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• Filter Phase Function
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Filters
• Microwave filter → A two-port microwave network that allows source

power to be transferred to a load as an explicit function of frequency.
• RF/microwave filter is (typically) a passive, reciprocal, 2-port linear device.

Filter
Pinc Pout

If port 2 of this device is 
terminated in a matched 
load, then we can relate 
the incident and output 

power as:

2

21out incP S PWe define this power transmission 
through a filter in terms of the power 

transmission coefficient T:

2

21
out

inc

P
T S

P


As microwave filters 
are typically passive

0 1T  out incP P
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Filters (contd.) 

Q: What happens to the “missing” power Pinc −Pout?

• Thus, by conservation of energy:
inc r abs outP P P P  

• Now ideally, a microwave filter is 
lossless, therefore Pabs = 0 and: inc r outP P P 

Pabs

Filter

Pinc Pout

Pr

A: Two possibilities: the power
is either absorbed (Pabs) by the
filter (converted to heat), or is
reflected (Pr) at the input port.

• Alternatively we can write:

inc r out

inc inc

P P P

P P


 1 r out

inc inc

P P

P P
  1 T  

lossless 
filter
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Filters (contd.) 

In the last
expression:

out

inc

P
T

P
 Transmission Coefficient

2

11
r

inc

P
S

P
  Power Reflection Coefficient

• Therefore, another way of saying a 2-port lossless
device can be:

2 2

11 211 S S 

• Now, here’s the important part! → For a microwave filter, the coefficients
Γ and Τ are functions of frequency! i.e.,:

   T  The behavior of a microwave filter is 
described by these functions!

• We find that for most signal frequencies ωs, these functions will have a
value equal to one of two different approximate values.
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• Either:

  0s      1sT   

Filters (contd.) 

In this case, the signal frequency ωs is said to lie in the 
pass-band of the filter. Almost all of the incident signal 

power will pass through the filter.

or   1s      0sT   

In this case, the signal frequency ωs is said to lie in the stop-band of the 
filter. Almost all of the incident signal power will be reflected at the 

input—almost no power will appear at the filter output. 
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• Consider then these four types of functions of Γ(ω) and Τ(ω):

Filters (contd.) 

Note for this filter:

Τ(ω)=

1 c 

0 c 

Γ(ω)=

0 c 

1 c 

This filter is a low-pass type, as it “passes” signals with frequencies less 
than ωc, while “rejecting” signals at frequencies greater than ωc.

1. Low Pass Filter 

𝝎 𝝎

𝝎𝒄 𝝎𝒄

1 1
Τ(ω) Γ(ω)
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A: Frequency 𝜔𝑐 is a filter parameter known as the cutoff frequency; a value
that approximately defines the frequency region where the filter pass-band
transitions into the filter stop band.

Filters (contd.) 

• Accordingly, this frequency is defined as the frequency where the power
transmission coefficient is equal to 1/2:

  0.5cT   

• Note for a lossless filter, the cutoff frequency is likewise the value where
the power reflection coefficient is 1/2:

  0.5c   

Q: This frequency 𝜔𝑐 seems to be very 
important! What is it?
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Filters (contd.) 

Note for this filter:

Τ(ω)=

0 c 

1 c 

Γ(ω)=

1 c 

0 c 

This filter is a high-pass type, as it “passes” signals with frequencies greater 
than ωc , while “rejecting” signals at frequencies less than ωc.

2. High - Pass  Filter 

𝝎

𝝎𝒄

1
Τ(ω) Γ(ω)

1

𝝎

𝝎𝒄
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Filters (contd.) 
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Note for this filter:

Τ(ω)=
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• This filter is a band-pass type, as it “passes” signals within a frequency
bandwidth Δω, while “rejecting” signals at all frequencies outside this
bandwidth.

• In addition to filter bandwidth Δω, a fundamental parameter of bandpass
filters is ω0, which defines the center frequency of the filter bandwidth.

3. Band - Pass  Filter 

𝝎

𝝎𝟎

1
Τ(ω) Γ(ω)

1

𝝎
𝝎𝟎

∆𝝎∆𝝎
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Filters (contd.) 

Note for this filter:

Τ(ω)=

0
0

2
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Γ(ω)=
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This filter is a band-stop type as it “rejects” signals within a 
frequency bandwidth Δω, while “passing” signals at all 

frequencies outside this bandwidth.

4. Band - Stop  Filter 

𝝎
𝝎𝒄

1
Τ(ω) Γ(ω)

1

𝝎
𝝎𝒄

∆𝝎∆𝝎
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The Filter Phase Function

Q: I see, we only care about the magnitude of complex function S21(ω) when
using microwave filters !?

• Recall that the power transmission coefficient Τ(ω) can
be determined from the scattering parameter S21(ω):

   
2

21T S 

where the phase is denoted as ∠S21(ω) :  
 

1 21

21

21

Im ( )
( ) tan

Re ( )

S
S

S







 

   
 

We therefore care very much about this phase function!

    21 ( )

21 21

j SS S e          21 21 21Re ImS S j S   

A: Hardly! Since S21(ω) is complex, it can be expressed in terms of its
magnitude and phase:
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Q: Just what does this phase tell us?
A: It describes the relative phase between the wave incident on the input to
the filter, and the wave exiting the output of the filter (given the output port is
matched).

The Filter Phase Function (contd.)

• In other words, if the incident wave is:
1 1 01( ) j zV z V e   

We say that there has been a “phase shift” of ∠S21(ω)
between the input and output waves.

• Then the exiting (output) wave will be:

2

2 1 02( ) j zV z V e  
 212

21 01 21 01

j z Sj zS V e S V e
    

Q: What causes this phase shift?
A: Propagation delay. It takes some non-zero amount of time for signal energy
to propagate from the input of the filter to the output.

Q: Can we tell from ∠S21(ω) how long this delay is?
A: Yes!
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The Filter Phase Function (contd.)
• To see how, consider an example two-port network (filter) with the

impulse response:
( ) ( )h t t  

• We just identified that this device would merely delay an input signal (say
by some amount τ ):

( ) ( ') ( ') 'out inv t h t t v t dt





  ( ' ) ( ') 'int t v t dt 




   ( )inv t  

𝑣(𝑡)

𝑣𝑖𝑛(𝑡) 𝑣𝑜𝑢𝑡 𝑡 = 𝑣𝑖𝑛(𝑡 − 𝜏)

𝒕
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• Now if we take the Fourier transform of this impulse response, then
frequency response of this two-port network is:

The Filter Phase Function (contd.)

( ) ( ) j tH h t e dt






  ( ) j tt e dt 






  j te 

• In other words: ( ) 1H   ( )H    

The interesting result here is the phase ∠H(ω). The result means that a 
delay of τ seconds results in an output “phase shift” of −ωτ radians!

Note that although the delay of device is a constant τ, the phase shift is a 
function of ω → in fact, it is directly proportional to frequency ω.

• Note if the input signal for this device was of the form: ( ) cosinv t t
• Then the output would be:

( ) cos ( )outv t t   ( ) cos( )outv t t  
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The Filter Phase Function (contd.)

Thus, we could either view the signal vin(t) = cosωt as being delayed by an 
amount τ seconds, or phase shifted by an amount −ωτ radians.

Q: Then by measuring the output signal
phase shift ∠H(ω), we could determine the
delay τ through the device with the equation:

right?
( )H 





 

A: Not exactly. The problem is that we cannot unambiguously determine the
phase shift ∠H (ω) = −ωτ by looking at the output signal!

• The reason is that cos(ωt + ∠H(ω)) = cos(ωt + ∠H(ω) + 2π) = cos(ωt +
∠H(ω) − 4π ), etc. More specifically:

where n is any integer —positive or negative. We can’t tell which of these
output signal we are looking at!

cos( ( )) cos( ( ) 2 )t H t H n       
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The Filter Phase Function (contd.)

• Thus, any phase shift measurement has an inherent ambiguity. Typically,
we interpret a phase measurement (in radians) such that:

( )H      0 ( ) 2H   or

But almost certainly the actual value of ∠H(ω) = −ωτ is nowhere near 
these interpretations!
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The Filter Phase Function (contd.)

would not get us the correct
result in this case—after all,
there will be several frequencies
ω with exactly the same
measured phase ∠H (ω )!

Clearly using the equation:

( )H 





 

∠H(ω) 

𝜋

−𝜋

−ωτ

Measured Phase Shift 
∠𝑯 𝝎 ≠ −𝝎𝝉

Q: So determining the delay τ is impossible?
A: NO! It is entirely possible—we simply must find the correct method.

𝝎

Looking at the plot, this method should become apparent. Note that 
although the measured phase (blue curve) is definitely not equal to the 

phase function −ωτ (red curve), the slope of the two are identical at every 
point!



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Q: What good is knowing the slope of these functions?

The Filter Phase Function (contd.)

The slope directly tells us the propagation delay!

( )




 
 



A: Just look! Recall that we can determine the slope
by taking the first derivative:

• Thus, we can determine the propagation delay of this
device by:

( )H 





 



where ∠H(ω) can be the measured phase. Of course, the method requires 
us to measure ∠H(ω) as a function of frequency (i.e., to make 

measurements at many signal frequencies).
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Q: Now I see! If we wish to determine the propagation delay τ through some
filter, we simply need to take the derivative of ∠S21(ω) with respect to
frequency. Right?
A: Well, sort of!

• Recall for the example case that h(t) = δ(t −τ) and ∠H(ω) = −ωτ, where τ is
a constant. For a microwave filter, neither of these conditions are true.

• Specifically, the phase function ∠S21(ω) will typically be some arbitrary
function of frequency (∠S21(ω) ≠ −ωτ ).

The Filter Phase Function (contd.)

Q: How could this be true? I thought you said that phase shift was due to filter
delay τ!
A: Phase shift is due to device delay, it’s just that the propagation delay of
most devices (such as filters) is not a constant, but instead depends on the
frequency of the signal propagating through it!

In other words, the propagation delay of a filter is typically some arbitrary 
function of frequency (i.e., τ(ω)). That’s why the phase ∠S21(ω) is likewise 

an arbitrary function of frequency.
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Q: Yikes! Is there any way to determine the relationship between these two
arbitrary functions?

The Filter Phase Function (contd.)

This result  τ(ω) is also known as phase delay, 
and is very important function to consider 

when designing/specifying/selecting a 
microwave filter

21( )
( )

S 
 




 



A: Yes there is! Just as before, the two can be related by:

Q: Why; what might happen if we don`t consider?
A: If you get a filter with wrong τ(ω), your output signal could be horribly
distorted – distorted by the evil effects of signal dispersion.
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Filter Dispersion

Any signal that carries significant information must have some non-
zero bandwidth. In other words, the signal energy (as well as the
information it carries) is spread across many frequencies.

If the different frequencies that comprise a signal propagate at
different velocities through a microwave filter (i.e., each signal
frequency has a different delay τ ), the output signal will be
distorted. We call this phenomenon signal dispersion.

Q: I see! The phase delay τ(ω) of a filter must be a constant with respect to
frequency—otherwise signal dispersion (and thus signal distortion) will result.
Right?
A: Not necessarily! Although a constant phase delay will insure that the
output signal is not distorted, it is not strictly a requirement for that happy
event to occur.

This is a good thing, for as we shall latter see, building a good filter with 
a constant phase delay is very difficult!
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𝑉(𝜔) 2

2𝜋𝐵𝑠

𝜔𝑠
𝜔

• For example, consider a modulated
signal with the following frequency
spectrum, exhibiting a bandwidth
of Bs Hertz.

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2
𝜏(𝜔)

• Now, let’s likewise plot the
phase delay function τ(ω) of
some filter:

Filter Dispersion (contd.)

In this case the filter phase 
delay is nowhere near a 
constant with respect to 

frequency.

However, this fact alone does not necessarily mean that our signal would suffer 
from dispersion if it is passed through this filter. Indeed, the signal in this case 

would be distorted, but only because the phase delay τ(ω) changes significantly 
across the bandwidth Bs of the signal.
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• Conversely, consider this phase delay:

Filter Dispersion (contd.)

As with the previous case, the 
phase delay of the filter is not 

a constant. Yet, if this signal 
were to pass through this filter, 

it would not be distorted!

The reason for this is that the phase delay across the signal bandwidth is 
approximately constant—each frequency component of the signal will 

be delayed by the same amount.

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)
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• Compare this to the previous case, where the phase delay changes by a
precipitous value ∆τ across signal bandwidth Bs:

Filter Dispersion (contd.)

Now this is a case 
where dispersion will 

result!

Q: So does ∆𝝉 need to be precisely zero for no signal distortion to occur, or
is there some minimum amount ∆𝝉 that is acceptable?

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)

∆𝜏

1s  

A: Mathematically, we find that dispersion will be insignificant if:
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• A more specific (but subjective) “rule of thumb” is:

Filter Dispersion (contd.)

5
s


  

• Or, using 𝜔𝑠 = 2𝜋𝑓𝑠: 0.1sf  

Generally speaking, we find for wideband filters—where filter bandwidth 
B is much greater than the signal bandwidth (i.e.,B >>Bs )—the above 

criteria is easily satisfied. In other words, signal dispersion is not typically 
a problem for wide band filters (e.g., pre-select filters).

This is not to say that τ(ω) is a constant for wide band filters. Instead, 
the phase delay can change significantly across the wide filter 

bandwidth.
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• What we typically find however, is
that the function τ(ω) does not
change very rapidly across the wide
filter bandwidth. As a result, the
phase delay will be approximately
constant across the relatively narrow
signal bandwidth Bs.

Filter Dispersion (contd.)

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2

𝜏(𝜔)

• Conversely, a narrowband filter –
where filter bandwidth B is
approximately equal to the signal
bandwidth (i.e., 𝐵𝑠 = 𝐵) – can (if we
are not careful!) exhibit a phase delay
which changes significantly over filter
bandwidth B. This means that the
delay also changes significantly over
the signal bandwidth 𝐵𝑠.

Thus, a narrowband filter (e.g., IF Filter) must exhibit a near constant phase 
delay τ(ω) in order to avoid distortion due to signal dispersion. 

2𝜋𝐵𝑠

𝜔𝑠

𝜔

𝑉(𝜔) 2𝜏(𝜔)
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The Linear Phase Filter
Q: So, narrowband filters should exhibit a constant phase delay τ(ω). What
should the phase function ∠S21(ω) be for this dispersionless case?

• Recall that the definition of phase delay is: 21( )
( )

S 
 




 



• Thus combining these two equations, we
find ourselves with a differential equation:

21( )
c

S 





 



The solution to this differential equation provides us with the necessary 
phase function ∠S21(ω) for a constant phase delay τc.

Fortunately, this differential equation can be easily solved!

where τc is some constant.( ) c  

A: We can express this problem mathematically as:
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The Linear Phase Filter (contd.)

• The solution is: where φc is an arbitrary constant.
21( ) c cS      

Filters with such phase response are called linear phase filters, and 
have the desirable trait that cause no dispersion distortion.

• Plotting this phase function (with φc =0 ):
∠H(ω) 

𝜋

−𝜋

−𝝉𝒄
0

𝜔

As you rightly 
expected, this phase 

function is linear, 
such that it has 

constant slope (−𝜏𝑐)
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The Insertion Loss Method

• Recall that a lossless filter can be described in terms of either its
power transmission coefficient Τ(ω) or its power reflection
coefficient Γ(ω), as the two values are completely dependent:

• Ideally, these functions would be quite simple:

1. Τ(ω) = 1 and Γ(ω) = 0 for all frequencies within the passband.

2. Τ (ω) = 0 and Γ (ω) = 1 for all frequencies within the stopband.

( ) 1 ( )T   

• For example, the
ideal low-pass filter
would be:

𝝎
𝝎𝒄

Τ(ω) Γ(ω)

𝝎
𝝎𝒄

• Add to this a linear phase response, and you have the perfect microwave filter!

• There’s just one small problem with this perfect filter → It’s impossible to build!
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• Now, if we consider only possible (i.e., realizable) filters, we must limit
ourselves to filter functions that can be expressed as finite polynomials of
the form:

The Insertion Loss Method (contd.)

2

1 2

2 2

1 2

...
( )

...

o

N

o N

a a a
T

b b b b

 


  

  


   

The order N of the 
(denominator) polynomial is 

likewise the order of the filter.

• Instead of the power transmission coefficient, we often use an equivalent
function (assuming lossless) called the power loss ratio PLR:

1

2

1

1 ( )
LR

P
P

P 




 

 

Note, PLR = ∞ when Γ(ω) = 1, and 
PLR =1 when Γ(ω) = 0.

• We likewise note that, for a lossless filter:
1

( )
LRP

T 


• Therefore PLR(dB) is: 10 10( ) 10log 10log ( )LR LRP dB P T   

→ 𝑰𝒏𝒔𝒆𝒓𝒕𝒊𝒐𝒏 𝑳𝒐𝒔𝒔
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The Insertion Loss Method (contd.)

The power loss ratio in dB is simply the insertion loss of a lossless 
filter, and thus filter design using the power loss ratio is also called 

the Insertion Loss Method.

• We find that realizable filters will have a power loss ratio of the form:

2

2

( )
( ) 1

( )
LR

M
P

N





  where M(ω2) and N(ω2) are polynomials 

with terms ω2,ω4,ω6,etc.

By specifying these polynomials, we specify the frequency behavior of a 
realizable filter. Our job is to first choose a desirable polynomial!

• There are many different types of polynomials that result in good filter
responses, and each type has its own set of characteristics.

• The type of polynomial likewise describes the type of microwave filter.
Let’s consider three of the most popular types.
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1. Elliptical: These filters have three primary characteristics:

a) They exhibit very steep “roll-off”,
meaning that the transition from
pass-band to stop-band is very rapid.
b) They exhibit ripple in the pass-
band, meaning that the value of Τ
will vary slightly within the pass-
band.
c) They exhibit ripple in the stop-
band, meaning that the value of Τ
will vary slightly within the stop-
band.

The Insertion Loss Method (contd.)

𝝎

Τ(ω)
1

We can make the roll-off steeper by accepting more 
ripple.
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2. Chebychev: These filters are also known as equal-ripple filters, and have
two primary characteristics

The Insertion Loss Method (contd.)

a) Steep roll-off (but not as
steep as Elliptical).

b) Pass-band ripple (but not
stop-band ripple).

We likewise find that the roll-off can be made 
steeper by accepting more ripple.

• The Chebychev low-pass filters have a power loss ratio equal to:

2 2( ) 1LR N

c

P k T





 
   

 

where k specifies the passband ripple, 
TN(x) is a Chebychev polynomial of 

order N, and ωc is the low-pass cutoff
frequency.

𝝎

Τ(ω)

1
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3. Butterworth
Also known as maximally flat filters, they have two primary characteristics
a) Gradual roll-off

b) No ripple—not anywhere.

where ωc is the low-pass cutoff
frequency, and N specifies the order of 

the filter.

The Insertion Loss Method (contd.)

• The Butterworth low-pass filters
have a power loss ratio equal to:

2

( ) 1

N

LR

c

P





 
   

 

𝝎

Τ(ω)

1
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Q: So we always choose elliptical filters; since they have the steepest roll-off,
they are closest to ideal—right?
A: Ooops! I forgot to talk about the phase response ∠S21(ω) of these filters.
Let’s examine ∠S21(ω) for each filter type before we pass judgment.

The Insertion Loss Method (contd.)

Butterworth ∠S21(ω)      →   Close to linear phase 
Chebyshev ∠S21(ω)         → Not very linear 
Elliptical ∠S21(ω) →    A big non-linear mess!

• Thus, it is apparent that as the filter roll-off improves, the phase response
gets worse (watch out for dispersion!).

→ There is no such thing as the “best” filter type!

Q: So, a filter with perfectly linear phase is impossible to construct?
A: No, it is possible to construct a filter with near perfect linear phase—but it
will exhibit a horribly poor roll-off!
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• Now, for any type of filter, we can improve roll-off (i.e., increase stop-band
attenuation) by increasing the filter order N. However, be aware that
increasing the filter order likewise has these deleterious effects:

1. It makes phase response ∠S21(ω) worse (i.e., more nonlinear).
2. It increases filter cost, weight, and size.
3. It increases filter insertion loss (this is bad).
4. It makes filter performance more sensitive to temperature,

aging, etc.

The Insertion Loss Method (contd.)

From a practical viewpoint, the order of a filter should
typically be kept to N < 10.
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The Insertion Loss Method (contd.)

Q: So how do we take these polynomials and make real filters

Filter Realizations Using Lumped Elements

• Our first filter circuit will be “realized” with lumped elements.
• Lumped elements—we mean inductors L and capacitors C !
• Since each of these elements are (ideally) perfectly reactive, the resulting

filter will be lossless (ideally).

1. Form a general circuit structure with several degrees of design
freedom.

2. Determine the general form of the power loss ratio for these circuits.
3. Use the degrees of design freedom to equate terms in the general

form to the terms of the desired power loss ratio polynomial.

A: Similar to matching networks and couplers, we:  
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Filter Realizations Using Lumped Elements (contd.)
• Let us first consider two configurations of a ladder circuit:

Note that these two structures provide a low-pass filter response (evaluate 
the circuits at ω = 0 and ω = ∞!).

Moreover, these structures have N different reactive elements (i.e., N 
degrees of design freedom) and thus can be used to realize an N-order 

power loss ratio.
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Filter Realizations Using Lumped Elements (contd.)

• Recall this is a low-pass function, as 𝑃𝐿𝑅 = 1 at ω = 0, and 𝑃𝐿𝑅 = ∞ at 𝜔 =
∞. Note also that at 𝜔𝑐 = 𝜔:

2

( ) 1 2

N

c
LR c

c

P


 


 
    

 

• For example, consider the Butterworth power
loss ratio function:

2

( ) 1

N

LR

c

P





 
   

 

1( ) ( )
2c cT       

Thus

In other words, ωc defines the 3dB bandwidth of the low-pass filter.
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• Likewise, we find that this Butterworth function is maximally flat at ω = 0:

• Now, we can determine the function PLR(ω) for a lumped element ladder
circuit of N elements using our knowledge of complex circuit theory.

• Then, we can equate the resulting polynomial to the maximally flat
function above. In this manner, we can determine the appropriate values
of all inductors L and capacitors C!

• Finding these L an C requires little bit of complex algebra.
• Pozar provides tables of complete Butterworth and Chebychev low-pass

solutions.

Filter Realizations Using Lumped Elements (contd.)

2

0
( 0) 1 1
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and:
0
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| 0
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n
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d





  For all n
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Filter Realizations Using Lumped Elements (contd.)
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Filter Realizations Using Lumped Elements (contd.)
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Insertion Loss Method 

Attenuation versus Normalized Frequency 
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Example – 1 

A maximally flat low-pass filter is to be designed with a cut-off frequency of
8GHz and a minimum attenuation of 20dB at 11GHz. How many filter
elements are required?

We have: 

112 1 1 0.375
2 8c




 
   

N=8
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Example – 2 

Design a maximally flat low-pass filter with a cut-off frequency of 2GHz,
impedance of 50Ω and at least 15dB insertion loss at 3GHz.

• First, find the required order of the maximally flat filter to satisfy the
insertion loss specification at 3GHz.

• We have:

32 1 1 0.5
2 2c




 
   

• It is apparent that  N =5 will be sufficient. 

• From the table we get: 𝑔1 = 0.618, 𝑔2= 1.618, 𝑔3= 2.000, 𝑔4=
1.618, 𝑔5 = 0.618.
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Example – 2 (contd.) 

• The Analysis of N-element filters give:

• The elements are therefore:

2 6.438L nH1 0.984C pF 3 3.183C pF 4 6.438L nH 5 0.984C pF

s
n n

c

R
L g



 
  

 

1
n n

s c

C g
R
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Q: What?! What the heck do these values gn mean?
A: We can use the values gn to find the values of inductors and capacitors
required for a given cutoff frequency ωc and source resistance Rs (Z0).

Filter Realizations Using Lumped Elements (contd.)

• Specifically, we use the values of gn to find ladder circuit inductor and
capacitor values as:

where n =1,2,…,Ns
n n

c

R
L g



 
  

 

1
n n

s c

C g
R

 
  

 

• Likewise, the value gN+1 describes the load impedance.
Specifically, we find that if the last reactive element (i.e.,
gN) of the ladder circuit is a shunt capacitor, then:

1L N sR g R

• Whereas, if the last reactive element (i.e., gN) of the
ladder circuit is a series inductor, then:

1

s
L

N

R
R

g 
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Filter Realizations Using Lumped Elements (contd.)
• Note, however, for the Butterworth solutions (in Table 8.3) we find that

gN+1=1 always, and therefore:

L sR R Regardless of the last element 

• Moreover, we note (in Table 8.4) that this (i.e., gN+1=1) is likewise true for
the Chebyshev solutions – provided that N is odd.

• Thus, we typically desire a filter where:

0L sR R Z  We can use any order of Butterworth filter, or an 
odd order of Chebyshev. 

In other words, avoid even order Chebyshev filters!

Q: OK, so we now have the solutions for Chebychev and Butterworth low-
pass filters. But what about high-pass, band-pass, or band-stop filters?
A: Surprisingly, the low-pass filter solutions likewise provide us with the
solutions for any and all high-pass, band-pass and band-stop filters! All we
need to do is apply filter transformations.
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Filter Transformations

We can use the concept of filter transformations to determine the new 
filter designs from a low-pass design. As a result, we can construct a 

3rd-order Butterworth high-pass filter or a 5th-order Chebychev band-
pass filter!

It will be apparent that the mathematics for each filter design will be very 
similar. For example, the difference between a low-pass and high-pass filter 

is essentially an inverse—the frequencies below ωc are mapped into 
frequencies above ωc —and vice versa.

It is evident that:

( 0) T ( ) 1lp hpT      

( ) T ( 0) 0lp hpT      
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• However:

Filter Transformations (contd.)

( ) T ( ) 0.5lp c hp cT       

where α is some positive, real value (i.e., 0 ≤α < ∞).

• Therefore, we can express:
1

( ) T ( )lp c hp cT    


  

• For example, if α = 0.5, then: ( 0.5 ) T ( 2 )lp c hp cT      

In other words, the transmission through a low-pass filter at one half the 
cut-off frequency will be equal to the transmission through a 

(mathematically similar) high-pass filter at twice the cut-off frequency.
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• Now, recall the loss-ratio functions for Butterworth and Chebychev low-
pass filters:

Filter Transformations (contd.)

2

( ) 1

N

lp

LR

c

P





 
   

 

2 2( ) 1lp

LR N

c

P k T





 
   

 

• Note in each case that the argument of the function has the form:
c




In other words, the frequency is normalized by the cut-off 

frequency.

• Consider now this mapping: c

c



 
 

• This mapping transforms the low-pass filter response into a
corresponding high pass filter response! i.e.:

2

( ) 1

N

hp c
LRP






 
   

 

2 2( ) 1hp c
LR NP k T
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Q: Yikes! Where did this mapping come from? Are sure this works?

Filter Transformations (contd.)

Consider again the case where ω =αωc; the low pass responses are:

 
2

( ) 1
Nlp

LRP     2 2( ) 1lp

LR NP k T  

Now consider the high-pass responses where ω =-ωc/α:

 
2

( ) 1
Nhp

LRP     2 2( ) 1hp

LR NP k T  

• Thus, we can conclude from this mapping that:

( ) ( / )lp hp

LR c LR cP P       

• And since  𝑇 = 𝑃𝐿𝑅
−1
:

1
( ) T ( )lp c hp cT    


   

Exactly the result that we expected! 
Our mapping provides a method for 
transforming a low-pass filter into a 

high-pass filter!
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Q: OK Poindexter, you have succeeded in providing another one of your
“fascinating” mathematical insights, but does this “mapping” provide anything
useful for us engineers?
A: Absolutely! We can apply this mapping one component element (capacitor
or inductor) at a time to our low-pass schematic design, and the result will be
a direct transformation into a high-pass filter schematic.

Filter Transformations (contd.)

• Recall the reactance of an
inductor element in a low-
pass filter design is:

lp lp s
n n n n s

c c

R
jX j L j g jg R


 

 

   
     

   

• while that of a capacitor is:
1lp s c

n lp

n n

R
jX j

j C g



 

 
    

 

• Now apply the mapping: c

c
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• The inductor
becomes:

Filter Transformations (contd.)

 
1

1hp c n s c
n n s

n s c

g R
jX jg R j

j g R

 

   


 
     

 

• and the capacitor: hp s c s
n

n n c

R R
jX j j

g g




 

  
      

   

It is clear (do you see why?) that the transformation has converted a positive (i.e., 
inductive) reactance into a negative (i.e., capacitive) reactance—and vice versa.

1. Replace each inductor with a
capacitor of value:

2. Replace each capacitor with an
inductor of value:

• As a result, to transform a low-pass filter schematic into a high-pass filter
schematic, we:

2

1 1hp

n lp

n s c c n

C
g R L 

 

2

1hp s
n lp

n c c n

R
L

g C 
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Filter Transformations (contd.)

• Thus, a high-pass ladder circuit
consists of series capacitors and
shunt inductors (compare this to
the low-pass) ladder circuit!).

Q: What about band-pass filters?
A: The difference between a low-pass and band-pass filter is simply a shift in
the “center” frequency of the filter, where the center frequency of a low-pass
filter is essentially ω = 0.

• For this case, we find the mapping: 0

0

1

c

 

  

 
  

  

transforms a low-pass function into a band-pass 
function, where Δ is the normalized bandwidth:

2 1

0

 






ω1 and ω2 define the two 3dB frequencies of the bandpass filter.
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Filter Transformations (contd.)
• For example, the Butterworth 

low-pass function:
2

( ) 1

N

lp

LR

c

P





 
   

 

• becomes a Butterworth band-pass
function:

0

2

0

2

1
( ) 1

N

bp

LR N
P




 

 
   

   

• Applying this transform to the reactance of a low-pass inductive element: 

0

0 0

0

1 1bp n s
n n s

n s

g R
jX jg R j

j
g R




   


   
      

        
 

• Look what happened! The transformation turned the inductive reactance
into an inductive reactance in series with a capacitive reactance.

• A similar analysis of the transformation of the low-pass capacitive reactance
shows that it is transformed into an inductive reactance in parallel with an
capacitive reactance.
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• As a result, to transform a low-pass filter schematic into a band-pass filter
schematic, we:

Filter Transformations (contd.)

1. Replace each series inductor with
a capacitor and inductor in series,
with values: 0

1bp

n

n s

C
g R




0

bp s
n n

R
L g






2. Replace each shunt capacitor
with an inductor and capacitor in
parallel, with values: 0

1bp

n n

s

C g
R


0

1bp s
n

n

R
L

g 




• Thus, the ladder circuit for
band-pass circuit is simply a
ladder network of LC
resonators, both series and
parallel:
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Filter Implementations

Q: So, we now know how to make any and all filters with lumped elements—
but this is a RF/microwave engineering course!

A: There are many ways to make RF/microwave filters with distributed
elements. Perhaps the most straightforward is to “realize” each individual
lumped element with transmission line sections, and then insert these
approximations in our lumped element solutions.

You said that lumped elements where difficult to make and implement 
at high frequencies. You said that distributed elements were used to 

make microwave components. So how do we make a filter with 
distributed elements!?!

The first of these realizations is: Richard’s Transformations

To easily implement Richard’s Transforms in a microstrip or stripline
circuit, we must apply one of Kuroda’s Identities.


