 

 

 

 

 

  
 

  

Let’s look at some specific values of load impedance 𝑍𝐿= 𝑅𝐿 + 𝑗𝑋𝐿
and see what functions 𝑍(𝑧) and Γ(𝒛) result!
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Special Termination Conditions (contd.) 

• 𝒁𝑳 = 𝒁𝟎

z = 0

ZL=Z0

z = -l

0

Z0

0
0

0

0L

L

Z Z

Z Z


  


The load reflection coefficient:

means no reflected 
wave V–(z) 

0( )Z z ZThe impedance at position z:

reflection coefficient 
is zero at all points 

along the line

The line impedance equals Z0

→ matched condition

Matched Line the load impedance equals the 
characteristic impedance of the TL
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Special Termination Conditions (contd.) 

• 𝒁𝑳 = 𝟎 Short-Circuited Line A device with no load is 
called short circuit

ZL =0

z = 0z =-l

0

Z0

l

0( ) tan( )Z z jZ z 

Short-circuit entails setting 
this impedance to zero

Alternatively

0

2
( ) tan

z
Z z jZ





 
   

 

0LR  0LX 

0
0

0

0
1

0

Z

Z


   



Note that this impedance is purely reactive. This means that the current and 
voltage on the transmission line will be everywhere 90° out of phase.
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Special Termination Conditions (contd.) 

0

0

2
( ) cos( )

V
I z z

Z





0 0( ) 2 sin( )j z j zV z V e e j V z          

• The current and voltage along the TL is:

• Short-Circuited Line

• Finally, the reflection coefficient function is:

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  


     Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave!

• Short-Circuited Line:
0( ) tan( )Z l jZ l 
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Special Termination Conditions (contd.) 

• Short-Circuited Line
0( ) tan( )Z l jZ l 

Zin

 lπ/2 3π/2

inductive

capacitive

5π/2

3 5
0

4 2 4 4

   
 d

0

It can be observed:
• At -l=0, the impedance is zero

(short-circuit condition)
• Increase in -l leads to inductive

behavior
• At -l=λ/4, the impedance equals

infinity (open-circuit condition)

• Further increase in -l leads to
capacitive behavior

• At -l=λ/2, the impedance

becomes zero (short-circuit

condition)

• The entire periodic sequence

repeats for -l>λ/2 and so on…
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Example – 3 

For a short-circuited TL of l = 10 cm, compute the magnitude of the input
impedance when the frequency is swept from f = 1 GHz to 4 GHz. Assume the
line parameters L = 209.4 nH/m and C = 119.5 pF/m.

Solution:

0 / (209.4*0.1) / (119.5*0.5) 41.86Z L C   

81 1
1.99*10 /

(209.4*0.1) *(119.5*0.5) 41.86
pv m s

LC
  

 

0 0

2
( ) tan( ) tan

p

f
Z z l jZ l jZ l

v




 
      

 

Set l = 10 cm and then write a MATLAB program to obtain the Zin curve

Compare the MATLAB results to that obtained from ADS simulation
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Special Termination Conditions (contd.) 

• 𝒁𝑳 → ∞ Open-Circuited Line A device with infinite 
load is called open-circuit

LR   LX  

ZL → ∞

z = 0z = -l

Z(-l)

0

Z0

l

0( ) cot( )Z l jZ l  

Open-circuit entails 
setting this impedance 

to infinite

Alternatively
0

2
( ) cot

l
Z l jZ





 
    

 

0
0

0

1L

L

Z Z

Z Z


  



Again note that this impedance is purely reactive. current and voltage on 
the transmission line are  90° out of phase.
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0 0( ) 2 cos( )j z j zV z V e e V z         
0

0

2
( ) sin( )

V
I z j z

Z




 

• The current and voltage along the TL is:

• Open-Circuited Line

• Finally, the reflection coefficient function is:

20

0

( )
( )

( )

j z
j z

j z

V z V e
z e

V z V e






  

  
    Γ(𝑧) = 1 ( ) ( )V z V z 

In other words, the magnitude of each wave on the transmission line 
is the same—the reflected wave is just as big as the incident wave!

Special Termination Conditions (contd.) 

• At the load, 𝑧 = 0, therefore:
0(0) 2V V  (0) 0I 

As expected, the current is zero at the end of the transmission line (i.e. the 
current through the open). Likewise, the voltage at the end of the line (i.e., the 

voltage across the open) is at a maximum!
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Special Termination Conditions (contd.) 

0( ) cot( )Z l jZ l  

It can be observed:
• At -l=0, the impedance is

infinite (open-circuit condition)
• Increase in -l leads to capacitive 

behavior 
• At -l = λ/4, the impedance equals

zero (short-circuit condition)

• Further increase in -l leads to
inductive behavior

• At -l=λ/2, the impedance

becomes infinite (open-circuit

condition)

• The entire periodic sequence

repeats for -l >λ/2 and so on…

Zin

π 2π 3π

inductive

capacitive

l

3 5
0

4 2 4 4

   


0

• Open-Circuited Line
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Transmission Line Input Impedance 
Q: Just what do you mean by input impedance?

Note 𝑍𝑖𝑛 equal to neither the load impedance 𝑍𝐿 nor the characteristic 
impedance 𝑍0!

𝑍𝑖𝑛 ≠ 𝑍𝐿 𝑍𝑖𝑛 ≠ 𝑍0

( )
( )

( )
in

V z l
Z Z z l

I z l

 
   

 

A: The input impedance is simply the line
impedance seen at the beginning (𝒛 = −𝒍)
of the transmission line, i.e.:

• We know the line impedance of a
lossless TL loaded with an
arbitrary load impedance is:

0
0

0

cos( ) sin( )
( )

cos( ) sin( )

L

L

Z z jZ z
Z z Z

Z z jZ z

 

 






The input impedance can be radically 
different from load impedance (ZL) and 

you should commit it to memory
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• For a transmission line of half wavelength long the input impedance equals
the load impedance irrespective of the characteristic impedance of the line

• It means it is possible to design a circuit segment where the transmission
line’s characteristic impedance plays no role (obviously the length of line
segment has to equal half wavelength at the operating frequency)

Transmission Line Input Impedance – Special Cases  

ZLβ, Z0

l = λ/2

in LZ Z

1. length of the line is l = m(λ/2)

0

0

0

2
tan .

2
( / 2)

2
tan .

2

L

in L

L

Z jZ

Z Z z Z Z

Z jZ

 




 



 
  

    
 

  
 
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Transmission Line Input Impedance – Special Cases (contd.)  
2. length of the line is l = λ/4 or λ/4 + m(λ/2) 

• This result implies that a transmission line segment can be used to
synthesize matching of any desired real input impedance (Zin) to the
specified real load impedance (ZL)

λ/4

ZL

LZ Given

inZ Desired

0 L inZ Z Z

This is known as 
quarter-wave 

impedance 
transformer

20

0
0

0

2
tan .

4
( / 4)

2
tan .

4

L

in

L
L

Z jZ
Z

Z Z l Z
Z

Z jZ

 




 



 
  

    
 

  
 
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ZL=0β, Z0

l = λ/4

inZ 

2. length of the line is l = λ/4 or λ/4 + m(λ/2) 

Transmission Line Input Impedance – Special Cases (contd.)  

Zin = ∞ ! This is an open circuit ! The quarter wave TL transforms a 
short-circuit into open-circuit and vice-versa 

2

0
in

L

Z
Z

Z


input impedance of a quarter-wave line is inversely 
proportional to the load impedance

→ Think about what this means! Say the
load impedance is a short circuit then:

2 2

0 0

0
in

L

Z Z
Z

Z
   
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• Consider a load resistance 𝑅𝐿 = 100Ω to be matched to a 50Ω line with a
quarter-wave transformer. Find the characteristic impedance of the
matching section and plot the magnitude of the reflection coefficient

versus normalized frequency,  𝑓 𝑓0
, where 𝑓0 is the frequency at which the

line is λ/4 long.

Example – 4 

• the necessary characteristic impedance is:

0 L inZ Z Z
0 50 100 70.71L inZ Z Z     

𝑍𝑖𝑛 is dependent on frequency

• The reflection coefficient magnitude is given as

0
0

0

in

in

Z Z

Z Z


 


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Example – 4 (contd.) 

0
0

0

tan
( / 4)

tan

L
in

L

Z jZ l
Z Z l Z

Z jZ l







  



0

0 0

2 2

4 4 2

p

p

vf f
l

v f f

  




    
             

For higher frequencies the matching section looks electrically 
longer, and for lower frequencies it looks shorter.

Plot the magnitude of the reflection coefficient 

versus  𝑓 𝑓0
using these two equations
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