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• Nodal Quality Factor 
• T- and Pi- Matching Networks
• Microstrip Matching Networks
• Series- and Shunt-stub Matching 
• Quarter Wave Impedance Transformer   
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Forbidden Region, Frequency Response, and Quality Factor

Self Study - Section 8.1.2 in the Text Book 

• The L-type matching networks can be considered as resonance circuits
with 𝑓0 being the resonance frequency.

• These networks can be described by a loaded quality factor, 𝑄𝐿, given by:

0
L

f
Q

BW


Similarity to 
bandpass filter

• However, analysis of matching circuit based on bandpass filter concept is
complex → In addition, it only allows approximate estimation of the
bandwidth.

• More simpler and accurate method is design and analysis through the use
of nodal quality factor, 𝑄𝑛.
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Nodal Quality Factor

• During L-type matching network analysis it was apparent that at each
node the impedance can be expressed in terms of equivalent series
impedance 𝑍𝑠 = 𝑅𝑠 + 𝑗𝑋𝑠 or admittance 𝑌𝑃 = 𝐺𝑃 + 𝑗𝐵𝑃 .

• Similarly,
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• The “nodal quality factor” and loaded quality factor are related as:
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True for any L-type matching network

For more complicated networks, QL = Qn
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• Therefore, at each node we can define 𝑄𝑛 as
the ratio of the absolute value of reactance
𝑋𝑠 to the corresponding resistance 𝑅𝑠.

• Bandwidth of the matching network can be easily estimated once the
“nodal quality factor” is known.
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Nodal Quality Factor (contd.)
• To simplify the matching network design process even further, we can

draw constant 𝑄𝑛 contours in the Smith chart.

• We know the Smith chart expression:
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• The expression for 𝑄𝑛: 
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 𝑸𝒏 circles!

𝑄𝑛 circles in the Smith chart help in direct 
determination of  𝑄𝐿.
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Nodal Quality Factor (contd.)
• Once you go through section 8.1.2, it will be apparent that quality factor of

matching network is extremely important.
• For example, broadband amplifier requires matching circuit with low-Q.

Whereas oscillators require high-Q networks to eliminate undesired
harmonics in the output signal.

• It will also be apparent that L-type matching networks have no control over
the values of 𝑄𝑛 → Limitation!!!

• To gain more freedom in choosing the values of Q or Qn, another element
in the matching network is incorporated → results in T- or Pi-network
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T- and Pi- Matching Networks 
• The knowledge of nodal quality factor (𝑄𝑛) of a network enables

estimation of loaded quality factor → hence the Band Width (BW).
• The addition of third element into the matching network allows control of
𝑄𝐿 by choosing an appropriate intermediate impedance.

Example – 1 
• Design a T-type matching network that transforms a load impedance ZL =

(60 – j30)Ω into a Zin = (10 + j20)Ω input impedance and that has a
maximum Qn of 3. Compute the values for the matching network
components, assuming that matching is required at f = 1GHz.

Solution
• Several possible configurations! Let us focus on just one!
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Example – 1 (contd.)

General Topology of a T-matching Network Gives the 
name T

• Similarly, Z3 (that is purely reactive!) is connected in series with the input,
therefore the combined impedance ZB (consisting of ZL, Z1, and Z2) lies on
the constant resistance circle r = rin

• Network needs to have a Qn of 3 → we should choose impedance in such a
way that ZB is located on the intersection of constant resistance circle r = rin

and Qn = 3 circle → helps in the determination of Z3

• First element in series (Z1) is purely reactive, therefore the combined
impedance of (ZL and Z1) will reside on the constant resistance circle of r = rL
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Example – 1 (contd.)

zL

zin

• The constant resistance circle of
zin intersects the 𝑄𝑛 = 3 circle at
point B. This gives value of 𝑍3.

• The constant resistance circle 𝑟 =
𝑟𝐿 and a constant conductance
circle that passes through B helps
in the determination of 𝑍2 and
𝑍1.

Final solution at 1 GHz
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Example – 2 
• For a broadband amplifier, it is required to develop a Pi-type matching

network that transforms a load impedance ZL = (10 – j10)Ω into an input
impedance of Zin = (20 + j40)Ω. The design should involve the lowest
possible Qn. Compute the values for the matching network components,
assuming that matching is required at f = 2.4GHz.

• Since the load and source impedances are fixed, we can’t develop a
matching network that has Qn lower than the values at locations ZL and Zin

• Therefore in this example, the minimum value of Qn is determined at the
input impedance location as Qn = |Xin|/Rin = 40/20 = 2

Solution
• Several Configurations possible (including the forbidden!). One such is below:

Z3

Z2

Z1
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Example – 2 (contd.) 

• In the design, we first plot
constant conductance circle g =
gin and find its intersection with
Qn=2 circle (point B) →
determines the value of Z3

• Next find the intersection point
(labeled as A) of the g=gL circle
and constant-resistance circle
that passes through B →
determines value of Z2 and Z1

zL

zin

Final solution at 2.4 GHz
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Example – 2 (contd.) 

• It is important to note that the relative positions of Zin and ZL allows only
one optimal Pi-type network for a given specification.

• All other realizations will result in higher Qn → essentially smaller BW!
• Furthermore, for smaller ZL the Pi-matching isn’t possible!

It is thus apparent that BW can’t be enhanced arbitrarily by reducing 
the 𝑄𝑛. The limits are set by the desired complex 𝑍𝑖𝑛 and  𝑍𝐿.

With increasing frequency and correspondingly reduced wavelength 
the influence of parasitics in the discrete elements are noticeable → 
distributed matching networks overcome most of the limitations (of 

discrete components) at high frequency   
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Microstrip Line Matching Networks 

• In the lower RF region, its often a standard practice to use a hybrid
approach that combines lumped and distributed elements.

• These types of matching circuits usually contain TL segments in series and
capacitors in shunt.

• Inductors are avoided in these designs as they tend to have higher resistive
losses as compared to capacitors.

• In principle, only one shunt capacitor with two TL segments connected in
series on both sides is sufficient to transform any given load impedance to
any input impedance.
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Microstrip Line Matching Networks (contd.) 

• Similar to the L-type matching network, these configurations may also
involve the additional requirement of a fixed Qn, necessitating additional
components to control the bandwidth of the circuit.

• In practice, these configurations are extremely useful as they permit
tuning of the circuits even after manufacturing → changing the values of
capacitors as well as placing them at different locations along the TL
offers a wide range of flexibility → In general, all the TL segments have
the same width to simplify the actual tuning →the tuning ability makes
these circuits very appropriate for prototyping.
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Example – 3 
Design a hybrid matching network that transforms the load ZL = (30 + j10) Ω to
an input impedance Zin = (60 + j80) Ω. The matching network should contain
only two series TL segments and one shunt capacitor. Both TLs have a 50Ω
characteristic impedance, and the frequency at which the matching is required
is f = 1.5 GHz

Solution

• Mark the normalized load impedance (0.6 + j0.2) on the Smith chart.
• Draw the corresponding SWR circle.
• Mark the normalized input impedance (1.2 + j1.6) on the Smith chart.
• Draw the corresponding SWR circle.
• The choice of the point from which we transition from the load SWR circle

to the input SWR circle can be made arbitrarily.
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Example – 3 (contd.) 
Normalized load 

to the point A 
gives length of 

the first segment 
of TL 

point B to 
normalized input 
impedance gives 

length of the 
second segment 

of TL 

A to B provides 
the necessary 
susceptance 
value for the 

shunt capacitor 
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Stub Matching Networks 

• The next logical step in the transition from lumped to distributed element
networks is the complete elimination of all lumped components → this
can be achieved by employing open – and/or short – circuited stub lines
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• Let us consider the following TL configuration with shunt stub.

Shunt-stub Matching Networks

The two design parameters of 
this matching network are 

lengths l and d.
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Shunt-stub Matching Networks (contd.) 

• An equivalent circuit for the shunt-tub TL can be: 

z = 0

stubjB ''

inY

Where:

0
0

0

" tan( )

tan( )

L
in

L

Y jY d
Y

Y jY
Y

d






 
 

  stubjB 

0 tan( )jY l

0 cot( )jY l

For open-stub

For short-stub
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Shunt-stub Matching Networks (contd.) 
• Therefore, for a matched circuit, we require:

0

''

stub injB Y Y

• Note this complex equation is actually two real equations!

 " 0Re inY Y  "Im 0stub injB Y  ''

stub inB B 

 ' ''' Im ii nn YB Where:

• Since 𝑌𝑖𝑛
" is dependent on d only, our design procedure is:

We have two choice, either Analytical or Smith chart for finding out 
the lengths d and l 
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Shunt-stub Matching Networks (contd.) 

Use of the Smith Chart to determine the lengths!

• Rotate clockwise around the Smith Chart from 𝑦𝑙 until you intersect the
𝒈𝒔=1 circle. The “length” of this rotation determines the value 𝒅. Recall
there are two possible solutions!

• Rotate clockwise from the short/open circuit point around the 𝒈 = 𝟎

circle, until 𝑏𝑠𝑡𝑢𝑏 equals −𝑏𝑖𝑛
". The “length” of this rotation determines

the stub length l.

Let us take the case where we want to match a load of ZL= (60−j80)Ω (at 2
GHz) to a transmission line of Z0 =50Ω.

Example – 4
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Example – 4 (contd.)

yL to y1 towards 
generator 

(clockwise) gives 
length d1 (first 

solution)

yL to y2 towards 
generator 

(clockwise) gives 
length d2 (second 

solution)

Solution

zL

yL

First intersection, y1

Second intersection, y2

(open)

𝒅𝟏

𝒅𝟐

𝒍𝟏

𝒍𝟐
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Example – 4 (contd.)

• Determine the respective admittances at the two intersection points
• These are of the form 1 + jx and 1 – jx
• Cancel these imaginary part of the admittances by introducing shunt-stubs

of length l1 and l2 respectively
• l1 and l2 are the lengths from open circuit point in the Smith chart (if open

stub is used) along the g = 0 circle until the achieved admittances are of
opposite signs to those at the intersection points in the earlier step
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Q: Two solutions! Which one do we use?

Example – 4 (contd.)

A: The one with the shortest lengths of transmission line!

Q: Oh, I see! Shorter transmission lines provide smaller and (slightly) cheaper
matching networks.

A: True! But there is a more fundamental reason why we select the solution
with the shortest lines—the matching bandwidth is larger!

• For example, consider the frequency response of the two solutions:

Clearly, solution 1 
provides a wider 

bandwidth!
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Series-stub Matching Networks 
• Consider the following transmission line structure, with a series stub:

where of course:

0
0

0

" tan( )

tan( )

L
in

L

Z jZ d
Z

Z jZ
Z

d






 
 

 

stubjX 

0 cot( )jZ l

0 tan( )jZ l

For open-stub

For short-stub

Therefore an 
equivalent 
circuit is:

stubjX
''

inZ
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Let us take the case where we want to match a load of ZL= (100 + j80)Ω (at 2
GHz) to a transmission line of Z0 =50Ω.

Example – 5
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Example – 2 (contd.)

zL

First 
intersection, z1

Second 
intersection, z2

𝑧𝑙 to 𝑧1 towards 
generator 

(clockwise) gives 
length d1 (first 

solution)

𝑧𝑙 to 𝑧2 towards 
generator 

(clockwise) gives 
length d2 (second 

solution)
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• Determine the respective impedances at the two intersection points and
these are of the form 1 + jx and 1 – jx

• Cancel these imaginary part of the impedances by introducing series-stubs
of length l1 and l2 respectively

• l1 and l2 are the lengths from open circuit point in the Smith chart (if open
stub is used) along the r = 0 circle until the achieved impedances are of
opposite signs to those at the intersection points in the earlier step

Example – 5 (contd.)
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Example – 5 (contd.)

Again, we should use the solution 
with the shortest transmission 
lines, although in this case that 

distinction is a bit ambiguous. As 
a result, the bandwidth of each 

design is about the same 
(depending on how you define 

bandwidth!).



Indraprastha Institute of 

Information Technology Delhi ECE321/521

Example – 6
For a load impedance of ZL= (60 – j45)Ω, design single-stub (shunt) matching
networks that transform the load to a Zin =(75 + j90)Ω input impedance.
Assume both the stub and transmission line have a characteristic impedance
of Z0 = 75Ω

Solution
• Normalize the ZL and Zin with 75Ω
• Mark these normalized impedances on the Z-Smith chart
• Move to Y-Smith chart or better use ZY-Smith chart 
• Plot constant conductance (gL) circle
• Plot SWR circle for normalized input impedance (zin) 
• Two intersection points between constant conductance circle and SWR 

circle can be observed 
• Rotation from intersection points to zin give the lengths d1 and d2 and 

corresponding changes in admittance 
• Look for cancelling the additional admittances using shunt stub by 

equating corresponding stub lengths from ‘open’ in Smith chart 
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Example – 6 (contd.)

yin to A towards 
generator 

(clockwise) gives 
length d1 (first 

solution)

yin to B towards 
generator 

(clockwise) gives 
length d2 (second 

solution)

Constant 
gL circle 

yin

0.8 0.6Lz j 

Here:

For stub length, start from here and 
move towards generator to cancel the 

corresponding suceptances

A

B
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Double-stub Matching Networks
• The single-stub matching networks are quite versatile → allows matching

between any input and load impedances, so long as they have a non-zero
real part.

• Main drawback is the requirement of variable length TL between the stub
and the input port or the stub and the stub and the load impedance →
many a times problematic when variable impedance tuner is needed.

• In a double-stub matching networks, two short- or open-circuited stubs
are connected in shunt with a fixed-length TL separating them → the
usual separation is λ/8, 3λ/8 or 5λ/8.

Self Study
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The Quarter Wave Transformer

• By now you must have noticed that a quarter-wave length of transmission
line (l = λ/4, 2βl = π) appears often in RF/microwave engineering
problems.

• Another application of the l = λ/4 transmission line is as an impedance
matching network.

Q: Why does the quarter-wave matching 
network work — after all, the quarter-wave 

line is mismatched at both ends?
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The Quarter Wave Transformer (contd.)

• Let us consider a TL (with characteristic impedance Z0) where the end is
terminated with a resistive (i.e., real) load:

0Z
LR

Unless RL = Z0 , the resistor is 
mismatched to the line, and thus 
some of the incident power will 

be reflected.

• We can of course correct this situation by placing a matching network
between the line and the load:

0Z LR

In addition to the designs we 
have just studied (e.g., L-

networks, stub tuners), one of 
the simplest matching network 

designs is the quarter-wave 
transformer.
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The Quarter Wave Transformer (contd.)

• The quarter-wave transformer is simply a transmission line with
characteristic impedance Z1 and length l = λ/4 (i.e., a quarter-wave line).

LR

l = λ/4 

This λ/4 line is the matching network!

Q: But what about the 
characteristic impedance Z1; what 

should its value be??
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The Quarter Wave Transformer (contd.)
A: Remember, the quarter wavelength case is one of the special cases that
we studied. We know that the input impedance of the quarter wavelength
line is:

In other words, the characteristic 
impedance of the quarter wave line is the 

geometric average of Z0 and RL!

   
2 2

1 1

in

L L

Z Z

Z R
 Z

• Thus, if we wish for Zin to be numerically equal to Z0, we find:

 
2

1

0in

L

Z
Z

R
 Z

• Solving for Z1, we find its required value to be: 1 0 LZ Z R
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The Quarter Wave Transformer (contd.)

Therefore, a λ/4 line with characteristic impedance 𝑍1 = 𝑍0𝑅𝐿
will match a transmission line with characteristic impedance Z0 to 

a resistive load RL

LR

l = λ/4 

This ensures that all power is delivered to load 𝑅𝐿!

Alas, the quarter-wave transformer (like all our designs) have 
a few problems!
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The Quarter Wave Transformer (contd.)
Problem #1

• The matching bandwidth is narrow !
• In other words, we obtain a perfect match at precisely the frequency

where the length of the matching transmission line is a quarter-
wavelength.

remember, this length can be a quarter-wavelength at  just one frequency!

• Wavelength is related to frequency as:

1pv

f f LC
   vp is propagation velocity of wave 

• For example, assuming that vp = c (c = the speed of light in a vacuum), one
wavelength at 1 GHz is 30 cm (λ = 0.3m ), while one wavelength at 3 GHz is
10 cm (λ = 0.1m ). As a result, a TL length l = 7.5cm is a quarter wavelength
for a signal at 1GHz only.

Thus, a quarter-wave transformer provides a perfect match (Γin = 0) at one 
and only one signal frequency!
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The Quarter Wave Transformer (contd.)

In other words, as the signal frequency (i.e., wavelength) changes, the 
electrical length of the matching TL segment changes. It will no longer be 

a quarter wavelength, and thus we no longer will have a perfect match

It can be observed that the closer RL (or Rin) is to characteristic impedance 
Z0, the wider the bandwidth of the quarter wavelength transformer

In principle, the bandwidth can 
be increased by adding 
multiple λ/4 sections!
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The Quarter Wave Transformer (contd.)
Problem #2

Recall the matching solution was limited to loads that were purely real! i.e.:

0L LZ R j 
Obviously, this is a BIG problem, as most loads 

will have a reactive component!

• Fortunately, we have a relatively easy solution to this problem, as we can
always add some length l of TL to the load to make the impedance
completely real:

LZ

l

0 ,Z 

Transforms 
RL + jXL into 

Rin

Clearly two possible solutions
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The Quarter Wave Transformer (contd.)

However, it should be understood that the input impedance will be 
purely real at only one frequency!

Once the output impedance has been converted to purely real, one can 
then build a quarter-wave transformer to match the line Z0 to resistance Rin

LZ

ll = λ/4 

Again, since the transmission lines are lossless, all of the incident 
power is delivered to the load ZL .



Indraprastha Institute of 

Information Technology Delhi ECE321/521

The Quarter Wave Transformer (contd.)
• A quarter wave transformer can be thought of as a cascaded series of two

two-port devices, terminated with a load RL:

LR

L
R

Q: Two two-port devices? It appears to me that a quarter-wave transformer
is not that complex. What are the two two–port devices?

A: The first is a “connector”. Note a connector is the interface between one
transmission line (characteristic impedance Z0) to a second transmission line
(characteristic impedance Z1 ).
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The Quarter Wave Transformer (contd.)

1I 2I

1Port  2Port 

• we earlier determined the scattering matrix of this two-port device as:

0 11 0

1 0 1 0

0 1 0 1

1 0 1 0

2

2
x

Z ZZ

Z Z Z Z

Z Z Z

Z Z Z Z

 
 

  

 

 
   

Z

S
Z

x

T

T

 
  

 
S

Compact Form
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The Quarter Wave Transformer (contd.)

• Therefore signal flow graph of the connector can be given as: 

1xa

2xa1xb

2xb



T

T



• Now, the second two-port device is a quarter wavelength of TL:
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The Quarter Wave Transformer (contd.)

• The second device has the scattering matrix and SFG as:

0

0

j l

y j l

e

e









 
  
 

S

1ya

1yb

j le 

2 ya

2 yb

j le 

• Finally, a load has a “scattering matrix” and SFG as:

1Z LR 1

1

L
L

L

R Z

R Z

 
   

 
S

1La

1Lb

L
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• Of course, if we connect the ideal connector to a quarter wavelength of
transmission line, and terminate the whole thing with load RL, we have
formed a quarter wave matching network!

The Quarter Wave Transformer (contd.)

LR

l = λ/4 

• The boundary conditions associated with these connections are likewise:

1 2y xa b 2 1x ya b 1 2L ya b 2 1y La b

1 2y xa b

2 1x ya b

1 2L ya b

2 1y La b
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The Quarter Wave Transformer (contd.)

• Therefore, we can put the signal-flow graph pieces together to form the
signal-flow graph of the quarter wave network:

• Simplification gives:
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The Quarter Wave Transformer (contd.)

Final Simplification

1xa

1xb

2 2

1

j l

L

L

T e 
 

 

Therefore:
2 2

1

1 1

j l

x L
in

x L

b T e

a


   

 

1xa

1xb

2 2

1

j l

L

L

T e 





Simplification:

Q: Hey wait! If the quarter-wave transformer is a matching network,
shouldn’t Γin = 0??

A: Who says it isn’t! Consider now three important facts.
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The Quarter Wave Transformer (contd.)
• For a quarter wave transformer, we set Z1 such that:

2

1 0 LZ Z R 
2

1
0

L

Z
Z

R


• Inserting this into the scattering parameter S11 of the connector, we find:

2

1 0 1 1 1
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• For the quarter-wave transformer, the connector S11 value (i.e., Γ ) is the
same as the load reflection coefficient ΓL :

1

1

L
L

L

R Z

R Z


   


Fact 1

• Since the connector is lossless (unitary scattering matrix!), we can
conclude (and likewise show) that:

2 2 2 2
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The Quarter Wave Transformer (contd.)

• Since Z0 , Z1 , and RL are all real, the values Γ and Τ are also real valued. As
a result, |Γ|2 = Γ2 and |Τ|2 = Τ2, and we can likewise conclude:

2 2 2 2 1T T      Fact 2

• Likewise, the Z1 transmission line has l = λ/4 , so that:

2
2 2

4
l

 
 



 
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 
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• As a result:
2 2 2
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• And using the newly discovered fact that (for a correctly designed
transformer) ΓL = Γ:
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The Quarter Wave Transformer (contd.)

• We also have a recent discovery that says  Τ2= 1 − Γ2, therefore:

2 2

2 2
0

1
in

T T

T

 
       

 

A perfect match! The quarter-wave 
transformer does indeed work!


