

Lecture – 12

Date: 11.02.2016

- Nodal Quality Factor
- T- and Pi- Matching Networks
- Microstrip Matching Networks
- Series- and Shunt-stub Matching
- Quarter Wave Impedance Transformer

Forbidden Region, Frequency Response, and Quality Factor

<u>Self Study</u> - Section 8.1.2 in the Text Book

- The L-type matching networks can be considered as resonance circuits with f_0 being the resonance frequency.
- These networks can be described by a loaded quality factor, Q_L , given by:

- However, analysis of matching circuit based on bandpass filter concept is complex → In addition, it only allows approximate estimation of the bandwidth.
- More simpler and accurate method is design and analysis through the use of nodal quality factor, Q_n .

Nodal Quality Factor

- During L-type matching network analysis it was apparent that at each node the impedance can be expressed in terms of equivalent series impedance $Z_s = R_s + jX_s$ or admittance $Y_P = G_P + jB_P$.
- Therefore, at each node we can define Q_n as the ratio of the absolute value of reactance X_s to the corresponding resistance R_s.

ECE321/521

• The "nodal quality factor" and loaded quality factor are related as:

 $Q_L = \frac{Q_n}{2}$ For more complicated networks, $Q_1 = Q_n$

 Bandwidth of the matching network can be easily estimated once the "nodal quality factor" is known.

Nodal Quality Factor (contd.)

• To simplify the matching network design process even further, we can draw constant Q_n contours in the Smith chart.

Nodal Quality Factor (contd.)

- Once you go through section 8.1.2, it will be apparent that quality factor of matching network is extremely important.
- For example, broadband amplifier requires matching circuit with low-Q. Whereas oscillators require high-Q networks to eliminate undesired harmonics in the output signal.
- It will also be apparent that L-type matching networks have no control over the values of $Q_n \rightarrow \text{Limitation}$!!!
- To gain more freedom in choosing the values of Q or Q_n, another element in the matching network is incorporated → results in T- or Pi-network

T- and Pi- Matching Networks

- The knowledge of nodal quality factor (Q_n) of a network enables estimation of loaded quality factor \rightarrow hence the Band Width (BW).
- The addition of third element into the matching network allows control of Q_L by choosing an appropriate intermediate impedance.

Example – 1

• Design a T-type matching network that transforms a load impedance $Z_L = (60 - j30)\Omega$ into a $Z_{in} = (10 + j20)\Omega$ input impedance and that has a maximum Q_n of 3. Compute the values for the matching network components, assuming that matching is required at f = 1GHz.

Solution

• Several possible configurations! Let us focus on just one!

Example – 1 (contd.)

- First element in series (Z₁) is purely reactive, therefore the combined impedance of (Z₁ and Z₁) will reside on the constant resistance circle of r = r_L
- Similarly, Z₃ (that is purely reactive!) is connected in series with the input, therefore the combined impedance Z_B (consisting of Z_L, Z₁, and Z₂) lies on the constant resistance circle r = r_{in}
- Network needs to have a Q_n of $3 \rightarrow$ we should choose impedance in such a way that Z_B is located on the **intersection** of constant resistance circle $r = r_{in}$ and $Q_n = 3$ circle \rightarrow helps in the determination of Z_3

ECE321/521

Indraprastha Institute of Information Technology Delhi

Example – 1 (contd.)

- The constant resistance circle of \mathbf{z}_{in} intersects the $Q_n = 3$ circle at point **B**. This gives value of Z_3 .
- The constant resistance circle $r = r_L$ and a constant conductance circle that passes through B helps in the determination of Z_2 and Z_1 .

Final solution at 1 GHz

Example – 2

• For a broadband amplifier, it is required to develop a Pi-type matching network that transforms a load impedance $Z_L = (10 - j10)\Omega$ into an input impedance of $Z_{in} = (20 + j40)\Omega$. The design should involve the lowest possible Q_n . Compute the values for the matching network components, assuming that matching is required at f = 2.4GHz.

Solution

• Several Configurations possible (including the forbidden!). One such is below:

- Since the load and source impedances are fixed, we can't develop a matching network that has Q_n lower than the values at locations Z_L and Z_{in}
- <u>Therefore in this example</u>, the minimum value of Q_n is determined at the input impedance location as $Q_n = |X_{in}|/R_{in} = 40/20 = 2$

Indraprastha Institute of Information Technology Delhi

Example – 2 (contd.)

- In the design, we first plot constant conductance circle g = g_{in} and find its intersection with $Q_n=2$ circle (point B) \rightarrow determines the value of Z_3
- Next find the intersection point (labeled as A) of the g=g_L circle and constant-resistance circle that passes through B → determines value of Z₂ and Z₁

Final solution at 2.4 GHz

ECE321/521

Example – 2 (contd.)

- It is important to note that the relative positions of Z_{in} and Z_L allows only one optimal Pi-type network for a given specification.
- All other realizations will result in higher $Q_n \rightarrow essentially smaller BW!$
- Furthermore, **for smaller Z**_L the Pi-matching isn't possible!

It is thus apparent that BW can't be enhanced arbitrarily by reducing the Q_n . The limits are set by the desired complex Z_{in} and Z_L .

With increasing frequency and correspondingly reduced wavelength the influence of parasitics in the discrete elements are noticeable → distributed matching networks overcome most of the limitations (of discrete components) at high frequency

Microstrip Line Matching Networks

- In the lower RF region, its often a standard practice to use a hybrid approach that combines lumped and distributed elements.
- These types of matching circuits usually contain TL segments in series and capacitors in shunt.

- Inductors are avoided in these designs as they tend to have higher resistive losses as compared to capacitors.
- In principle, only one shunt capacitor with two TL segments connected in series on both sides is sufficient to transform any given load impedance to any input impedance.

Microstrip Line Matching Networks (contd.)

- Similar to the L-type matching network, these configurations may also involve the additional requirement of a fixed Q_n, necessitating additional components to control the bandwidth of the circuit.
- In practice, these configurations are extremely useful as they permit tuning of the circuits even after manufacturing → changing the values of capacitors as well as placing them at different locations along the TL offers a wide range of flexibility → In general, all the TL segments have the same width to simplify the actual tuning →the tuning ability makes these circuits very appropriate for prototyping.

Example – 3

Design a hybrid matching network that transforms the load $Z_L = (30 + j10) \Omega$ to an input impedance $Z_{in} = (60 + j80) \Omega$. The matching network should contain only two series TL segments and one shunt capacitor. Both TLs have a 50 Ω characteristic impedance, and the frequency at which the matching is required is f = 1.5 GHz

Solution

- Mark the normalized load impedance (0.6 + j0.2) on the Smith chart.
- Draw the corresponding SWR circle.
- Mark the normalized input impedance (1.2 + j1.6) on the Smith chart.
- Draw the corresponding SWR circle.
- The choice of the point from which we transition from the load SWR circle to the input SWR circle can be made arbitrarily.

ECE321/521

Example – 3 (contd.)

Stub Matching Networks

 The next logical step in the transition from lumped to distributed element networks is the complete elimination of all lumped components → this can be achieved by employing open – and/or short – circuited stub lines

Shunt-stub Matching Networks

• Let us consider the following TL configuration with shunt stub.

Shunt-stub Matching Networks (contd.)

• An equivalent circuit for the shunt-tub TL can be:

 $\operatorname{Re}\left\{Y_{in}^{"}\right\}=Y_{0}$

Shunt-stub Matching Networks (contd.)

• Therefore, for a matched circuit, we require:

$$jB_{stub} + Y_{in}^{"} = Y_0$$

• Note this complex equation is actually two real equations!

$$\operatorname{Im}\left\{jB_{stub} + Y_{in}^{"}\right\} = \mathbf{0} \qquad \Longrightarrow B_{stub} = -B_{in}^{"}$$

Where:

$$\boxed{-B_{in}^{"}=\operatorname{Im}\left\{Y_{in}^{"}\right\}}$$

• Since Y_{in} is dependent on *d* only, our **design procedure** is:

1) Set d such that
$$\operatorname{Re}\{Y_{in}^{\prime\prime}\}=Y_{0}$$
.

2) Then set
$$\ell$$
 such that $B_{stub} = -B_{in}^{"}$.

We have two choice, either Analytical or Smith chart for finding out the lengths d and l

Shunt-stub Matching Networks (contd.)

Use of the Smith Chart to determine the lengths!

- Rotate **clockwise** around the Smith Chart from y_l until you intersect the $g_s=1$ circle. The "length" of this rotation determines the value d. Recall there are two possible solutions!
- Rotate **clockwise** from the short/open circuit point around the g = 0**circle**, until b_{stub} equals $-b_{in}$. The "length" of this rotation determines the stub length l.

Example – 4

Let us take the case where we want to match a load of $Z_L = (60-j80)\Omega$ (at 2 GHz) to a transmission line of $Z_0 = 50\Omega$.

Indraprastha Institute of Information Technology Delhi

Y₁

Example – 4 (contd.)

Solution

y_L to y₁ towards generator (clockwise) gives length d₁ (first solution)

y_L to y₂ towards generator (clockwise) gives length d₂ (second solution)

Example – 4 (contd.)

- Determine the respective admittances at the two intersection points
- These are of the form 1 + jx and 1 jx
- Cancel these imaginary part of the admittances by introducing shunt-stubs of length l_1 and l_2 respectively
- l_1 and l_2 are the lengths from open circuit point in the Smith chart (if open stub is used) along the g = 0 circle until the achieved admittances are of opposite signs to those at the intersection points in the earlier step

Example – 4 (contd.)

- **Q: Two** solutions! Which one do we use?
- A: The one with the **shortest** lengths of transmission line!
- **Q:** Oh, I see! Shorter transmission lines provide **smaller** and (slightly) cheaper matching networks.
- A: True! But there is a more **fundamental** reason why we select the solution with the **shortest** lines—the matching **bandwidth** is **larger**!
- **For example,** consider the **frequency response** of the two solutions:

Clearly, solution 1 provides a **wider** bandwidth!

Series-stub Matching Networks

• Consider the following transmission line structure, with a series stub:

Example – 5

Let us take the case where we want to match a load of $Z_L = (100 + j80)\Omega$ (at 2 GHz) to a transmission line of $Z_0 = 50\Omega$.

Indraprastha Institute of Information Technology Delhi

ECE321/521

Example – 2 (contd.)

 z_l to z_1 towards generator (clockwise) gives length d₁ (first solution)

 z_l to z_2 towards generator (clockwise) gives length d₂ (second solution)

Example – 5 (contd.)

- Determine the respective impedances at the two intersection points and these are of the form 1 + jx and 1 - jx
- Cancel these imaginary part of the impedances by introducing series-stubs of length l_1 and l_2 respectively
- l_1 and l_2 are the lengths from open circuit point in the Smith chart (if open stub is used) along the r = 0 circle until the achieved impedances are of opposite signs to those at the intersection points in the earlier step

Indraprastha Institute of Information Technology Delhi

Example – 5 (contd.)

Again, we should use the solution with the **shortest** transmission lines, although in **this** case that distinction is a bit **ambiguous**. As a result, the bandwidth of each design is about the same (depending on how **you** define **bandwidth**!).

ECE321/521

Example – 6

For a load impedance of $Z_L = (60 - j45)\Omega$, design single-stub (shunt) matching networks that transform the load to a $Z_{in} = (75 + j90)\Omega$ input impedance. Assume both the stub and transmission line have a characteristic impedance of $Z_0 = 75\Omega$

<u>Solution</u>

- Normalize the Z_L and Z_{in} with 75Ω
- Mark these normalized impedances on the Z-Smith chart
- Move to Y-Smith chart or better use ZY-Smith chart
- Plot constant conductance (g_L) circle
- Plot SWR circle for normalized input impedance (z_{in})
- Two intersection points between constant conductance circle and SWR circle can be observed
- Rotation from intersection points to z_{in} give the lengths d₁ and d₂ and corresponding changes in admittance
- Look for cancelling the additional admittances using shunt stub by equating corresponding stub lengths from 'open' in Smith chart

Indraprastha Institute of Information Technology Delhi

ECE321/521

Example – 6 (contd.)

Here:

 $z_L = 0.8 - j0.6$

y_{in} to A towards generator (clockwise) gives length d₁ (first solution)

y_{in} to B towards generator (clockwise) gives length d₂ (second solution)

Double-stub Matching Networks

- The single-stub matching networks are quite versatile → allows matching between any input and load impedances, so long as they have a non-zero real part.
- Main drawback is the requirement of variable length TL between the stub and the input port or the stub and the stub and the load impedance → many a times problematic when variable impedance tuner is needed.
- In a double-stub matching networks, two short- or open-circuited stubs are connected in shunt with a fixed-length TL separating them \rightarrow the usual separation is $\lambda/8$, $3\lambda/8$ or $5\lambda/8$.

The Quarter Wave Transformer

- By now you must have noticed that a **quarter-wave length** of transmission line $(l = \lambda/4, 2\beta l = \pi)$ appears **often** in RF/microwave engineering problems.
- Another application of the $l = \lambda/4$ transmission line is as an **impedance** matching network.

Q: Why does the quarter-wave matching network work — after all, the quarter-wave line is **mismatched** at both ends?

 Let us consider a TL (with characteristic impedance Z₀) where the end is terminated with a **resistive** (i.e., real) load:

 Z_0

Unless $R_L = Z_0$, the resistor is **mismatched** to the line, and thus some of the incident power will be **reflected**.

• We can of course correct this situation by placing a matching network between the line and the load:

In addition to the designs we have just studied (e.g., Lnetworks, stub tuners), one of the simplest matching network designs is the **quarter-wave transformer**.

• The quarter-wave transformer is simply a transmission line with characteristic impedance Z_1 and length $l = \lambda/4$ (i.e., a quarter-wave line).

Q: But what about the characteristic impedance Z₁; what **should** its value be??

A: Remember, the quarter wavelength case is one of the **special** cases that we studied. We know that the **input** impedance of the quarter wavelength line is:

$$\boldsymbol{Z}_{in} = \frac{\left(Z_{1}\right)^{2}}{Z_{L}} = \frac{\left(Z_{1}\right)^{2}}{R_{L}}$$

• Thus, if we wish for Z_{in} to be numerically equal to Z_0 , we find:

$$\mathbf{Z}_{in} = \frac{\left(Z_{1}\right)^{2}}{R_{L}} = Z_{0}$$

• Solving for Z₁, we find its **required** value to be:

$$Z_1 = \sqrt{Z_0 R_L}$$

In other words, the characteristic impedance of the quarter wave line is the geometric average of Z₀ and R_L!

Therefore, a $\lambda/4$ line with characteristic impedance $Z_1 = \sqrt{Z_0 R_L}$ will **match** a transmission line with characteristic impedance Z_0 to a resistive load R_1

Alas, the quarter-wave transformer (like all our designs) have a few problems!

The Quarter Wave Transformer (contd.) Problem #1

- The matching **bandwidth** is **narrow** !
- In other words, we obtain a **perfect** match at precisely the frequency where the length of the matching transmission line is a quarterwavelength.

remember, this length can be a quarter-wavelength at just **one** frequency!

Wavelength is related to frequency as:

 $\lambda = \frac{v_p}{f} = \frac{1}{f_2 \sqrt{LC}}$ v_p is propagation velocity of wave

For **example**, assuming that $v_p = c$ (c = the speed of light in a vacuum), one wavelength at 1 GHz is 30 cm (λ = 0.3m), while one wavelength at 3 GHz is 10 cm (λ = 0.1m). As a result, a TL length l = 7.5cm is a quarter wavelength for a signal at 1GHz **only**.

> Thus, a quarter-wave transformer provides a perfect match (Γ_{in} = 0) at one and only one signal frequency!

Indraprastha Institute of Information Technology Delhi

The Quarter Wave Transformer (contd.)

In other words, as the signal frequency (i.e., wavelength) changes, the electrical length of the matching TL segment changes. It will no longer be a quarter wavelength, and thus we no longer will have a perfect match

It can be observed that the **closer** R_L (or R_{in}) is to characteristic impedance Z_0 , the **wider** the bandwidth of the quarter wavelength transformer

In principle, the bandwidth can be **increased** by adding **multiple** λ/4 sections!

 $Z_L = R_L + j0$

The Quarter Wave Transformer (contd.) Problem #2

Recall the matching solution was limited to loads that were **purely real**! i.e.:

Obviously, this is a BIG problem, as most loads will have a **reactive** component!

 Fortunately, we have a relatively easy solution to this problem, as we can always add some length *l* of TL to the load to make the impedance completely real:

However, it should be understood that the input impedance will be purely real at only **one** frequency!

Once the output impedance has been converted to purely real, one can then build a quarter-wave transformer to **match** the line Z_0 to resistance R_{in}

Again, since the transmission lines are lossless, **all** of the incident power is delivered to the **load** Z_L .

 A quarter wave transformer can be thought of as a cascaded series of two two-port devices, terminated with a load R_L:

Q: Two two-port devices? It appears to me that a quarter-wave transformer is **not** that complex. What **are** the **two** two–port devices?

A: The **first** is a "**connector**". Note a connector is the interface between one transmission line (characteristic impedance Z_0) to a second transmission line (characteristic Z₁).

• we **earlier** determined the scattering matrix of this two-port device as:

$$\boldsymbol{S}_{x} = \begin{bmatrix} \frac{\boldsymbol{Z}_{1} - \boldsymbol{Z}_{0}}{\boldsymbol{Z}_{1} + \boldsymbol{Z}_{0}} & \frac{2\sqrt{\boldsymbol{Z}_{0}\boldsymbol{Z}_{1}}}{\boldsymbol{Z}_{1} + \boldsymbol{Z}_{0}} \\ \frac{2\sqrt{\boldsymbol{Z}_{0}\boldsymbol{Z}_{1}}}{\boldsymbol{Z}_{1} + \boldsymbol{Z}_{0}} & \frac{\boldsymbol{Z}_{0} - \boldsymbol{Z}_{1}}{\boldsymbol{Z}_{1} + \boldsymbol{Z}_{0}} \end{bmatrix}$$

$$S_{x} = \begin{bmatrix} \Gamma & T \\ T & -\Gamma \end{bmatrix}$$

• Therefore signal flow graph of the connector can be given as:

• Now, the **second** two-port device is a quarter wavelength of **TL**:

ECE321/521

The Quarter Wave Transformer (contd.)

• The second device has the scattering matrix and SFG as:

• Finally, a **load** has a "scattering matrix" and SFG as:

 $Z_{1} \qquad R_{L} \leq S = \left[\frac{R_{L} - Z_{1}}{R_{L} + Z_{1}}\right] = \Gamma_{L} \qquad \Gamma_{L}$ $b_{1L} \qquad b_{1L}$

 Of course, if we connect the ideal connector to a quarter wavelength of transmission line, and terminate the whole thing with load R_L, we have formed a quarter wave matching network!

• The boundary conditions associated with these connections are likewise:

$$a_{1y} = b_{2x}$$
 $a_{2x} = b_{1y}$ $a_{1L} = b_{2y}$ $a_{2y} = b_{1L}$

• Therefore, we can put the signal-flow graph pieces together to form the signal-flow graph of the quarter wave network:

• Simplification gives:

The Quarter Wave Transformer (contd.) <u>Simplification:</u>

Q: Hey wait! If the quarter-wave transformer is a **matching network**, shouldn't $\Gamma_{in} = 0$?

A: Who says it isn't! Consider now **three important facts**.

• For a **quarter wave transformer**, we set Z₁ such that:

$$Z_1^2 = Z_0 R_L \qquad \Rightarrow \qquad Z_0 = \frac{Z_1^2}{R_L}$$

• **Inserting** this into the scattering parameter S₁₁ of the connector, we find:

$$\Gamma = \frac{Z_1 - Z_0}{Z_1 + Z_0} = \frac{Z_1 - Z_1^2 / R_L}{Z_1 + Z_1^2 / R_L} = \frac{R_L - Z_1}{R_L + Z_1}$$

• For the quarter-wave transformer, the **connector** S_{11} value (i.e., Γ) is the **same** as the **load** reflection coefficient Γ_{L} :

$$\Gamma = \frac{R_L - Z_1}{R_L + Z_1} = \Gamma_L$$
 Fact 1

 Since the connector is lossless (unitary scattering matrix!), we can conclude (and likewise show) that:

$$1 = |S_{11}|^2 + |S_{21}|^2 = |\Gamma|^2 + |T|^2$$

• Since Z_0 , Z_1 , and R_L are all real, the values Γ and T are also **real valued**. As a result, $|\Gamma|^2 = \Gamma^2$ and $|T|^2 = T^2$, and we can likewise conclude:

$$|\Gamma|^{2} + |T|^{2} = \Gamma^{2} + T^{2} = 1$$
 Fact 2

• Likewise, the Z_1 transmission line has $l = \lambda/4$, so that:

As a result:
$$\Gamma_{in} = \Gamma + \frac{T^2 \Gamma_L e^{-j2\beta l}}{1 - \Gamma \Gamma_L} = \Gamma - \frac{T^2 \Gamma_L}{1 - \Gamma \Gamma_L}$$

• And using the **newly discovered** fact that (for a correctly designed transformer) $\Gamma_{\rm L} = \Gamma$:

$$\Gamma_{in} = \Gamma - \frac{T^2 \Gamma}{1 - \Gamma^2}$$

• We also have a **recent** discovery that says $T^2 = 1 - \Gamma^2$, therefore:

